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Different kernels cause various class discriminations owing to their different geometrical structures of the data in the feature
space. In this paper, a method of kernel optimization by maximizing a measure of class separability in the empirical feature space
with sparse representation-based classifier (SRC) is proposed to solve the problem of automatically choosing kernel functions and
their parameters in kernel learning. The proposed method first adopts a so-called data-dependent kernel to generate an efficient
kernel optimization algorithm. Then, a constrained optimization function using general gradient descent method is created to
find combination coefficients varied with the input data. After that, optimized kernel PCA (KOPCA) is obtained via combination
coefficients to extract features. Finally, the sparse representation-based classifier is used to perform pattern classification task.
Experimental results on MSTAR SAR images show the effectiveness of the proposed method.

1. Introduction

Recently, kernel learning or kernel machine has aroused
broad interest in pattern recognition and kernel learning
areas. For classification problem based supervised kernel
learning, different kernel geometrical structures give different
class discriminations. However, separability of the data in the
feature space could be even worse if an inappropriate kernel
is chosen since the geometrical structure of the mapped
data in the feature space is totally determined by the kernel
matrix, so the selection of kernel influences greatly the
performance of kernel learning and thus optimizing kernel
can be regarded as an effective way to improve classification
performance. Considering that optimized kernel parameters
of kernel function cannot change the geometrical structures
of kernel in the feature space [1, 2], so it cannot improve the
performance of kernel learning. In this sense, Scholkopf et al.
[3] proposed an empirical kernel map which maps original
input data space into a subspace of the empirical feature
space. Since the training data have the same geometrical
structure in both the empirical feature space and the feature
space, and the former is easier to access than the latter, it is

easier to study the adaptability of a kernel to the input data
and to improve it in the former space. Cristianini et al. [4]
and Lanckrict et al. [5] have proposed methods of choosing
kernel by optimizing the measure of data separation in the
feature space for the first time. Cristianini et al. and Lanckrict
et al., respectively, employ the alignment and margin as the
measure of data separation to evaluate the adaptability of a
kernel to input data. Zhang et al. proposed several variants
of KPCA [6, 7] to perform fault diagnosis and nonlinear
processes. Then, they utilized the improved kernel learning
techniques to deal with statistical analysis of nonlinear fault
detection [8], large-scale fault diagnosis processes [9], and the
monitoring of dynamic processes [10].

Simultaneously, sparse representation has gained great
interest in pattern recognition and computer vision areas
recently. Wright et al. [11] presented a sparse representation
based classification method [12] and applied it to real-world
face recognition problems [11, 12]. With varying expression
and illumination, as well as occlusion and disguise, it was very
effective and robust for face recognition.

The paper is organized as follows: in Section 2, we
first introduce the concept of data-dependent kernel and
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empirical feature space. Then, we optimize the kernel in
the empirical feature space by seeking the optimal combina-
tion coefficients of data-dependent kernel based on Fisher
criterion. In Sections 3 and 4, the optimized kernel PCA
(KOPCA) is adopted for MSATR SAR images to obtain
dimensionality reduced empirical feature so as to employ
sparse representation-based classifier for pattern classifica-
tion. Finally, in Section 5, experiments are carried out on
MSTAR SAR images to demonstrate the improvement in
the performance of the data classification algorithms after
using the optimized kernel and sparse representation-based
classifier.

2. Kernel Optimization in the Empirical
Feature Space

2.1. Data-Dependent Kernel. Since different kernels create
different geometrical structures of the data in the feature
space and lead to different class discriminations [13], there
does not exist a kernel function that can be adaptive to all
datasets in kernel learning. Therefore, data-dependent based
kernel is necessary to be chosen to deal with the problem.
In this paper, we employ a data-dependent kernel which is
proposed by Amari and Wu [14] to be the objective kernel
function to conduct kernel optimization. There is a need
to explain that the data-dependent kernel is a conformal
transformation to a basic kernel.

