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We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The
Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms
are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse
approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important
conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the
sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of
online manifold regularization algorithms.

1. Introduction

Semisupervised learning (S2L) of different classifiers is an
important problem in machine learning with interesting the-
oretical properties and practical applications [1–5]. Different
from standard supervised learning (SL), the S2L paradigm
learns from both labeled and unlabeled examples. In this
paper, we investigate the online semisupervised learning
(OS2L) problems which have three features as follows:

(i) data is abundant but the resources to label them are
limited;

(ii) data arrives in a stream and cannot even store them
all;

(iii) no statistical assumptions are found, which means
that 𝑝(x, 𝑦) can change over time.

OS2L algorithms take place in a sequence of consecutive
rounds. On each round, the learner is given a training
example and is required to predict the label if the example is
unlabeled. To label the examples, the learner uses a prediction
mechanism which builds a mapping from the set of examples
to the set of labels. The quality of an OS2L algorithm is
measured by the cumulative loss it makes along its run.
The challenge of OS2L is that we do not observe the true
label for unlabeled examples to evaluate the performance

of prediction mechanism. Thus, if we want to update the
prediction mechanism, we have to rely on indirect forms of
feedback.

Lots of OS2L algorithms have been proposed in recent
years. A popular idea [5, 6] is using a heuristic method to
greedily label the unlabeled examples, which is essentially
still employing an online supervised learning framework.
References [7–9] also treat OS2L problem as online semisu-
pervised clustering in that there are somemust-links pairs (in
the same cluster) and cannot-links pairs (cannot in the same
cluster), but the effects of these methods are often influenced
by “bridge points” (see a survey in [10]).

For solving OS2L problem, we introduce a novel online
manifold regularization (MR) framework for the design and
analysis of new onlineMR algorithms in this paper. Manifold
regularization is a geometric framework for learning from
examples. This idea of regularization exploits the geometry
of the probability distribution that generates the data and
incorporates it as an additional regularization term. Hence,
the objective function has two regularization terms: one
controls the complexity of the classifier in the ambient space
and the other controls the complexity as measured by the
geometry of the distribution.

Since decreasing the primal MR objective function is
impossible before obtaining all the training examples, we
propose a Fenchel conjugate transform to optimize the dual
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problem in an onlinemanner. Unfortunately, the basic online
MR algorithms derived from our framework have to store
all the incoming examples and the time complexity on each
learning round is 𝑂(𝑡

2
). Therefore, we propose two buffering

strategies and two sparse approximations to make our online
MR algorithms practical. We also discuss the applicability of
our framework to the settings where the target hypothesis is
not fixed but drifts with the sequence of examples.

To the best of our knowledge, the closest prior work is an
empirical online version of manifold regularization of SVMs
[11]. Their method defines an instantaneous regularized risk
to avoid optimizing the primal MR problem directly. The
learning process is based on convex programming with
stochastic gradient descent in kernel space. The update
scheme of this work can be derived from our online MR
framework.

This paper is structured as follows. In Section 2 we begin
with a primal view of semisupervised learning problem based
on manifold regularization. In Section 3, our new framework
for designing and analyzing online MR algorithms is intro-
duced. Next, in Section 4, we derive new algorithms from our
online MR framework by gradient ascent. In Section 5, we
propose two sparse approximations for kernel representation
to reduce computational complexity. Connections to earlier
analysis techniques are in Section 6. Experiments and analy-
ses are in Section 7. In Section 8, possible extensions of our
work are given.

2. Problem Setting

Our notation and problem setting are formally introduced
in this section. The italic lower case letters refer to scalars
(e.g., 𝛼 and 𝑤), and the bold letters refer to vectors (e.g., 𝜔
and 𝜆). (x

𝑡
, 𝑦
𝑡
, 𝜎
𝑡
) denotes the 𝑡th training example, where

x
𝑡
∈ R𝑛 is the point, 𝑦

𝑡
is its label, and 𝜎

𝑡
is a flag to determine

whether the label can be seen. If 𝜎 = 1, the example is labeled;
and if 𝜎 = 0, the example is unlabeled. The hinge function
is denoted by [𝑎]

+
= max{𝑎, 0}. ⟨𝜔, x⟩ denotes the inner

product between vectors 𝜔 and x. For any 𝑡 ≥ 1, the set of
integers {1, 2, . . . , 𝑡} is denoted by [𝑡].

Consider an input sequence (x
1
, 𝑦
1
, 𝜎
1
), (x
2
, 𝑦
2
, 𝜎
2
), . . . ,

(x
𝑇
, 𝑦
𝑇
, 𝜎
𝑇
), where x

𝑡
∈ R𝑛 and 𝜎

𝑡
∈ {0, 1} (𝑡 ∈ {1, 2, . . . , 𝑇}).

Let 𝐾 be a kernel over the training points x and H
𝐾
the

corresponding reproducing kernel Hilbert space (RKHS).
The S2L problem based on manifold regularization [12] can
be written as minimizing

𝐽 (𝑓) =
1

2

𝑓

2

𝐾
+ 𝑐
1

𝑇

∑

𝑡=1

𝜎
𝑡
ℎ (𝑓 (x

𝑡
) , 𝑦
𝑡
)

+ 𝑐
2

𝑇

∑

𝑖,𝑗=1

𝑤
𝑖𝑗
𝑑 (𝑓 (x

𝑖
) , 𝑓 (x

𝑗
)) ,

(1)

where 𝑓 ∈ H
𝐾
, ‖𝑓‖
2

𝐾
is the RKHS norm of 𝑓, ℎ is

a loss function for the predictions of the training points,
𝑐
1
and 𝑐

2
are trade-off parameters, 𝑑(𝑓(x

𝑖
), 𝑓(x
𝑗
)) is the

distance function which measures the difference between the
predictions of x

𝑖
and x

𝑗
, and 𝑤

𝑖𝑗
are the edge weights which

define a graph over the 𝑇 examples, for example, a fully
connected graph with Gaussian weights 𝑤

𝑖𝑗
= 𝑒
−‖x𝑖−x𝑗‖2/2𝜎2

or 𝑘-NN binary weights.
In (1), the objective function 𝐽(𝑓) can be composed

of three sums. The first sum measures the complexity of
𝑓, the second measures the loss for labeled examples, and
the last one is the manifold regularizer which encourages
prediction smoothness over the graph which means that
similar examples tend to have same predictions.

Denote that 𝑓
∗

= argmin
𝑓∈H𝐾

𝐽(𝑓). Obviously, it is
easy to seek 𝑓

∗ using existing optimization tools after all
the training examples arrived, which is called offline MR.
Different from offline methods, an online MR process is
performed in sequence of consecutive rounds. On each
round, when an example (x, 𝑦, 𝜎) arrives, the online MR
algorithm is required to present its predictive label andupdate
its prediction mechanism so as to be more accurate later.

For simplicity and concreteness, we focus on semisu-
pervised binary linear classifiers in this paper, which means
that 𝑓(x) = ⟨𝜔, x⟩ and the data labels belong to {−1, +1}.
ℎ is chosen as a popular convex loss function in supervised
classification: hinge-loss, defined as

ℎ (𝑓 (x
𝑡
) , 𝑦
𝑡
) = [1 − 𝑦

𝑡
𝑓 (x
𝑡
)]
+
= [1 − 𝑦

𝑡
⟨𝜔, x
𝑡
⟩]
+
. (2)

The function 𝑑(𝑓(x
𝑖
), 𝑓(x
𝑗
)) is defined as an absolute func-

tion in this paper, where

𝑑 (𝑓 (x
𝑖
) , 𝑓 (x

𝑗
)) =


𝑓 (x
𝑖
) − 𝑓 (x

𝑗
)

. (3)

Furthermore, (3) is composed of two hinge functions (see
Figure 1 for an illustration) as follows:

𝑑 (𝑓 (x
𝑖
) , 𝑓 (x

𝑗
))=[𝑓 (x

𝑖
)−𝑓 (x

𝑗
)]
+
+[𝑓 (x

𝑗
)−𝑓 (x

𝑖
)]
+
.

(4)

To learn amax-margin decision boundary, we can rewrite
(1) as

𝐽 (𝜔) =
1

2
𝜔
2
+ 𝑐
1

𝑇

∑

𝑡=1

𝜎
𝑡
[1 − 𝑦

𝑡
⟨𝜔, x
𝑡
⟩]
+

+ 𝑐
2

𝑇

∑

𝑖,𝑗=1


𝑤
𝑖𝑗
⟨𝜔, x
𝑖
−x
𝑗
⟩

.

(5)

Let edge weights 𝑤
𝑖𝑗
= 𝑤
𝑗𝑖
and 𝑔

𝑡
(𝜔) = 𝑐

1
𝜎
𝑡
[1 − 𝑦

𝑡
⟨𝜔, x
𝑡
⟩]
+
+

2𝑐
2
∑
𝑡−1

𝑖=1
|𝑤
𝑖𝑗
⟨𝜔, x
𝑖
−x
𝑗
⟩|, and we can get a simple version of

(5), as

𝐽 (𝜔) =
1

2
𝜔
2
+

𝑇

∑

𝑡=1

𝑔
𝑡
(𝜔) . (6)

The minimization problem of (6) in an online manner is
what we consider in the rest of this paper.

3. Online Manifold Regularization in
the Dual Problem

In this section, we propose a unified online manifold regu-
larization framework of semisupervised binary classification
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(a) (b) (c)

Figure 1: The absolute distance function and its components. The absolute function |x| (a) can be decomposed into the sum of two hinge
functions [x]

+
(b) and [−x]

+
(c).

problems. Our presentation reveals how the S2L problem
based on MR in Section 2 can be optimized in an online
manner.

Before describing our framework, let us recall the defini-
tion of Fenchel conjugate that we use as a main analysis tool.
The Fenchel conjugate of a function 𝑓 : dom 𝑓 → R is
defined as

𝑓
∗
(𝜆) = sup {⟨𝜆,𝜔⟩ − 𝑓 (𝜔) : 𝜔 ∈ dom 𝑓} . (7)

Specially, the Fenchel conjugate of hinge functions is a key to
transfer manifold regularization from offline to online in this
paper.

Proposition 1. Let 𝑓(𝜔) = ∑
𝑘

𝑖=1
[𝑏
𝑖
− ⟨𝜔, x

𝑖
⟩]
+
, where for all

𝑖 ∈ {1, 2, . . . , 𝑘}, 𝑏
𝑖
∈ R, and x

𝑖
∈ R𝑛. The Fenchel conjugate of

𝑓(𝜔) is

𝑓
∗
(𝜆)

=

{{

{{

{

−
𝑘

∑
𝑖=1

𝛼
𝑖
𝑏
𝑖

𝑖𝑓 𝜆∈{−
𝑘

∑
𝑖=1

𝛼
𝑖
x
𝑖
: ∀𝑖∈{1, 2, . . . , 𝑘}, 𝛼

𝑖
∈ [0, 1]}

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(8)

Proof. We first rewrite the 𝑓(𝜔) as the following:

𝑓 (𝜔) =

𝑘

∑

𝑖=1

[𝑏
𝑖
− ⟨𝜔, x

𝑖
⟩]
+

= max
𝛼1 ,𝛼2,...,𝛼𝑘∈[0,1]

𝑘

∑

𝑖=1

𝛼
𝑖
(𝑏
𝑖
− ⟨𝜔, x

𝑖
⟩) ,

(9)

where 𝛼
𝑖

∈ [0, 1] for all 𝑖 ∈ {1, 2, . . . , 𝑘}. Based on the
definition of Fenchel conjugate, we can obtain that

𝑓
∗
(𝜆) = max

𝜔

(⟨𝜆,𝜔⟩ − 𝑓 (𝜔))

= max
𝜔

(⟨𝜆,𝜔⟩ − max
𝛼1 ,𝛼2,...,𝛼𝑘∈[0,1]

𝑘

∑

𝑖=1

𝛼
𝑖
(𝑏
𝑖
− ⟨𝜔, x

𝑖
⟩))

= max
𝜔

min
𝛼1 ,𝛼2,...,𝛼𝑘∈[0,1]

(⟨𝜆,𝜔⟩ −

𝑘

∑

𝑖=1

𝛼
𝑖
(𝑏
𝑖
− ⟨𝜔, x

𝑖
⟩))

= min
𝛼1,𝛼2,...,𝛼𝑘∈[0,1]

max
𝜔

(−

𝑘

∑

𝑖=1

𝛼
𝑖
𝑏
𝑖
+⟨𝜆+

𝑘

∑

𝑖=1

𝛼
𝑖
x
𝑖
,𝜔⟩)

= min
𝛼1,𝛼2,...,𝛼𝑘∈[0,1]

(−

𝑘

∑

𝑖=1

𝛼
𝑖
𝑏
𝑖
+max
𝜔

⟨𝜆 +

𝑘

∑

𝑖=1

𝛼
𝑖
x
𝑖
,𝜔⟩) .

(10)

Since the third equality aforementioned follows from the
strong max-min property, it can be transferred into a min-
max problem. If 𝜆+∑𝑘

𝑖=1
𝛼
𝑖
x
𝑖

̸= 0, max
𝜔
⟨𝜆+∑

𝑘

𝑖=1
𝛼
𝑖
x
𝑖
,𝜔⟩ is∞;

otherwise, if 𝜆 + ∑
𝑘

𝑖=1
𝛼
𝑖
x
𝑖
= 0, we have 𝑓∗(𝜆) = −∑

𝑘

𝑖=1
𝛼
𝑖
𝑏
𝑖
.

Back to the primal problem, we want to get a sequence
of boundary 𝜔

0
,𝜔
1
, . . . ,𝜔

𝑇
which makes 𝐽(𝜔

0
) ≥ 𝐽(𝜔

1
) ≥

⋅ ⋅ ⋅ ≥ 𝐽(𝜔
𝑇
). In (6), decreasing the objective function 𝐽(𝜔)

directly is impossible in the condition of not getting all
the training examples. In practice, we only get the example
set {(x

1
, 𝑦
1
, 𝜎
1
),(x
2
, 𝑦
2
, 𝜎
2
), . . . ,(x

𝑡
, 𝑦
𝑡
, 𝜎
𝑡
)} on round 𝑡, when

the training examples arrive in a steam. In order to avoid
the previous contradiction, we propose a Fenchel conjugate
transform of S2L problems based on MR.

An equivalent problem of (6) is

min
𝜔0 ,𝜔1 ,...,𝜔𝑇

1

2
𝜔
2

0
+

𝑇

∑

𝑡=1

𝑔
𝑡
(𝜔
𝑡
) ,

s.t. ∀𝑖 ∈ 1, 2 . . . , 𝑇, 𝜔
𝑖
= 𝜔
0
.

(11)

Using the Lagrange dual function, we can rewrite (11) by
introducing a vector group (𝜆

1
,𝜆
2
, . . . ,𝜆

𝑇
):

max
𝜆1 ,𝜆2 ,...,𝜆𝑇

min
𝜔0,𝜔1 ,...,𝜔𝑇

1

2
𝜔
2

0
+

𝑇

∑

𝑡=1

𝑔
𝑡
(𝜔
𝑡
) +

𝑇

∑

𝑡=1

⟨𝜆
𝑡
,𝜔
0
− 𝜔
𝑡
⟩ .

(12)

Consider the dual function

𝐷(𝜆
1
,𝜆
2
, . . . ,𝜆

𝑇
)

= min
𝜔0 ,𝜔1 ,...,𝜔𝑇

1

2
𝜔
2

0
+

𝑇

∑

𝑡=1

𝑔
𝑡
(𝜔
𝑡
) +

𝑇

∑

𝑡=1

⟨𝜆
𝑖
,𝜔
0
− 𝜔
𝑡
⟩
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= −max
𝜔0

(

𝑇

∑

𝑡=1

⟨−𝜆
𝑡
,𝜔
0
⟩ −

1

2
𝜔
2

0
)

−

𝑇

∑

𝑡=1

max
𝜔𝑡

(⟨𝜆
𝑡
,𝜔
𝑡
⟩ − 𝑔
𝑡
(𝜔
𝑡
))

= −
1

2
(−

𝑇

∑

𝑡=1

𝜆
𝑡
)

2

−

𝑇

∑

𝑡=1

𝑔
∗

𝑡
(𝜆
𝑡
) ,

(13)

where 𝑔∗
𝑡
is the Fenchel conjugate of 𝑔

𝑡
. The primal problem

can be described by Fenchel conjugate transform as follows:

min
𝜔

1

2
𝜔
2
+

𝑇

∑

𝑡=1

𝑔
𝑡
(𝜔) = max

𝜆1,𝜆2,...,𝜆𝑇

𝐷(𝜆
1
,𝜆
2
, . . . ,𝜆

𝑇
)

= max
𝜆1,𝜆2,...,𝜆𝑇

−
1

2
(−

𝑇

∑

𝑡=1

𝜆
𝑡
)

2

−

𝑇

∑

𝑡=1

𝑔
∗

𝑡
(𝜆
𝑡
) .

(14)

In (14), we can see that our goal has been transferred from
minimizing the primal problem 𝐽(𝜔) to maximizing the dual
function𝐷(𝜆

1
,𝜆
2
, . . . ,𝜆

𝑇
). In the following, we show how to

ascend the dual function without the unobserved examples.
Based on Proposition 1, the Fenchel conjugate of 𝑔

𝑡
(𝜔) is

𝑔
∗

𝑡
(𝜆) = −𝑐

1
𝛼
𝑡0
𝜎
𝑡 (15)

if 𝜆
𝑡
∈ {−𝑐
1
𝛼
𝑡0
𝜎
𝑡
𝑦
𝑡
x
𝑡
−∑
𝑡−1

𝑖=1
2𝑐
2
(𝛼
1

𝑡𝑖
−𝛼
2

𝑡𝑖
)𝑤
𝑡𝑖
(x
𝑡
−x
𝑖
), 𝛼
𝑡0
∈ [0, 1]

and for all 𝑖 ∈ {1, 2, . . . , 𝑡 − 1}, 𝛼1
𝑡𝑖
, 𝛼2
𝑡𝑖

∈ [0, 1]}; otherwise,
𝑔
∗

𝑡
(𝜆
𝑡
) = ∞.

Since our goal is to maximize the dual function, we can
restrict to the case that 𝜆

𝑡
∈ {−𝑐

1
𝛼
𝑡0
𝜎
𝑡
𝑦
𝑡
x
𝑡
− ∑
𝑡−1

𝑖=1
2𝑐
2
(𝛼
1

𝑡𝑖
−

𝛼
2

𝑡𝑖
)𝑤
𝑡𝑖
(x
𝑡
−x
𝑖
), 𝛼
𝑡0

∈ [0, 1] and for all 𝑖 ∈ {1, 2, . . . , 𝑡 − 1}, 𝛼1
𝑡𝑖
,

𝛼
2

𝑡𝑖
∈ [0, 1]}, where 𝑡 ∈ {1, 2, . . . , 𝑇}. 𝑔∗

𝑡
(𝜆
𝑡
) has 2𝑡 − 1 associ-

ated coefficients which are 𝛼
𝑡0
, 𝛼
1

𝑡1
, 𝛼
2

𝑡1
, . . . , 𝛼

1

𝑡(𝑡−1)
, 𝛼
2

𝑡(𝑡−1)
.