Given a set of 𝑁 training samples 𝑥
1
, . . . , 𝑥

𝑁
∈ R𝑑, the

data-dependent kernel is defined as follows:

𝑘 (𝑥, 𝑦) = 𝑞 (𝑥) 𝑞 (𝑦) 𝑘
0
(𝑥, 𝑦) , (1)

where 𝑥, 𝑦 ∈ R𝑑, 𝑘
0
(𝑥, 𝑦) is a basic kernel such as a

polynomial kernel or Gaussian kernel. 𝑞(⋅) is a positive real
valued factor function and different 𝑞(⋅) make the data-
dependent kernel different properties; Amari and Wu [14]
expand the spatial resolution in the margin of a SVM by

𝑞 (𝑥) = ∑

𝑖∈SV
𝛼
𝑖
𝑘
1
(𝑥, 𝑎
𝑖
) , (2)

where 𝑘
1
(𝑥, 𝑎
𝑖
) = exp(−𝛾‖𝑥 − 𝑎

𝑖
‖), 𝑎
𝑖

∈ R𝑑 is the 𝑖th
support vector, and SV is a set of support vector. The set
{a | a = [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
]} called the “empirical cores,” can

be determined according to the distribution of the training
data. 𝛾 is a free parameter. 𝛼

𝑖
{𝑖 = 0, 1, . . . , 𝑛} are the

positive combination coefficients which are considered as
contribution weights corresponding to the 𝑎

𝑖
. Meanwhile, the

data-dependent kernel is a kernel function as it satisfies the
Mercer condition [3].

Let 𝐾 and 𝐾
0
be the Kernel Matrices of 𝑘(𝑥, 𝑦) and

𝑘
0
(𝑥, 𝑦), respectively. Thus, it is easy to see that

𝐾 = [𝑞 (𝑥
𝑖
) 𝑞 (𝑥
𝑗
) 𝑘
0
(𝑥
𝑖
, 𝑥
𝑗
)]
𝑁×𝑁

= 𝑄𝐾
0
𝑄, (3)

where 𝐾 = [𝑘(𝑥
𝑖
, 𝑥
𝑗
)]
𝑁×𝑁

, 𝐾
0
= [𝑘
0
(𝑥
𝑖
, 𝑥
𝑗
)]
𝑁×𝑁

and 𝑄 is a
diagonal matrix with elements {𝑞(𝑥

1
), 𝑞(𝑥
2
), . . . , 𝑞(𝑥

𝑁
)}.

We denote vectors [𝑞(𝑥
1
), 𝑞(𝑥
2
), . . . , 𝑞(𝑥

𝑁
)]
𝑇 and [𝛼

0
,

𝛼
1
, . . . , 𝛼

𝑛
]
𝑇 as q and 𝛼, respectively. Then, we have

q =

[
[
[
[

[

1 𝑘
1
(𝑥
1
, 𝑎
1
) ⋅ ⋅ ⋅ 𝑘

1
(𝑥
1
, 𝑎
𝑛
)

1 𝑘
1
(𝑥
2
, 𝑎
1
) ⋅ ⋅ ⋅ 𝑘

1
(𝑥
2
, 𝑎
𝑛
)

...
... d

...
1 𝑘
1
(𝑥
𝑁
, 𝑎
1
) ⋅ ⋅ ⋅ 𝑘

1
(𝑥
𝑁
, 𝑎
𝑛
)

]
]
]
]

]

[
[
[
[

[

𝛼
0

𝛼
1

...
𝛼
𝑛

]
]
]
]

]

= 𝐾
1
𝛼. (4)

2.2. Empirical Feature Space. Thedifferent kernels cause vari-
ous class discriminations owing to their different geometrical
structures of the data in the feature space. It is often not so
convenient or easy to compute in feature space. Hence, the
concept of empirical feature space is introduced.

Let 𝑥
𝑖
{𝑖 = 1, 2, . . . , 𝑁} be a 𝑑-dim training dataset and

𝑋
𝑇

= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
]. 𝐾 = [𝑘(𝑥

𝑖
, 𝑥
𝑗
)]
𝑁×𝑁

denotes the
kernel matrix with rank 𝑟. Since 𝐾 is a symmetric positive
semidefinite matrix, it can be decomposed as

𝐾
𝑁×𝑁

= 𝑃
𝑁×𝑟

Λ
𝑟×𝑟

𝑃
𝑇

𝑟×𝑁
, (5)

where Λ is a diagonal matrix with 𝑟 positive eigenvalues
of 𝐾 in descending order, and 𝑃 contains 𝑟 eigenvectors
corresponding to the positive eigenvalues.

On the basis of above, we can define the map from input
data space to R𝑟 Euclidean space and gain the so-called
empirical kernel mapΦ

𝑟
defined in [3], that is,

Φ
𝑟
: 𝑋 → R𝑟,

𝑥 󳨃󳨀→ Λ
−1/2

𝑃
𝑇
(𝑘 (𝑥, 𝑥

1
) , 𝑘 (𝑥, 𝑥

2
) , . . . , 𝑘 (𝑥, 𝑥

𝑁
))
𝑇

.