Based on the previous analysis, the dual function
can be rewritten using a new coefficient vector 𝛼 =

[𝛼
10
, 𝛼
20
, 𝛼
1

21
, 𝛼
2

21
, . . . , 𝛼

𝑇0
, 𝛼
1

𝑇1
, 𝛼
2

𝑇1
, . . . , 𝛼

1

𝑇(𝑇−1)
, 𝛼
2

𝑇(𝑇−1)
],

𝐷 (𝛼) = 𝐷 (𝛼
10
, 𝛼
20
, 𝛼
1

21
, 𝛼
2

21
, . . . , 𝛼

𝑇0
, 𝛼
1

𝑇1
,

𝛼
2

𝑇1
, . . . , 𝛼

1

𝑇(𝑇−1)
, 𝛼
2

𝑇(𝑇−1)
)

=−
1

2
(

𝑇

∑

𝑡=1

(𝑐
1
𝛼
𝑡0
𝜎
𝑡
𝑦
𝑡
x
𝑡
+

𝑡−1

∑

𝑖=1

2𝑐
2
(𝛼
1

𝑡𝑖
−𝛼
2

𝑡𝑖
)𝑤
𝑡𝑖
(x
𝑡
−x
𝑖
)))

2

+

𝑇

∑

𝑡=1

𝑐
1
𝛼
𝑡0
𝜎
𝑡
.

(16)

And our online MR task can be redescribed as ascending
the dual function 𝐷(𝛼) by updating the coefficient vector 𝛼.
Obviously, unobserved examples would make no influence
on the value of dual function in (16) by setting their associate
coefficients to zero.

Denote 𝛼
𝑡
to be the coefficient vector 𝛼 on round

𝑡, and its elements can be written as (𝛼
10
)
𝑡
, (𝛼
20
)
𝑡
, (𝛼
1

21
)
𝑡
,

(𝛼
2

21
)
𝑡
, . . . , (𝛼

𝑇0
)
𝑡
, (𝛼
1

𝑇1
)
𝑡
, (𝛼
2

𝑇1
)
𝑡
, . . . , (𝛼

1

𝑇(𝑇−1)
)
𝑡
, (𝛼
2

𝑇(𝑇−1)
)
𝑡
. The

update process of coefficient vector 𝛼 on round 𝑡 should
satisfy the following conditions:

(i) If 𝑡 + 1 ≤ 𝑖 ≤ 𝑇, (𝛼
𝑖0
)
𝑡
, (𝛼
1

𝑖1
)
𝑡
, (𝛼
2

𝑖1
)
𝑡
, . . . , (𝛼

1

𝑖(𝑖−1)
)
𝑡
,

(𝛼
2

𝑖(𝑖−1)
)
𝑡
= 0;

(ii) 𝐷(𝛼
𝑡
) ≥ 𝐷(𝛼

𝑡−1
).

The first one means that the unobserved examples do not
make influence on the value of dual function 𝐷(𝛼

𝑡
), and the

second means that the value of dual function never decreases
along the online MR process.Therefore, the dual function on
round 𝑡 can be written as

𝐷(𝛼
𝑡
) = −

1

2
(

𝑡

∑

𝑖=1

(𝑐
1
(𝛼
𝑖0
)
𝑡
𝜎
𝑖
𝑦
𝑖
x
𝑖

+

𝑖−1

∑

𝑗=1

2𝑐
2
((𝛼
1

𝑖𝑗
)
𝑡
−(𝛼
2

𝑖𝑗
)
𝑡
)𝑤
𝑖𝑗
(x
𝑖
− x
𝑗
)))

2

+

𝑡

∑

𝑖=1

𝑐
1
(𝛼
𝑖0
)
𝑡
𝜎
𝑖
.

(17)

Based on Lemmas 2 and 3 in the appendix, we can obtain
that each coefficient vector 𝛼 has an associated boundary
vector 𝜔. On round 𝑡, the associated boundary vector of 𝛼

𝑡

is

𝜔
𝑡
=

𝑡

∑

𝑖=1

(𝑐
1
(𝛼
𝑖0
)
𝑡
𝜎
𝑖
𝑦
𝑖
x
𝑖

+

𝑖−1

∑

𝑗=1

2𝑐
2
((𝛼
1

𝑖𝑗
)
𝑡
− (𝛼
2

𝑖𝑗
)
𝑡
)𝑤
𝑖𝑗
(x
𝑖
− x
𝑗
))

=

𝑡

∑

𝑖=1

(𝑐
1
(𝛼
𝑖0
)
𝑡
𝜎
𝑖
𝑦
𝑖
+

𝑖−1

∑

𝑗=1

2𝑐
2
((𝛼
1

𝑖𝑗
)
𝑡
− (𝛼
2

𝑖𝑗
)
𝑡
)𝑤
𝑖𝑗

−

𝑡

∑

𝑗=𝑖+1

2𝑐
2
((𝛼
1

𝑗𝑖
)
𝑡
− (𝛼
2

𝑗𝑖
)
𝑡
)𝑤
𝑗𝑖
) x
𝑖
.

(18)

Using a more general form, the associate vector 𝜔
𝑡
in (18)

also can be written as

𝜔
𝑡
=

𝑡

∑

𝑖=1

(𝛽
𝑖
)
𝑡
x
𝑖
, (19)

where (𝛽
𝑖
)
𝑡

= 𝑐
1
(𝛼
𝑖0
)
𝑡
𝜎
𝑖
𝑦
𝑖
+ ∑
𝑖−1

𝑗=1
2𝑐
2
((𝛼
1

𝑖𝑗
)
𝑡
− (𝛼
2

𝑖𝑗
)
𝑡
)𝑤
𝑖𝑗
−

∑
𝑡

𝑗=𝑖+1
2𝑐
2
((𝛼
1

𝑗𝑖
)
𝑡
− (𝛼
2

𝑗𝑖
)
𝑡
)𝑤
𝑗𝑖
.

To make a summary, we propose a template online MR
algorithm by dual ascending procedure in Algorithm 1.
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INPUT: two positive scalars: 𝑐
1
and 𝑐
2
; edge weights 𝑤

𝑖𝑗
.

INITIALIZE: a coefficient vector 𝛼
0
and its associated decision boundary vector 𝜔

0
.

PROCESS: For 𝑡 = 1, 2, . . . , 𝑇

Receive an example (x
𝑡
, 𝑦
𝑡
, 𝜎
𝑡
),

Choose a new coefficient vector 𝛼
𝑡
that satisfies𝐷(𝛼

𝑡
) ≥ 𝐷 (𝛼

𝑡−1
),

Return a new associated boundary vector 𝜔
𝑡
in (18),

If 𝜎
𝑡
= 0, predict 𝑦

𝑡
= sign(⟨𝜔

𝑡
, x
𝑡
⟩).

Algorithm 1: A template online manifold regularization algorithm for semi-supervised binary classification. Based on dual ascending
procedure, this template algorithm aims for an increment of the dual function on each round.

4. Deriving New Algorithms by
Gradient Ascent

In the previous section, a template algorithm framework
for online MR is proposed based on the idea of ascending
the dual function. In this section we derive different online
MR algorithms using different update schemes of coefficient
vector 𝛼 in the dual function.

Let 𝐼
𝑡
denote a subset of dual coefficients and 𝛼 is

an element of coefficient vector 𝛼. Our online MR algo-
rithms simply perform a gradient ascent step over 𝐼

𝑡
(𝑡 ∈

{1, 2, . . . , 𝑇}) on round 𝑡 that aims to increase the value of dual
function:

(𝛼)
𝑡
= (𝛼)
𝑡−1

+ 𝜌
𝑡

𝜕𝐷 (𝛼
𝑡−1

)

𝜕(𝛼)
𝑡−1

, (20)

where 𝛼 ∈ 𝐼
𝑡
and 𝜌
𝑡
≥ 0 is a step size. We now propose three

update schemes which modify different coefficients on each
learning round.

4.1. Example-Associate (EA) Update. In traditional online
supervised learning, the prediction mechanism is always
updated only using the new arrived example, for example,
Perceptron. Based on this notion, we propose an example-
associate update scheme to ascend the dual function by
updating the associated coefficients of the new training exam-
ple (x

𝑡
, 𝑦
𝑡
, 𝜎
𝑡
) on round 𝑡 that means 𝐼

𝑡
∈ {𝛼
𝑡0
, 𝛼
1

𝑡1
, 𝛼
2

𝑡1
, . . . ,

𝛼
1

𝑡(𝑡−1)
, 𝛼
2

𝑡(𝑡−1)
}.

In online MR process, the coefficients 𝛼
𝑡0
, 𝛼
1

𝑡1
, 𝛼
2

𝑡1
, . . . ,

𝛼
1

𝑡(𝑡−1)
, 𝛼
2

𝑡(𝑡−1)
do not need to be grounded to zero on round

𝑡. Based on Proposition 1, we have already obtained that
every element of coefficient vector 𝛼 belongs to [0, 1]. Using
a gradient ascent step in (20), the example-associate update
process can be written as

(𝛼
𝑡0
)
𝑡
= 𝜌
𝑡
𝑐
1
𝜎
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+
, (21)

(𝛼
1

𝑡𝑖
)
𝑡
= 2𝑐
2
𝜌
𝑡
[−𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩]
+
,

𝑖 ∈ {1, 2, . . . , 𝑡 − 1} ,

(22)

(𝛼
2

𝑡𝑖
)
𝑡
= 2𝑐
2
𝜌
𝑡
[𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩]
+
,

𝑖 ∈ {1, 2, . . . , 𝑡 − 1} .

(23)

Equation (21) implies that if 1 − ⟨𝑦
𝑡
x
𝑡
,𝜔
𝑡−1

⟩ < 0, we have
(𝛼
𝑡0
)
𝑡
= (𝛼
𝑡0
)
𝑡−1

= 0, and otherwise (𝛼
𝑡0
)
𝑡
= 𝜌
𝑡
𝑐
1
𝜎
𝑡
(1 −

⟨𝑦
𝑡
x
𝑡
,𝜔
𝑡−1

⟩). Equations (22) and (23) also imply that the
gradient ascent must satisfy (𝛼)

𝑡
≥ 0, and otherwise we do

not perform a gradient ascent on 𝛼.
Unfortunately, this update scheme will not work in

practice because it needs to store every input point to update
the boundary vector; it also has an increasing time complexity
𝑂(𝑡). Here, we propose two buffering strategies to use a small
buffer of examples on each learning round. Denote that 𝑆

𝑡
⊆

[𝑡 − 1], and the example (x
𝑖
, 𝑦
𝑖
, 𝜎
𝑖
) belongs to the buffer on

round 𝑡 if 𝑖 ∈ 𝑆
𝑡
.

(i) Buffer-𝑁. Let the buffer size be 𝜏. 𝜏-buffer replaces the
oldest point x

𝑡−𝜏
in the buffer with the new incoming

point x
𝑡
after each learning round, which means that

𝑆
𝑡
= {𝑡 − 𝜏, 𝑡 − 𝜏 + 1, . . . , 𝑡 − 1}.

(ii) Buffer-𝑈. This buffering strategy replaces the oldest
unlabeled point in the buffer with the incoming point
while keeping labeled points.The oldest labeled point
is evicted from the buffer only when it is filled with
labeled points.

Based on the previous analysis, the sub set of dual
coefficients 𝐼

𝑡
can be chosen using the process in Algorithm 2.

Denote 𝜌
max
𝑡

as the maximal step size on round 𝑡. Since
every dual coefficient belongs to [0, 1], we have 𝜌

max
𝑡

=

min{1/𝑐
1
𝜎
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+
, 1/2𝑐

2
[−𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩]
+
,

1/2𝑐
2
[𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩]
+
}, 𝑖 ∈ 𝑆

𝑡
. The optimal step size 𝜌∗

𝑡

is

𝜌
∗

𝑡
=

⟨𝜕𝐷 (𝛼
𝑡−1

) /𝜕𝐼
𝑡
, 𝜕𝐷 (𝛼

𝑡−1
) /𝜕𝐼
𝑡
⟩

⟨𝜕𝐷 (𝛼
𝑡−1

) /𝜕𝐼
𝑡
, 𝐻 (𝛼

𝑡−1
) (𝜕𝐷 (𝛼

𝑡−1
) /𝜕𝐼
𝑡
)⟩

, (24)

where 𝐻(𝛼
𝑡−1

) is the Hessian of 𝐷(𝛼
𝑡−1

) over 𝐼
𝑡
. Then, we

obtain that if 𝜌
𝑡
∈ [0,min{𝜌max

𝑡
, 𝜌
∗

𝑡
}],𝐷(𝛼

𝑡
) ≥ 𝐷(𝛼

𝑡−1
).

Combining (22) and (23), we have

(𝛼
1

𝑡𝑖
)
𝑡
− (𝛼
2

𝑡𝑖
)
𝑡

= 2𝑐
2
𝜌
𝑡
([−𝑤
𝑡𝑖
⟨(x
𝑡
−x
𝑖
) ,𝜔
𝑡−1

⟩]
+

−[𝑤
𝑡𝑖
⟨(x
𝑡
−x
𝑖
) ,𝜔
𝑡−1

⟩]
+
)

= −2𝑐
2
𝜌
𝑡
𝑤
𝑡𝑖
⟨(x
𝑡
−x
𝑖
) ,𝜔
𝑡−1

⟩ .

(25)
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PROCESS: 𝐼
𝑡
= 0,

If 1 − ⟨𝑦
𝑡
x
𝑡
,𝜔
𝑡−1

⟩ > 0, 𝐼
𝑡
= 𝐼
𝑡
∪ {𝛼
𝑡0
}.

For each 𝑖 ∈ 𝑆
𝑡

If −𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩ > 0, 𝐼
𝑡
= 𝐼
𝑡
∪ {𝛼
1

𝑡𝑖
};

If 𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩ > 0, 𝐼
𝑡
= 𝐼
𝑡
∪ {𝛼
2

𝑡𝑖
}.

Return 𝐼
𝑡
.

Algorithm 2: The process of getting 𝐼
𝑡
for example-associate

update.

We also can rewrite the update process using the form of
(19) as follows:

(𝛽
𝑡
)
𝑡
= 𝜌
𝑡
𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+

− 4𝜌
𝑡
𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ ,

(𝛽
𝑖
)
𝑡
= (𝛽
𝑖
)
𝑡−1

+ 4𝜌
𝑡
𝑐
2

2
𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ , 𝑖 ∈ 𝑆
𝑡
.

(26)

The new associate boundary vector is

𝜔
𝑡
= 𝜔
𝑡−1

+ 𝜌
𝑡
𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+
x
𝑡

− 4𝜌
𝑡
𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ (x
𝑡
−x
𝑖
) .

(27)

Algorithm 3 shows an online MR algorithm based on EA
update.

Specially, while choosing a small stationary 𝜌 on each
learning round, we must have 𝐷(𝛼

𝑡
) ≥ 𝐷(𝛼

𝑡−1
). In this

condition, the update process of boundary vector can be
written as

𝜔
𝑡
= 𝜔
𝑡−1

+ 𝜌𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+
x
𝑡

− 4𝜌𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ (x
𝑡
− x
𝑖
) .

(28)

This update scheme is called 𝜌-EA update.
For an aggressive gradient ascent, we can choose 𝜌

𝑡
=

min{𝜌max
𝑡

, 𝜌
∗

𝑡
}, which is called aggressive-EA update.

4.2. Overall Update. In EA update scheme, we employ an
additive way to update the boundary vector by updating
the associated coefficients of the new training example. In
fact, all the associated coefficients of arrived examples can be
updated on each learning round. Here, we propose another
new update scheme which is called overall update.

Using EA update, the dual function𝐷(𝛼
𝑡
) on round 𝑡 can

be rewritten as

𝐷(𝛼
𝑡
) = −

1

2
(𝜔
𝑡−1

+ 𝑐
1
(𝛼
𝑡0
)
𝑡
𝜎
𝑡
𝑦
𝑡
x
𝑡

+

𝑡−1

∑

𝑖=1

2𝑐
2
((𝛼
1

𝑡𝑖
)
𝑡
− (𝛼
2

𝑡𝑖
)
𝑡
)𝑤
𝑡𝑖
(x
𝑡
− x
𝑖
))

2

+

𝑡

∑

𝑖=1

𝑐
1
(𝛼
𝑖0
)
𝑡
𝜎
𝑖
.

(29)

In fact, the dual coefficients in 𝜔
𝑡−1

also can be updated in
(28). Since 𝜔

𝑡−1
has (𝑡 − 1)

2 dual coefficients, it is impossible
to update them, respectively. We introduce a new variable 𝜂

𝑡

into (29), as

𝐷(𝛼
𝑡
) = −

1

2
( (1 − 𝜂

𝑡
)𝜔
𝑡−1

+ 𝑐
1
(𝛼
𝑡0
)
𝑡
𝜎
𝑡
𝑦
𝑡
x
𝑡

+

𝑡−1

∑

𝑖=1

2𝑐
2
((𝛼
1

𝑡𝑖
)
𝑡
− (𝛼
2

𝑡𝑖
)
𝑡
)𝑤
𝑡𝑖
(x
𝑡
− x
𝑖
))

2

+ (1 − 𝜂
𝑡
)

𝑡−1

∑

𝑖=1

𝑐
1
(𝛼
𝑖0
)
𝑡−1

𝜎
𝑖
+ 𝑐
1
(𝛼
𝑡0
)
𝑡
𝜎
𝑡
.

(30)

From (30), we can get that a gradient ascent update on 𝜂
𝑡

actually means to multiply all the dual coefficients in 𝜔
𝑡−1

by
1 − 𝜂
𝑡
. Since every dual coefficient in 𝜔

𝑡−1
belongs to [0, 1],

we constrain 𝜂
𝑡
∈ [0, 1]. The initial value of 𝜂

𝑡
is zero. Using a

gradient ascent on 𝜂
𝑡
, we obtain

𝜂
𝑡
= 𝜌
𝑡
[⟨𝜔
𝑡−1

,𝜔
𝑡−1

⟩ −

𝑡−1

∑

𝑖=1

𝑐
1
(𝛼
𝑖0
)
𝑡−1

𝜎
𝑖
]

+

. (31)

Therefore, we choose 𝐼
𝑡

∈ {𝜂
𝑡
, 𝛼
𝑡0
, 𝛼
1

𝑡1
, 𝛼
2

𝑡1
, . . . , 𝛼

1

𝑡(𝑡−1)
,

𝛼
2

𝑡(𝑡−1)
} on each learning round for overall update. A buffering

strategy also can be used in overall update, 𝑆
𝑡
⊆ [𝑡 − 1]. Like

EA update, we propose a process to get 𝐼
𝑡
for overall update

in Algorithm 4.
The gradient ascent for {𝛼

𝑡0
, 𝛼
1

𝑡1
, 𝛼
2

𝑡1
, . . . , 𝛼

1

𝑡(𝑡−1)
, 𝛼
2

𝑡(𝑡−1)
}

is same as the EA update which has been shown in
(21), (22), and (23). Combined with the constraint
of 𝜂
𝑡
, the maximal step size for overall update is