(6)

The embedding space Φ
𝑟
(𝑋) ⊂ R𝑟 is called empirical

feature space.
We can prove that the training data has the same geo-

metric structure in both the empirical feature space and
feature space. Let 𝑌 = 𝐾𝑃Λ

−1/2, then the dot product
matrix {Φ

𝑟
(𝑥
𝑖
)} in the empirical feature space can be calcu-

lated as

𝑌𝑌
𝑇
= 𝐾𝑃Λ

−1/2
Λ
−1/2

𝑃
𝑇
𝐾
𝑇
= 𝐾. (7)

Notice that 𝐾
𝑇

= 𝐾, 𝐾 = [Φ(𝑥
𝑖
) ⋅ Φ(𝑥

𝑗
)]
𝑁×𝑁

, and the
result of 𝑌𝑌

𝑇 is exactly the dot product matrix of {Φ(𝑥
𝑖
)} in

the feature space; therefore, we say that the empirical feature
space preserves the geometric structure in the feature space.

2.3. Fisher Criterion Based Kernel Optimization. As illus-
trated in Section 2.2, the training data has the same geometric
structure in both the empirical feature space and feature space
and it is easier to access the empirical feature space than
the feature space, so it is better to measure class separability
in the empirical feature space. In this paper, we choose the
acquainted Fisher criteria to measure class separability:

𝐽 =
tr 𝑆
𝑏

tr 𝑆
𝑤

, (8)
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where 𝑆
𝑏
is the between-class scatter matrix, 𝑆

𝑤
is the within-

class scatter matrix, and tr is the trace of given matrix. 𝐽 is
Fisher criteria to measure the class separability. Notice that
𝐽 measures the class separability in the feature space and 𝐽

is independent of the projections in the common projection
subspace, so it is a satisfying choice to be the task of kernel
optimization.

Up to now, the kernel optimization problem is trans-
formed to maximize Fisher scalar 𝐽. Let the number of each
class 𝑖 (𝑖 = 1, 2, . . . , 𝐶) be 𝑁

𝑖
, that is, class 𝑖 has 𝑁

𝑖
training

samples and 𝑁 denotes the number of all training samples.
What is more, let 𝑚

𝑖
, 𝑚
0
denote the center of each training

samples in class 𝑖 (𝑖 = 1, 2, . . . , 𝐶) and the center of all training
samples, respectively, that is, 𝑚

𝑖
= (1/𝑁

𝑖
) ∑
𝑁𝑖

𝑗=1
𝑦
𝑗
, 𝑚
0

=

(1/𝑁)∑
𝑁

𝑘=1
𝑦
𝑘
and 𝑦

𝑖
(𝑖 = 1, 2, . . . , 𝑁) be the images of the

training samples in the empirical feature space, that is, 𝑦
𝑖
=

Φ
𝑟
(𝑥
𝑖
). Then, we can define

tr 𝑆
𝑏
=

1

𝑁

𝐶

∑

𝑖=1

𝑁
𝑖
(𝑚
𝑖
− 𝑚
0
)
𝑇

(𝑚
𝑖
− 𝑚
0
) ,

tr 𝑆
𝑤
=

1

𝑁

𝐶

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

(𝑦
𝑗

𝑖
− 𝑚
𝑖
)
𝑇

(𝑦
𝑗

𝑖
− 𝑚
𝑖
) ,

(9)

where 𝑦𝑗
𝑖
means the 𝑗th training sample in the 𝑖th class.

For the convenience of calculation and representation, we
rewrite the kernel matrix𝐾 as

𝐾 =

[
[
[
[

[

𝐾
11

𝐾
12

. . . 𝐾
1𝐶

𝐾
21

𝐾
22

. . . 𝐾
2𝐶

...
... d

...
𝐾
𝐶1

𝐾
𝐶2

. . . 𝐾
𝐶𝐶

]
]
]
]

]

, (10)

where 𝐾
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝐶; 𝑗 = 1, 2, . . . , 𝐶) represent the

submatrices of𝐾 and the size of𝐾
𝑖𝑗
is𝑁
𝑖
× 𝑁
𝑗
.

Let the following matrices 𝐵 and 𝑊 be called “between-
class” and “within-class” kernel scatter matrices, respectively,

𝐵 =

[
[
[
[
[
[
[
[
[

[

1

𝑁
1

𝐾
11

0 ⋅ ⋅ ⋅ 0

0
1

𝑁
2

𝐾
22

⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅

1

𝑁
𝐶

𝐾
𝐶𝐶

]
]
]
]
]
]
]
]
]

]

−
1

𝑁

[
[
[
[

[

𝐾
11

𝐾
12

⋅ ⋅ ⋅ 𝐾
1𝐶

𝐾
21

𝐾
22

⋅ ⋅ ⋅ 𝐾
2𝐶

...
... d

...
𝐾
𝐶1

𝐾
𝐶2

⋅ ⋅ ⋅ 𝐾
𝐶𝐶

]
]
]
]

]

,

𝑊 = diag (𝑘
11
, 𝑘
22
, . . . , 𝑘

𝑁𝑁
)

−

[
[
[
[
[
[
[
[
[

[

1

𝑁
1

𝐾
11

0 ⋅ ⋅ ⋅ 0

0
1

𝑁
2

𝐾
22

⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅

1

𝑁
𝐶

𝐾
𝐶𝐶

]
]
]
]
]
]
]
]
]

]

.

(11)

We can also employ 𝐵
0
and𝑊

0
to denote “between-class”

and “within-class” kernel scatter matrices corresponding to
the basic kernel𝐾

0
.

Now we establish the relation between Fisher scalar 𝐽 and
the proposed kernel scatter matrices. Let 1

𝑁
be the 𝑁-dim

vector whose elements are equal to 1. Then we can get

𝐽 =
q𝑇𝐵
0
q

q𝑇𝑊
0
q
. (12)

The proof is given in the appendix.
Tomaximize 𝐽, we adopt the general gradientmethod and

use formula (4). Define

𝐽
1
= q𝑇𝐵

0
q = (𝐾

1
𝛼)
𝑇

𝐵
0
𝐾
1
𝛼 = 𝛼

𝑇
𝐾
𝑇

1
𝐵
0
𝐾
1
𝛼,

𝐽
2
= q𝑇𝑊

0
q=(𝐾
1
𝛼)
𝑇

𝑊
0
𝐾
1
𝛼 = 𝛼

𝑇
𝐾
𝑇

1
𝑊
0
𝐾
1
𝛼.

(13)

Then,

𝜕𝐽
1

𝜕𝛼
= 2𝐾
𝑇

1
𝐵
0
𝐾
1
𝛼,

𝜕𝐽
2

𝜕𝛼
= 2𝐾
𝑇

1
𝑊
0
𝐾
1
𝛼.

(14)

Thus,

𝜕𝐽

𝜕𝛼
=

𝜕 (𝐽
1
/𝐽
2
)

𝜕𝛼
=

(𝜕𝐽
1
/𝜕𝛼) 𝐽

2
− 𝐽
1
(𝜕𝐽
2
/𝜕𝛼)

𝐽
2

2

=
2

𝐽
2

2

(𝐾
𝑇

1
𝐵
0
𝐾
1
𝐽
2
− 𝐾
𝑇

1
𝑊
0
𝐾
1
𝐽
1
)𝛼

=
2

𝐽
2

(𝐾
𝑇

1
𝐵
0
𝐾
1
− 𝐾
𝑇

1
𝑊
0
𝐾
1
𝐽)𝛼.

(15)

Denote 𝑀
0

= 𝐾
𝑇

1
𝐵
0
𝐾
1
and 𝑁

0
= 𝐾
𝑇

1
𝑊
0
𝐾
1
, maximize 𝐽 is

equivalent to 𝜕𝐽/𝜕𝛼 = 0, that is,

𝑀
0
𝛼 = 𝑁

0
𝐽𝛼. (16)

Considering the fact that it is almost impossible to make
𝑊
0
invertible because of the limited amount of training

samples in real-world applications, the general gradient
descent method is adopted to get an approximate value of the
optimal 𝛼. The updating equation to maximize 𝐽 is defined as
follows:

𝛼
(𝑛+1)

= 𝛼
(𝑛)

+ 𝜂(
1

𝐽
2

𝑀
0
−

𝐽

𝐽
2

𝑁
0
)𝛼
(𝑛)

. (17)
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To guarantee the convergence of formula (17), 𝜂 is defined
as the function of iterations, that is,

𝜂 (𝑞) = 𝜂
0
(1 −

𝑞

𝑄
) , (18)

where 𝜂
0
is a predefined initial value,𝑄 denotes total number

of iterations, and 𝑞 represents the current iteration number.
After we calculate the combination coefficients of 𝛼, then

we can get q, as q = 𝐾
1
𝛼, and thus, the optimizing kernel or

data-dependent kernel,𝐾, is easy to achieve.