𝜌
max
𝑡

= min{1/[⟨𝜔
𝑡−1

,𝜔
𝑡−1

⟩ − ∑
𝑡−1

𝑖=1
𝑐
1
(𝛼
𝑖0
)
𝑡−1

𝜎
𝑖
]
+
, 1/𝑐
1
𝜎
𝑡
[1 −

⟨𝑦
𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+
, 1/2𝑐

2
[−𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩]
+
, 1/2𝑐

2
[𝑤
𝑡𝑖
⟨(x
𝑡
−

x
𝑖
),𝜔
𝑡−1

⟩]
+
}, 𝑖 ∈ 𝑆

𝑡
. The optimal step size 𝜌

∗

𝑡
also can be

obtained using (24). Obviously, if 𝜌
𝑡
∈ [0,min{𝜌max

𝑡
, 𝜌
∗

𝑡
}],

𝐷(𝛼
𝑡
) ≥ 𝐷(𝛼

𝑡−1
). Rewriting the overall update process using

the form of (19), we have

(𝛽
𝑡
)
𝑡
= 𝜌
𝑡
𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+

− 4𝜌
𝑡
𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
−x
𝑖
) ,𝜔
𝑡−1

⟩ ,

(𝛽
𝑖
)
𝑡
=(1−𝜂

𝑡
) (𝛽
𝑖
)
𝑡−1

+4𝜌
𝑡
𝑐
2

2
𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ , 𝑖 ∈ 𝑆
𝑡
.

(32)
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INPUT: two positive scalars: 𝑐
1
and 𝑐
2
; edge weights 𝑤

𝑖𝑗
.

INITIALIZE: a coefficient vector 𝛼
0
and its associated decision boundary vector 𝜔

0
.

PROCESS: For 𝑡 = 1, 2, . . . , 𝑇

Receive an example (x
𝑡
, 𝑦
𝑡
, 𝜎
𝑡
),

Get 𝐼
𝑡
using the process in Algorithm 2,

Choose a step size 𝜌
𝑡
∈ [0,min{𝜌max

𝑡
, 𝜌
∗

𝑡
}],

Update the boundary vector using (27),
If 𝜎
𝑡
= 0, predict 𝑦

𝑡
= sign(⟨𝜔

𝑡
, x
𝑡
⟩),

Renew the buffer.

Algorithm 3: Online manifold regularization algorithm based on EA update.

PROCESS: 𝐼
𝑡
= 0,

If ⟨𝜔
𝑡−1

,𝜔
𝑡−1

⟩ − ∑
𝑡−1

𝑖=1
𝑐
1
(𝛼
𝑖0
)
𝑡−1

𝜎
𝑖
> 0,

𝐼
𝑡
= 𝐼
𝑡
∪ {𝜂
𝑡
}.

If 1 − ⟨𝑦
𝑡
x
𝑡
,𝜔
𝑡−1

⟩ > 0, 𝐼
𝑡
= 𝐼
𝑡
∪ {𝛼
𝑡0
}.

For each 𝑖 ∈ 𝑆
𝑡

If −𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩ > 0, 𝐼
𝑡
= 𝐼
𝑡
∪ {𝛼
1

𝑡𝑖
};

If 𝑤
𝑡𝑖
⟨(x
𝑡
− x
𝑖
),𝜔
𝑡−1

⟩ > 0, 𝐼
𝑡
= 𝐼
𝑡
∪ {𝛼
2

𝑡𝑖
}.

Return 𝐼
𝑡
.

Algorithm 4: The process of getting 𝐼
𝑡
for overall update.

The new associate boundary vector is

𝜔
𝑡
= (1 − 𝜂

𝑡
)𝜔
𝑡−1

+ 𝜌
𝑡
𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+
x
𝑡

− 4𝜌
𝑡
𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
−x
𝑖
) ,𝜔
𝑡−1

⟩ (x
𝑡
−x
𝑖
) .

(33)

Algorithm 5 shows the onlineMR algorithm based on overall
update.

Like EA update, we also can derive 𝜌-overall update and
aggressive-overall update from the previous analysis.

4.3. Two-Step Update. In the two update schemes aforemen-
tioned, we actually make an assumption that the elements of
an example (x

𝑡
, 𝑦
𝑡
, 𝜎
𝑡
) arrive at the same time. But in some

practical applications, the label 𝑦
𝑡
is received after receiving

training point x
𝑡
occasionally. There is no need to update

the boundary vector after receiving all the elements of an
example. Here, we propose a two-step update scheme.

The two-step update scheme has twice updates on each
learning round.The first update takes place after the training
point x

𝑡
arrives which updates the boundary vector using

the geometry of the training points. The second update takes
place after 𝑦

𝑡
, 𝜎
𝑡
arrive which updates the boundary vector

using the label. Obviously, EA update and overall update can
be used in each update process of two-step update scheme.
For example, we use EAupdate to describe the update process
of two-step update scheme.

Denote as 𝛼
𝑡−1/2

the coefficient vector after the first
update on round 𝑡 and 𝜔

𝑡−1/2
its associate boundary. The

example-associate coefficients in the first update on round

𝑡 are 𝛼
1

𝑡1
, 𝛼
2

𝑡1
, . . . , 𝛼

1

𝑡(𝑡−1)
, 𝛼
2

𝑡(𝑡−1)
, and new associate boundary

vector can be written as

𝜔
𝑡−1/2

= 𝜔
𝑡−1

+ 4𝜌
𝑡−1/2

𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ (x
𝑡
− x
𝑖
) .

(34)

In the second update process, the example-associate coeffi-
cient is 𝛼

𝑡0
, and new associate boundary vector is

𝜔
𝑡
= 𝜔
𝑡−1/2

+ 𝜌
𝑡
𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1/2

⟩]
+
x
𝑡
. (35)

If𝜎
𝑡
= 0, the second update process in (35)would not happen,

and the two-step update degenerates into EA update. The
range of 𝜌

𝑡−1/2
and 𝜌
𝑡
can be obtained by the same process in

Section 4.1. Similar as the previous analysis, the overall update
also can be used in each update process of two-step update
scheme.

The online MR algorithm based on the two-step update
can be described in Algorithm 6.

This update scheme is more like a new perspective of
online MR problem, and its effect is influenced by the update
schemes on each step. Therefore, we pay more attentions to
the first two update schemes aforementioned in this paper.

5. Sparse Approximations for
Kernel Representation

In practice, kernel functions are always used to find a linear
classifier, like SVM. Our online MR framework contains the
product of two points, so we can easily introduce the kernel
function in our framework. If we note 𝐾 the kernel matrix
such that

𝐾
𝑖𝑗
= Φ (x

𝑖
) ⋅ Φ (x

𝑗
) , (36)

x
𝑖
can be replaced by Φ(x

𝑖
) in our framework. Therefore, we

can rewrite (19) as

𝜔
𝑡
=

𝑡

∑

𝑖=1

(𝛽
𝑖
)
𝑡
Φ(x
𝑖
) . (37)

Unfortunately, the online MR algorithms with kernel func-
tions in Section 4 have to store the example sequence up
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INPUT: two positive scalars: 𝑐
1
and 𝑐
2
; edge weights 𝑤

𝑖𝑗
.

INITIALIZE: a coefficient vector 𝛼
0
and its associated decision boundary vector 𝜔

0
.

PROCESS: For 𝑡 = 1, 2, . . . , 𝑇

Receive an example (x
𝑡
, 𝑦
𝑡
, 𝜎
𝑡
),

Get 𝐼
𝑡
using the process in Algorithm 4,

Choose a step size 𝜌
𝑡
∈ [0,min{𝜌max

𝑡
, 𝜌
∗

𝑡
}],

Update the boundary vector using (33),
If 𝜎
𝑡
= 0, predict 𝑦

𝑡
= sign(⟨𝜔

𝑡
, x
𝑡
⟩),

Renew the buffer.

Algorithm 5: Online manifold regularization algorithm based on overall update.

INPUT: two positive scalars: 𝑐
1
and 𝑐
2
; edge weights 𝑤

𝑖𝑗
.

INITIALIZE: a coefficient vector 𝛼
0
and its associated decision boundary vector 𝜔

0
.

PROCESS: For 𝑡 = 1, 2, . . . , 𝑇

Receive a training point x
𝑡
,

Choose a new coefficient vector 𝛼
𝑡−(1/2)

that satisfies𝐷(𝛼
𝑡−(1/2)

) ≥ 𝐷 (𝛼
𝑡−1

),
Return a new associated boundary vector 𝜔

𝑡−(1/2)
in (18).

Receive 𝑦
𝑡
, 𝜎
𝑡
,

If 𝜎
𝑡
= 0, 𝛼

𝑡
= 𝛼
𝑡−(1/2)

, 𝜔
𝑡
= 𝜔
𝑡−(1/2)

, predict 𝑦
𝑡
= sign(⟨𝜔

𝑡
, x
𝑡
⟩);

Else if 𝜎
𝑡
= 1, choose a new coefficient vector 𝛼

𝑡
that satisfies𝐷(𝛼

𝑡
) ≥ 𝐷 (𝛼

𝑡−(1/2)
), return a new associated

boundary vector 𝜔
𝑡
in (18).

Algorithm 6: A template online manifold regularization algorithm based on two-step update.

to the current round (worst case). While using a buffering
strategy for online MR which has a buffer size of 𝜏, the stored
matrix size is 𝜏 × 𝑡 and the time complexity is 𝑂(𝜏 × 𝑡) on
round 𝑡. For practical purpose, we present two approaches to
construct a sparse kernel representation for boundary vector
on each round.