3. Optimizing Kernel PCA (KOPCA)

In this section, we will employ the optimized kernel function
mentioned above to construct the optimizing kernel PCA and
extract feature in the empirical feature space.

Given a set of𝑁 training samples 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
∈ R𝑑 and

an empirical feature mapping Φ
𝑟
, let the input data space 𝑋

be mapped into the empirical feature space R𝑟 : Φ
𝑟
: 𝑋 →

R𝑟, 𝑥 󳨃→ Φ
𝑟
(𝑥). The covariance operator on the empirical

feature space R𝑟 can be constructed by

𝑆
Φ𝑟 =

1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑚
0
) (𝑦
𝑖
− 𝑚
0
)
𝑇

, (19)

where 𝑦
𝑖
and 𝑚

0
are defined the same as above, that is,

𝑦
𝑖
= Φ
𝑟
(𝑥
𝑖
), 𝑚
0
= (1/𝑁)∑

𝑁

𝑘=1
𝑦
𝑘
. It is easy to proof that all

nonzero eigenvalues of 𝑆Φ𝑟 are positive, and every eigenvector
𝛽 of 𝑆Φ𝑟 can be linearly expanded by

𝛽 =

𝑁

∑

𝑖=1

𝜃
𝑖
𝑦
𝑖
. (20)

To get these expansion coefficients, we denote 𝛽 =

[𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑚
], 𝑌𝑇 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
] and form an 𝑁 × 𝑁

Gram matrix 𝐺 = 𝑌𝑌
𝑇, whose elements are determined by

optimizing kernel, that is, 𝐺
𝑖𝑗

= 𝑦
𝑇

𝑖
𝑦
𝑗
= (Φ
𝑟
(𝑥
𝑖
), Φ
𝑟
(𝑥
𝑗
)) =

𝑘(𝑥
𝑖
, 𝑥
𝑗
). Note that the kernel matrix 𝐾 = [𝑘(𝑥

𝑖
, 𝑥
𝑗
)]
𝑁×𝑁

is
the same as what is defined in formula (7).

Centralize 𝐺 by

𝐺
𝑐
= 𝐺 − 1

𝑁
× 𝐺 − 𝐺 × 1

𝑁
+ 1
𝑁

× 𝐺 × 1
𝑁
, (21)

where 1
𝑁
is defined the same as above, that is, 1

𝑁
is 𝑁-dim

vector whose elements are equal to 1.
Let the eigenvectors of 𝐺

𝑐
be 𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑚
corresponding

to the 𝑚 largest positive eigenvalues 𝜆
1

≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑚
.

Then, the 𝑚 eigenvectors of 𝑆Φ𝑟 , 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑚
, correspond-

ing to the 𝑚 largest positive eigenvalues 𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑚
,

are

𝛽
𝑗
=

1

√𝜆
𝑗

𝑌
𝑇
𝛾
𝑗
. (22)

After the projection of a mapped sample 𝑦
𝑡
= Φ
𝑟
(𝑥
𝑡
) onto the

eigenvectors 𝛽 = [𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑚
], we can obtain optimizing

kernel PCA transformed feature vector z by

z = 𝛽
𝑇
𝑦
𝑡
. (23)

Meanwhile, the 𝑗th optimizing kernel PCA component:

𝑧
𝑗
= 𝛽
𝑇

𝑗
𝑦
𝑡
=

1

√𝜆
𝑗

𝛾
𝑇

𝑗
𝑌𝑦
𝑡
=

1

√𝜆
𝑗

𝛾
𝑇

𝑗

[
[
[
[

[

𝑦
𝑇

1

𝑦
𝑇

2

...
𝑦
𝑇

𝑁

]
]
]
]

]

𝑦
𝑡

=
1

√𝜆
𝑗

𝛾
𝑇

𝑗
[𝑘 (𝑥
1
, 𝑥
𝑡
) , 𝑘 (𝑥

2
, 𝑥
𝑡
) , . . . , 𝑘 (𝑥

𝑁
, 𝑥
𝑡
)]
𝑇

.

(24)

Up to now, the essence of optimizing kernel PCA has
been revealed. That is, we first maximize a measure of class
separability in the empirical feature space by virtue of Fisher
criterion to form needful data-dependent kernel and then
take advantage of optimizing kernel PCA to extract feature
in the empirical feature space.

4. Sparse Representation-Based Classifier
(SRC)

Let 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝐶) be the matrix formed by the training

samples of the 𝑖th class, that is, 𝐴
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑁𝑖
] ∈

R𝑑×𝑁𝑖 . And define a new matrix 𝐴 for the total training set
with𝐶 classes as the concatenation of the𝑁 training samples:
𝐴 = [𝐴

1
, 𝐴
2
, . . . , 𝐴

𝐶
] ∈ R𝑑×𝑁.

Given a test sample 𝑦 from the 𝑖th class, then 𝑦 can be
approximately represented by the linear span of the training
samples in the corresponding class, that is,

𝑦 = 𝜇
𝑖1
𝑥
𝑖1
+ 𝜇
𝑖2
𝑥
𝑖2
+ ⋅ ⋅ ⋅ + 𝜇

𝑖𝑁𝑖
𝑥
𝑖𝑁𝑖

=

𝑁𝑖

∑

𝑗=1

𝜇
𝑖𝑗
𝑥
𝑖𝑗

= 𝐴
𝑖
𝜇
𝑖
,

(25)

where 𝜇
𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑁

𝑖
) are the corresponding coeffi-

cients, and we denote 𝜇
𝑖
= [𝜇
𝑖1
, 𝜇
𝑖2
, . . . , 𝜇

𝑖𝑁𝑖
]
𝑇.

Then, the linear representation of 𝑦 can be rewritten in
terms of 𝐴 as

𝑦 = 𝐴𝜇, (26)

where 𝜇 = [0, . . . , 0,𝜇
𝑇

𝑖
, 0, . . . , 0]

𝑇
∈ R𝑁 is a coefficient vector

whose entries are zero except those associated with the 𝑖th
class.

Hereto, we should take the number of row and column
of 𝐴 into consideration. If the row number 𝑑 is bigger than
column number 𝑁, the system of equations 𝑦 = 𝐴𝜇 is
overdetermined and the correct 𝜇 can usually be found as its
unique solution. Nevertheless, this is not what we need since
sparse representation involves an underdetermined system of
linear equations 𝑦 = 𝐴𝜇, where 𝑑 < 𝑁 as it is motivated by
the following fact: given a test sample 𝑦, the representation is
naturally sparse if training sample size (column number) is
large enough, and if the sparser the coefficient vector 𝜇 is, the
easier it will be to accurately reconstruct the identity of the
test sample 𝑦 [12].

Consequently, it means that the dimension of feature vec-
tor (row number) must be smaller than the training sample
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size (column number). Considering, before we use sparse
representation, we have obtained dimensionality reduced
empirical feature in Section 2, and just in time, it can meet
requirements.

The above discussion motivates us to seek the sparest
solution by solving the following optimization problem:

(ℓ
0
) 𝜇̂
0
= argmin 󵄩󵄩󵄩󵄩𝜇

󵄩󵄩󵄩󵄩0
, s.t. 𝑦 = 𝐴𝜇, (27)

where ‖ ⋅ ‖
0
denotes the ℓ

0-norm, which counts the number
of nonzero entries in a vector.

However, solving ℓ
0 optimization problem in formula

(27) is NP hard and time-consuming. Recent research of
spares representation and compressed sensing [15, 16] proves
that if the solution 𝜇̂

0
is sparse enough, the solution of the ℓ0

optimization problem is equivalent to finding the solution of
the ℓ1 optimization problem:

(ℓ
1
) 𝜇̂
1
= argmin 󵄩󵄩󵄩󵄩𝜇

󵄩󵄩󵄩󵄩1
, s.t. 𝑦 = 𝐴𝜇. (28)

This problem can be solved in polynomial time by standard
linear programming algorithms [17].