5.1. Absolute Threshold. To construct a sparse representation
for the boundary vector, absolute threshold discards the
examples whose associated coefficients are close to zero
(more details in Section 7). Let 𝜀 > 0 denote the absolute
threshold. When the absolute value of the associated coef-
ficient of an input example x

𝑖
does not increase in further

update process, x
𝑖
will be discarded if |𝛽

𝑖
| < 𝜀. The examples

in the buffer cannot be discarded since the absolute values of
their associated coefficients may increase in next rounds.The
process of sparse approximation based on absolute threshold
can be described in Algorithm 7.

The process of sparse approximation based on absolute
threshold for different update schemesmay be a little different
in practical applications. For online MR algorithms with
EA update, the coefficients of input examples which are
not in the buffer will not change in further update process,
and this sparse approximation process only deals with the
example (x

𝑡−𝜏
for Buffer-𝑁) which is removed from the

buffer on round 𝑡. For online MR algorithms with overall
update, this sparse approximation process deals with all the
examples which are not in the buffer on current round
since the coefficients of these examples also can be changed.
This approach may not work; if we are unlucky enough
that all the |𝛽

𝑖
| are larger than 𝜀 on each round, the kernel

representation of boundary vector will not become sparse at
all.

5.2. 𝑘 Maximal Coefficients (𝑘-MC). Another way to con-
struct a sparse kernel representation is to keep the examples of
which the absolute value of associated coefficients are the first
𝑘 maximum. This approach is called 𝑘 maximal coefficients
(𝑘-MC) in this paper. Similar as the absolute threshold, 𝑘-MC
does not discard the examples in the buffer of which absolute
values of associated coefficients may increase in next round.
The process of sparse approximation based on 𝑘-MC can be
described in Algorithm 8.

While using 𝑘-MC for online MR algorithms which has
a buffer size of 𝜏, the stored kernel matrix size is at most 𝜏 ×

(𝑘 + 𝜏) and the time complexity is 𝑂(1) on each round.

6. On the Connection to Previous Work

6.1. About Dual Ascending Procedure. In the area of online
learning, Shalev-Shwartz and Singer [13] propose a primal-
dual perspective of online supervised learning algorithms.
This work has the same dual ascending perspective as ours to
achieve a better boundary vector. Different from it, we deal
with an online MR problem of semisupervised learning, and
our emphasis is how to construct a dual ascending model in
semisupervised condition. An important conclusion in this
paper is that the Fenchel conjugate of hinge functions is a
key to transfer manifold regularization from offline to online,
and this is also the reason why we use an absolute function to
describe the difference between the predictions of two points.
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INPUT: the absolute threshold 𝜀; the kernel representation of boundary on round 𝑡: 𝜔
𝑡
= ∑
𝑖∈[𝑡]

(𝛽
𝑖
)
𝑡
Φ(x
𝑖
),

PROCESS: For each x
𝑖
in 𝜔
𝑡

If x
𝑖
is not in the buffer and (𝛽𝑖)𝑡

 < 𝜀, discard the example x
𝑖
and its associated coefficient (𝛽

𝑖
)
𝑡
.

Return a new boundary 𝜔
𝑡
.

Algorithm 7: The process of sparse approximation based on absolute threshold. This process only deals with the examples which will not
be updated in the further update process.

INPUT: the parameter 𝑘; the kernel representation of boundary on round 𝑡: 𝜔
𝑡
= ∑
𝑖∈[𝑡]

(𝛽
𝑖
)
𝑡
Φ(x
𝑖
),

PROCESS: For each x
𝑖
in 𝜔
𝑡
and not in the buffer

If (𝛽
𝑖
)
𝑡
does not belong to the first 𝑘maximum of the coefficients, discard the example x

𝑖
and its associated

coefficient (𝛽
𝑖
)
𝑡
.

Return a new boundary 𝜔
𝑡
.

Algorithm 8:The process of sparse approximation based on 𝑘-MC.The kernel representation for 𝜔
𝑡
contains 𝑘 + 𝜏 examples at most in this

condition, where 𝜏 is the buffer size.

The primal basic MR problem can degenerate into a basic
supervised learning problem [14] while choosing the trade-
off parameter 𝑐

2
= 0. Consider

𝐽 (𝜔) =
1

2
𝜔
2
+

𝑇

∑

𝑡=1

𝑐
1
[1 − 𝑦

𝑡
⟨𝜔, x
𝑡
⟩]
+
. (38)

Then, the dual function degenerates into

𝐷 (𝛼) = 𝐷 (𝛼
10
, 𝛼
20
, . . . , 𝛼

𝑇0
)

= −
1

2
(

𝑇

∑

𝑡=1

(𝑐
1
𝛼
𝑡0
𝑦
𝑡
x
𝑡
))

2

+

𝑇

∑

𝑡=1

(𝑐
1
𝛼
𝑡0
) .

(39)

Equation (39) is the dual function of basic supervised learn-
ing problem which is carefully discussed in [13].

6.2. About Online Manifold Regularization. Goldberg et al.
[11] propose an empirical study of online MR which deals
with the MR problem as follow:

𝐽 (𝜔) =
1

2
𝜔
2
+
𝑐
1

𝑙

𝑇

∑

𝑡=1

𝜎
𝑡
[1 − 𝑦

𝑡
⟨𝜔, x
𝑡
⟩]
+

+
𝑐
2

2𝑇

𝑇

∑

𝑖,𝑗=1

(⟨𝜔, x
𝑖
⟩ − ⟨𝜔, x

𝑗
⟩)
2

𝑤
𝑖𝑗
,

(40)

where 𝑐
1
and 𝑐
2
are trade-off parameters and 𝑙 is the number

of labeled examples. Different from our framework, they use
a square function to measure the difference between the
predictions of two points (see Figure 2).

To avoid minimizing (40) directly, they further propose
an instantaneous regularized risk 𝐽

𝑡
(𝜔) empirically on round

𝑡. Consider

𝐽
𝑡
(𝜔) =

1

2
𝜔
2
+
𝑇𝑐
1

𝑙
𝜎
𝑡
[1 − 𝑦

𝑡
⟨𝜔, x
𝑡
⟩]
+

+ 𝑐
2

𝑡−1

∑

𝑖=1

(⟨𝜔, x
𝑡
⟩ − ⟨𝜔, x

𝑖
⟩)
2

𝑤
𝑡𝑖
.

(41)
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Figure 2:Different functions tomeasure the difference of prediction
of two examples. Standard MR uses a square function, while our
online MR framework uses an absolute function which can be
decomposed into two hinge functions.

𝑇/𝑙 is the reverse label probability 1/𝑝
𝑙
, which it assumes to

be given and easily determined based on the rate at which
humans can label the data at hand. In our work, we ignore
this rate since it can be involved in the trade-off parameters
𝑐
1
and 𝑐
2
.

Based on the notion that 𝜔
𝑡
has a form as 𝜔

𝑡
= ∑
𝑡

𝑖=1
𝛽
𝑖
x
𝑖
,

Goldberg et al. perform a gradient descent step over 𝜔 that
aims to reduce the instantaneous risk 𝐽

𝑡
(𝜔) on each round.

The update scheme can be written as

(𝛽
𝑡
)
𝑡
= 𝜌
𝑡
𝑐
1
𝜎
𝑡
𝑦
𝑡

𝑇

𝑙
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+

+ 2𝜌
𝑡
𝑐
2

𝑡−1

∑

𝑖=1

𝑤
𝑡𝑖
⟨(x
𝑖
− x
𝑡
) ,𝜔
𝑡−1

⟩ ,

(𝛽
𝑖
)
𝑡
= (1 − 𝜌

𝑡
) (𝛽
𝑖
)
𝑡−1

− 2𝜌
𝑡
𝑐
2
𝑤
𝑡𝑖
⟨(x
𝑖
− x
𝑡
) ,𝜔
𝑡−1

⟩ ,

𝑖 ∈ {1, 2, . . . , 𝑡 − 1} .

(42)
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Furthermore, this work uses an annealing heuristic trick
which chooses a decaying step size 𝜌

𝑡
= 𝛾/√𝑡, 𝛾 =

0.1. This online MR algorithm is an empirical result which
demonstrates its practicability by experiments and does not
have enough theoretical analysis.

Compared with previous work, our online MR frame-
work reinterprets the online MR process based on the notion
of ascending the dual function, and it also can be used to
derive different onlineMR algorithms. Here, we demonstrate
that the update scheme in (42) can be derived fromour online
MR framework.

In Section 4.2, the gradient direction d of overall update
for ascending the dual function on round 𝑡 can be written as

d = [

[

𝜕𝐷 (𝛼
𝑡−1

)

𝜕(𝜂
𝑡
)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼
𝑡0
)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼1
𝑡1
)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼2
𝑡1
)
𝑡−1

, . . . ,

𝜕𝐷 (𝛼
𝑡−1

)

𝜕(𝛼1
𝑡(𝑡−1)

)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼2
𝑡(𝑡−1)

)
𝑡−1

]

]

.

(43)

While choosing

d = [

[

1,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼
𝑡0
)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼1
𝑡1
)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼2
𝑡1
)
𝑡−1

, . . . ,

𝜕𝐷 (𝛼
𝑡−1

)

𝜕(𝛼1
𝑡(𝑡−1)

)
𝑡−1

,
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼2
𝑡(𝑡−1)

)
𝑡−1

]

]

,

(44)

we have

⟨d,d⟩ =
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝜂
𝑡
)
𝑡−1

+ (
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼
𝑡0
)
𝑡−1

)

2

+

𝑡−1

∑

𝑖=1

((
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼1
𝑡𝑖
)
𝑡−1

)

2

+ (
𝜕𝐷 (𝛼

𝑡−1
)

𝜕(𝛼2
𝑡𝑖
)
𝑡−1

)

2

) .