After obtaining the sparest solution 𝜇̂
1
, we can form a

sparse representation-based classifier (SRC) in the following
way. For each class 𝑖 (𝑖 = 1, 2, . . . , 𝐶), let 𝛿

𝑖
: R𝑁 → R𝑁 be a

function which selects the coefficients associated with the 𝑖th
class, then 𝛿

𝑖
(𝜇) is a vector whose only nonzero entries are the

entries in 𝜇 that are associated with class 𝑖. Making use of the
coefficients associated with the 𝑖th class, one can reconstruct
the given test sample 𝑦 as 𝑦

𝑖
= 𝐴𝛿
𝑖
(𝜇̂
1
). 𝑦
𝑖
is often called the

prototype of class 𝑖 with respect to the sample 𝑦. The residual
between 𝑦 and its prototype 𝑦

𝑖
of class 𝑖 is defined as follows:

𝑟
𝑖
(𝑦) =

󵄩󵄩󵄩󵄩𝑦 − 𝑦
𝑖

󵄩󵄩󵄩󵄩2
=

󵄩󵄩󵄩󵄩𝑦 − 𝐴𝛿
𝑖
(𝜇̂
1
)
󵄩󵄩󵄩󵄩2
. (29)

Then the SRC decision rule is to minimize the residual, that
is, if 𝑟
𝑘
(𝑦) = min

𝑖
𝑟
𝑖
(𝑦), 𝑦 is assigned to class 𝑘. It is necessary

to explain that our implementation minimizes the ℓ
1-norm

via the basis pursuit denoising (BPDN) algorithm for linear
programming based on [17–19].

5. Experimental Results

In this section, experiments are designed to evaluate the
performance of the proposed algorithm.The first experiment
is adopted to show that the class separability is probablyworse
in the feature space than that in the input space in some cases
and demonstrate that the proposed kernel optimization algo-
rithm can enlarge class separability.The second experiment is
carried out onMSTAR SAR images using KOPCA compared
with conventional KPCA to extract features and use nearest
neighbor (NN) classifier to implement pattern classification.
Simultaneously, sparse representation-based classifier (SRC)
is applied to verify its superiority and effectiveness to deal
with pattern classification compared with other classifiers. In
order to verify the sparsity via BPDN, we randomly choose
a test sample and show its representation coefficients on the
training set.

5.1. Kernel Optimization on Synthetic Gaussian Distributed
Dataset. Before concentrating on optimizing the kernel in
the empirical feature space, we use two simple datasets called
Gaussian distribution data generated by computer to get
intuition about the embedding of data in the feature space
into the empirical feature space.More information about data
embedding can be found in [20]. Figure 1(a) shows a 2-class
2-dim dataset containing 400 samples, whose coordinates
are uncorrelated. Each class contains 200 samples and both
are Gaussian distributions with parameters: 𝜇

𝑥
= −2, 𝜇

𝑦
=

0, 𝜎
𝑥

= 2, 𝜎
𝑦

= 1 and 𝜇
𝑥

= 2, 𝜇
𝑦

= 0, 𝜎
𝑥

= 1, 𝜎
𝑦

= 2,
respectively. Seeing this figure, there is some overlap between
the two classes. Figure 1(b) shows the projection of the data
into the empirical feature space onto the first two significant
dimensions corresponding to the first two largest eigenvalues
of𝐾, when the polynomial kernel function 𝑘

0
(𝑥, 𝑦) = (𝑥, 𝑦)

𝑑

with 𝑑 = 3 is used. Figure 1(c) shows the corresponding
projection when the Gaussian kernel function 𝑘

0
(𝑥, 𝑦) =

exp(−(1/𝜎)‖𝑥 − 𝑦‖
2
)with 𝜎 = 1.0×10

5 is employed. Both the
two basic kernels arementioned in formula (1). It is seen from
Figures 1(b) and 1(c) that the class separability is worse in the
feature space than that in the input space when adopting both
the polynomial kernel and Gaussian kernel. Therefore, it is
important to conduct kernel optimization. We will carry out
an experiment later to demonstrate that when applying the
kernel optimization algorithm in Section 2.3, themeasure for
class separability is surely enlarged.

In this experiment, we set parameter 𝛾 of the function
𝑘
1
(⋅) in formula (2) as 𝛾 = 1𝑒6 for the given polynomial kernel

𝑘
0
(𝑥, 𝑦) = (𝑥, 𝑦)

3 and the given Gaussian kernel 𝑘
0
(𝑥, 𝑦) =

exp(−1.0 × 10
−5
‖𝑥 − 𝑦‖

2
). One-third of the synthetic data are

randomly chosen to form the “empirical core” set {𝑎
𝑖
}. The

initial learning rate 𝜂
0
and total iteration number 𝑄 are set

0.1 and 200, respectively, in both the polynomial kernel and
Gaussian kernel. Figures 2(a) and 2(b) show the projection
of the data into empirical feature space onto the first two
significant dimensions corresponding to the first two largest
eigenvalues of 𝐾, when the polynomial kernel and Gaussian
kernel are used as mentioned above. It is seen from Figure 2
that the proposed kernel optimization algorithm substantially
improves the class separability of the data in the empirical
feature space and, hence, in the feature space.