(45)

If ⟨𝜔
𝑡−1

,𝜔
𝑡−1

⟩−∑
𝑡−1

𝑖=1
𝑐
1
(𝛼
𝑖0
)
𝑡−1

𝜎
𝑖
> 0, wemust have ⟨d, d⟩ > 0

and d is a feasible ascending direction to make 𝐷(𝛼
𝑡
) ≥

𝐷(𝛼
𝑡−1

). Using d to ascend the dual function, the update
scheme can be written as

(𝛽
𝑡
)
𝑡
= 𝜌
𝑡
𝑐
2

1
𝜎
𝑡
𝑦
𝑡
[1 − ⟨𝑦

𝑡
x
𝑡
,𝜔
𝑡−1

⟩]
+

− 4𝜌
𝑡
𝑐
2

2
∑

𝑖∈𝑆𝑡

𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ ,

(𝛽
𝑖
)
𝑡
=(1−𝜌

𝑡
) (𝛽
𝑖
)
𝑡−1

+4𝜌
𝑡
𝑐
2

2
𝑤
2

𝑡𝑖
⟨(x
𝑡
− x
𝑖
) ,𝜔
𝑡−1

⟩ , 𝑖 ∈ 𝑆
𝑡
.

(46)

Equations (42) and (46) are essentially the same update
scheme with different trade-off parameters and edge weights.

7. Experiments and Analyses

This section presents a series of experimental results to report
the effectiveness of our derived online MR algorithms. It

Table 1: Different datasets in our experiments. These datasets have
different properties which contain number of classes, dimensions,
and size.

Dataset Classes Dims Points
Two moons 2 2 4000
Two rotating spirals 2 2 8000
Isolet 2 617 3119
USPS 10 100 7191

is known that the performance of semisupervised learning
depends on the correctness of model assumptions. Thus, our
focus is on comparing different onlineMR algorithms, rather
than different semisupervised regularization methods.

7.1. Datasets and Protocols. We report experimental results
on two artificial and two real-world datasets in Table 1 with
different properties.

The artificial datasets consist of two-class problems. The
generated method of two moons dataset is available at http://
manifold.cs.uchicago.edu/manifold regularization/manifold
.html; we set the radius of two moons to 4 and the width to 2,
and only one example for each class is labeled in this dataset.
To demonstrate that our online MR can handle concept drift,
we also perform our experiments on two rotating spirals
dataset of which 2% examples are labeled. Figure 3 shows that
the spirals smoothly rotate 360∘ during the sequence, and
the target boundary drifts with the sequence of examples.

The real-world datasets consist of two-class and multi-
class problems. The Isolet dataset derives from the Isolet
database of letters of the English alphabet spoken in isolation
(available from the UCI machine learning repository). The
database contains utterances of 150 subjects who spoke the
name of each letter of the English alphabet twice. The
speakers are grouped into 5 sets of 30 speakers each, referred
to as isolet1 through isolet5. We considered the task of
classifying the first 13 letters of the English alphabet from the
last 13 only using isolet1 and isolet5 (1 utterance is missing
in isolet5 due to poor recording). During the online MR
process, all 52 utterances of one speaker are labeled and all the
rest are left unlabeled. Our USPS dataset contains the USPS
training set on handwritten digit recognition (preprocessed
using PCA to 100 dimensions), and we apply online MR
algorithms to 45 binary classification problems that arise in
pairwise classification; 5 examples are randomly labeled for
each class.

Our experimental protocols are as the following.

(1) The training sequences are generated randomly from
each datasets (except for two rotating spirals).

(2) The offlineMR algorithm for comparison is a state-of-
the-art semisupervised learning algorithm based on
manifold regularization which is called LapSVM [12].

(3) Each example in each dataset is trained once during
online MR process.

To avoid the influence of different training sequences, all
results on each dataset are the average of five such trials except
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Figure 3: Two rotating spirals data sequence. We spin the two spirals dataset in top left during the sequence so that the spirals smoothly
rotate 360∘ in every 8000 examples.

for two rotating spirals (this idea is inspired by [11]).The error
bars are ±1 standard deviation.

All methods use the standard RBF kernel 𝐾(x
𝑖
, x
𝑗
) =

𝑒
−‖x𝑖−x𝑗‖2/2(𝜎𝐾)2 . The edge weights are Gaussian weights which
define a fully connected graph, and the edgeweight parameter
is 𝜎. For online MR algorithms comparisons, we choose
Buffer-𝑁with 𝜏 = 200 to avoid high computational complex-
ity. We implemented all the experiments using MATLAB.

7.2. Computational Complexity. For offline MR, a 𝑡 × 𝑡

kernel matrix needs to be stored and inverted on round 𝑡,
and the time complexity approximately amounts to 𝑂(𝑡

3
) if

using a gradient descent algorithm. Different from it, the
computational complexity of our online MR algorithms is
determined by the buffer size 𝜏 and the number of examples
in the kernel representation of boundary vector on each
round.

For our onlineMRwithout buffering strategies and sparse
approximation approaches, the number of examples in the
kernel representation is 𝑡, and the time complexity is 𝑂(𝑡

2
).

While using a buffering strategy for online MR which has
a buffer size of 𝜏, the time complexity reduces to 𝑂(𝜏 × 𝑡),
but the number of examples in the kernel representation is
still 𝑡. In practice, only part of the examples have to be stored
(and computed) based on the sparse approximation. Figure 4
shows the number of examples in the kernel representation of
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Figure 4: The number of examples in the kernel representation
of boundary vector for different sparse approximation approaches.
This experiment is on the two moons dataset which has 4000 exam-
ples. If no sparse representation approaches are used in the online
MR, the kernel representation contains all the input examples. The
number of examples in the kernel representation of boundary vector
increases slowly while using an absolute threshold, and the number
is at most (𝑘 + 𝜏) while using 𝑘-MC for online MR algorithms.

boundary vector on each learning round for different sparse
approximation approaches.
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Figure 5: Cumulative runtime growth curves. (a) Experiments on two moons dataset, we generate a dataset which contains 4000 examples.
(b) Experiments on Isolet dataset, this dataset has a high dimension. The curves have the similar trends on different datasets. Online MR
algorithms with buffering strategies and sparse representation perform better than the others on the growth rate.

We also compare cumulative runtime curves of five dif-
ferent MR algorithms on the two moons and Isolet datasets.
The first one is basic online MR which only uses 𝜌-EA
update, but no buffering strategies and sparse approximation
approaches. The second one is online MR which uses 𝜌-EA
update and Buffer-𝑁 (𝜏 = 200). The third one is online
MR which uses 𝜌-EA update, Buffer-𝑁 (𝜏 = 200), and
an absolute threshold 𝜀 = 0.001. The fourth is online MR
which uses 𝜌-EA update, Buffer-𝑁 (𝜏 = 200), and 𝑘-MC
(𝑘 = 400). The last one uses offline MR (LapSVM) on
each round. Figure 5 shows that online MR with buffering
strategies and sparse representation performs better than
basic online MR and offline MR on the runtime growth
rate. Online MR algorithms without buffering strategies and
sparse approximation approaches are time consuming and
memory consuming, and it is intractable to apply them to
real-world long time tasks.

The cumulative runtime growth curves of onlineMRwith
buffering strategies and sparse approximation approaches
scale only linearly, while the others scale quadratically.

7.3. Accuracies. We used the same model selection strategy
both for our onlineMR framework and traditional offlineMR
algorithms.

Based on the idea of “interested in the best performance
and simply select the parameter values minimizing the error”
[15], we select combinations of the parameter values on a
finite grid in Table 2, and it is sufficient to perform algorithm
comparisons.

While choosing an update scheme based on our online
MR framework, we still have to select a step size 𝜌

𝑡
on each

learning round. We report the online MR error rate for three
scenarios in this paper.

Table 2: A finite grid of parameter values. We find the best
performance of each online MR algorithm on this finite grid.

Parameter Values
RBF width 𝜎

𝐾
2
−3
, 2
−2
, 2
−1
, 2
0
, 2
1
, 2
2
, 2
3

Edge weight parameter 𝜎 2
−3
, 2
−2
, 2
−1
, 2
0
, 2
1
, 2
2
, 2
3

Penalty 𝑐
1

10
−3
, 10
−2
, 10
−1
, 10
0
, 10
1
, 10
2
, 10
3

Penalty 𝑐
2

10
−3
, 10
−2
, 10
−1
, 10
0
, 10
1
, 10
2
, 10
3

(i) Stationary step size 𝜌
𝑡
= 0.1.

(ii) Aggressive step size 𝜌
𝑡
= min{𝜌max

𝑡
, 𝜌
∗

𝑡
}.

(iii) Decreasing step size 𝜌
𝑡
= 0.1/√𝑡, which is also used

in [11].

The best performances of all the online MR algorithms
are presented in Table 3 and Figure 6. The following sections
provide more additional details.

7.4. Additional Results. We now provide some additional
results along the onlineMR algorithms run and discuss more
precisely the effect of our derived online MR algorithms.

7.4.1. Effect of the Parameters 𝜎
𝐾
, 𝑐
1
, 𝑐
2
and the Step Size

𝜌. The parameters 𝜎
𝐾
, 𝑐
1
and 𝑐

2
have similar effects on

generalization as in the purely offline MR approach (see [12]
for an empirical study). However, one has to trymany choices
of parameters during the model selection. The manifold
regularizer incorporates unlabeled examples and causes the
decision vector to appropriately adjust according to the
geometry of training examples as 𝑐

2
is increased. If 𝑐

2
=

0, the unlabeled examples are disregarded and online MR
degenerates into online supervised learning.
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Table 3: Mean test error rates on different datasets. The error rates are reported for three different step size selection methods in the form
of stationary step size/aggressive step size/decreasing step size. The result shows that our derived online MR algorithms achieve test accuracy
comparable to offline MR. Specially, the experiments on two rotating spirals show that our online MR is able to track the changes in the
sequence and maintain a much better error rate compared to offline MR. The performances of online MR algorithms are competitive with
those of the state-of-the-art offline MR.

Two moons Two rotating spirals Isolet
Offline MR LapSVM 0 50 19.87

Online MR EA update 2.60/6.75/11.92 2.45/13.31/46.45 20.13/31.15/26.60
Overall update 3.43/8.40/10.80 0/0/19.50 20.38/31.22/24.36
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Figure 6: Mean test error rates for 45 binary classification problems on USPS dataset.The results show that the online MR with an aggressive
step size does not perform well on this dataset, and the others achieve test accuracies that are comparable to LapSVM.

The step size 𝜌
𝑡
controls the increment of dual function

𝐷(𝛼) on each learning round. We used three different step
size selection methods for algorithm comparisons in last
section. Here, we discuss the effect of different step size
selection methods.

Stationary Step Size. Under mild conditions, this seemingly
naive step size selection method has acceptable error rates on
any input sequence. Figure 7 shows that a large stationary step
size does not perform well in online MR algorithms. When
one wishes to avoid optimizing the step size on each learning
round, we suggest the stationary step size with a small value.

Aggressive Step Size. Since online MR algorithms adjust the
boundary according to the local geometry of the incoming
point and its label, the aggressive step size selection method
aims to search for the optimal step size to increase the
dual function more aggressively on each learning round.The
experiments in Table 3 and Figure 6 imply that the aggressive
selection method does not perform well on all the sequences.

Decreasing Step Size. This step size selection method is based
on an idea that the boundary vector is approaching the
optimal boundary as the online MR algorithms run. This
selection method performs well on the datasets whose target
boundaries are fixed, but the experiments on the two spirals

dataset show that it does not perform well for drifting target
boundaries.

7.4.2. Increasing Dual Function 𝐷(𝛼) Achieves Comparable
Risks and Error Rates. We compare the primal objective
function 𝐽(𝜔

𝑡
) versus the dual function𝐷(𝛼

𝑡
) on the training

sequence of two moons dataset as 𝑡 increases. Figure 8 shows
that the two curves approach each other along the onlineMR
process using EAupdate (𝜌

𝑡
= 0.1).The value of dual function

𝐷(𝛼
𝑡
) never decreases as 𝑡 increases; correspondingly, the

curve of primal function 𝐽(𝜔
𝑡
) has a downward trend and

some little fluctuations. Our experiments support the theory
in Section 3 that increasing the dual problem achieves
comparable risks of primal MR problem.

We also report the performance of𝜔
𝑡
on thewhole dataset

in Figure 9. This result shows that the decision boundary is
adjusted to be a better one along the onlineMR process. Since
online MR adjusts the decision boundary according to the
label of the incoming example and the local geometry of the
buffer on each learning round, the error rate of 𝜔

𝑡
on the

whole dataset is not always decreasing along the online MR
process. It is also the reason why online MR can track the
changes in the data sequence.

7.4.3. Online MR Handles Concept Drift. When the under-
lying distributions, both 𝑃(x) and 𝑃(𝑦 | x), change during
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Figure 7: Error rates using different stationary step sizes. The parameters 𝜎
𝐾
, 𝑐
1
, 𝑐
2
in this experiment are all tuned for online MR algorithm

using EA update and 𝜌
𝑡
= 0.1. The result implies that large step sizes lead to poor accuracies comparable to small ones.
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Figure 9: Error rates of 𝜔
𝑡
on the whole two moons dataset. The

error rate of𝜔
𝑡
has a downward trend, but it is not always decreasing

along the online MR process.

the course of learning, the algorithms are expected to track
the changes in the data sequence. In the two rotating spirals
dataset, the points will change their true labels during the
sequence and every stationary boundary vector will have an
error rate of 50%.

We show the error rates of basic online MR versus online
MR (Buffer-𝑁) with different buffer sizes in Figure 10. This
experiment illustrates that a suitable buffer size is able to
adapt to the changing sequence and maintain a small error
rate.

8. Conclusion and Future Directions

In this paper we presented an online manifold regular-
ization framework based on dual ascending procedure. To
ascend the dual function, we proposed three schemes to
update the boundary on each learning rounds. Unfortunately,
the basic online MR algorithms are time consuming and
memory consuming. Therefore, we also applied buffering
strategies and sparse approximation approaches to make
online MR algorithms practical. Experiments show that
our online MR algorithms can adjust the boundary vector
with the input sequence and have risk and error rates
comparable to offline MR. Specially, our online MR algo-
rithms can handle the settings where the target boundary
is not fixed but rather drifts with the sequence of exam-
ples.

There are many interesting questions remaining in the
online semisupervised learning setting. For instance, we plan
to study new online learning algorithms for other semisuper-
vised regularizers those, in particular that with non-convex
risks for unlabeled examples like S3VMs.Another direction is
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Figure 10: Error rates with different buffer sizes on two spirals data
sequence. The buffer size can affect the capability of online MR to
track the changes in the data sequence.

how to choose more effective parameters intelligently during
the model selection.

Appendix

Fenchel Conjugate

The Fenchel conjugate of a function 𝑓 : 𝑆 → R is defined as

𝑓
∗
(𝜆) = sup {⟨𝜆,𝜔⟩ − 𝑓 (𝜔) : 𝜔 ∈ 𝑆} . (A.1)

Since 𝑓
∗ is defined as a supremum of linear functions, it is

convex. The Fenchel-Young inequality states that for any 𝜆
and 𝜔, we have 𝑓(𝜔) + 𝑓

∗
(𝜆) ≥ ⟨𝜆,𝜔⟩.

Subgradients play an important role in the definition of
Fenchel conjugate. In particular, the following lemma states
that if 𝜆 ∈ 𝜕𝑓(𝜔), then Fenchel-Young inequality holds with
equality. Here, we describe few lemmas of Fenchel conjugate
which we use as theoretical tools in this paper. More details
are in [16].

Lemma2. Let𝑓 be a closed and convex function, and let 𝜕𝑓(𝜔)
be its differential set at 𝜔. Then, for all 𝜆 ∈ 𝜕𝑓(𝜔), one has
𝑓(𝜔) + 𝑓

∗
(𝜆) = ⟨𝜆,𝜔⟩.

Proof. Since 𝜆 ∈ 𝜕𝑓(𝜔) and 𝑓 is closed and convex, we know
that 𝑓(𝜔) − 𝑓(𝜔) ≥ ⟨𝜆,𝜔


− 𝜔⟩ for all 𝜔 ∈ 𝑆. Equivalently,

⟨𝜆,𝜔⟩ − 𝑓 (𝜔) ≥ sup {⟨𝜆,𝜔⟩ − 𝑓 (𝜔

) : 𝜔 ∈ 𝑆} . (A.2)

The right-hand side of the previous equals to 𝑓
∗
(𝜆), and thus

⟨𝜆,𝜔⟩ − 𝑓 (𝜔) ≥ 𝑓
∗
(𝜆) → ⟨𝜆,𝜔⟩ − 𝑓

∗
(𝜆) ≥ 𝑓 (𝜔) .

(A.3)

The assumption that 𝑓 is closed and convex implies that 𝑓 is
the Fenchel conjugate of 𝑓∗. Thus,

𝑓 (𝜔) = sup {⟨𝜆,𝜔⟩ − 𝑓 (𝜆

) : 𝜆

∈ 𝑆} ≥ ⟨𝜆,𝜔⟩ − 𝑓 (𝜔) .

(A.4)

Combining the two inequalities, we have

𝑓 (𝜔) + 𝑓
∗
(𝜆) = ⟨𝜆,𝜔⟩ . (A.5)

Lemma 3. Let ‖ ⋅ ‖ be any norm on Rn, and let 𝑓(𝜔) =

(1/2)‖𝜔‖
2 with 𝑆 = Rn. Then 𝑓

∗
(𝜆) = (1/2)‖𝜆‖

2

∗
where ‖ ⋅ ‖

∗

is the dual norm of ‖ ⋅ ‖. The domain of 𝑓∗ is also Rn. For
example, if 𝑓(𝜔) = (1/2)‖𝜔‖

2

2
, then 𝑓

∗
(𝜆) = (1/2)‖𝜆‖

2

2
since

ℓ
2
norm is dual to itself.

Lemma4. Let𝑓(𝜔) = [𝑏 − ⟨𝜔, x⟩]
+
where 𝑏 ∈ R

+
and x ∈ Rn

with 𝑆 = Rn. Then, the conjugate of 𝑓 is

𝑓
∗
(𝜆) = {

−𝛼𝑏 𝑖𝑓 𝜆 ∈ {−𝛼x : 𝛼 ∈ [0, 1]}

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(A.6)

Lemma 5. Let 𝑓 be a function, and let 𝑓
∗ be its Fenchel

conjugate. For 𝑎 > 0 and 𝑏 ∈ R, the Fenchel conjugate of
𝑔(𝜔) = 𝑎𝑓(𝜔) + 𝑏 is 𝑔∗(𝜆) = 𝑎𝑓

∗
(𝜆/𝑎) − 𝑏.
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