5.2. KOPCA Criterion on MSTAR SAR Dataset. This exper-
iment is conducted on MSTAR SAR image provided by
Defense Advanced Research Project Agency and Air Force
Research Laboratory (DARPA/AFRL). The data is the
MSTAR public release subset in order to initiate Moving and
Stationary Target Acquisition and Recognition project which
has provided a unique opportunity to promote and assess
progress in SAR ATR algorithm development.

Since the characteristic in SAR image changes greatly
with different aspect angles, a great many of images within
one target-class were collected, where the poses lie between 0
and 360 degree.

The vehicle in MSTAR SAR Dataset contains BMP2 (sn-
c21, sn-9563, sn-9566) tracked Armored Personnel Carrier,
BTR70 (sn-c71) wheeled Armored Personnel Carrier, and
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Figure 1: 2-Dim dataset and its projections in the feature space onto the first two significant dimensions. (a) Two classes of data samples with
two Gaussian distributions. (b) 2-Dim projection in the feature space for polynomial kernel with 𝑑 = 3. (c) 2-Dim projection in the empirical
feature space for Gaussian kernel with 𝜎 = 1.0 × 10
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Figure 2: Improvement of class separability via kernel optimization algorithm. (a) 2-Dim projection in the empirical feature space for
polynomial basic kernel 𝑑 = 3. (b) 2-Dim projection in the empirical feature space for Gaussian basic kernel with 𝜎 = 1.0 × 10

5.

T72 (sn-132, sn-812, sn-s7) Main Battle Tank. Different
serial numbers in one-target class mean that vehicles are
variant with small differences in configuration, articulation
under extended operating condition (EOC) [21]. Therefore,
scattering centers of SAR images change so intensively that

recognition ability decreases greatly, and in this sense, recog-
nizing variants in SAR images is difficult.

In this experiment, we select images of BMP2sn-c21,
BTR70sn-c71 and T72sn-132 in 17 depression angle as the
training samples (numbers of each class are 233, 233, 233).The
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Table 1: Recognition rates of KPCA and KOPCA with polynomial kernel using NN classifier.

Polynomial kernel (𝑑) 1 2 3 4 5 6 7 8 9 10
KPCA: NN 67.56 68.00 67.11 66.67 66.22 65.78 65.33 65.11 64.44 64.44
KOPCA: NN 77.78 77.56 77.56 77.11 77.11 76.67 76.00 75.56 75.33 74.67

Table 2: Recognition rates of KPCA and KOPCA with Gaussian kernel using NN classifier.

Gaussian kernel (𝜎) 1𝑒1 1𝑒2 1𝑒3 1𝑒4 1𝑒5 1𝑒6 1𝑒7 1𝑒8 1𝑒9 1𝑒10
KPCA: NN 62.00 62.00 62.00 66.11 68.00 67.11 62.00 61.33 34.22 31.11
KOPCA: NN 75.11 75.33 75.33 77.56 80.00 77.78 76.67 75.56 45.33 44.89

testing samples are selected as BMP2 sn-9563, BMP2 sn-9566,
and T72 sn-812, T72sn-s7 in 15 depression angle (numbers of
each class are 195, 196, 195, 191).The testing targets have small
configuration differences to the training targets. There is a
need to explanation; in this paper, KOPCA extracts features
of all MSTAR images with different aspect angles directly and
the process does not need to form different aspect windows
and before recognition, images are chipped into 48∗48 pixels.

We set parameter 𝛾 of the function 𝑘
1
(⋅) in formula (2) as

𝛾 = 1𝑒6. The kernel functions are chosen as the polynomial
kernel 𝑘

0
(𝑥, 𝑦) = (𝑥, 𝑦)

𝑑 where 𝑑 is from 1 to 10, and the
Gaussian kernel 𝑘

0
(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖

2
/𝜎)where 𝜎 is from

1𝑒1 to 1𝑒10. One-third of the training data are chosen to form
the “empirical core” set {𝑎

𝑖
}. The initial learning rate 𝜂

0
and

total iteration number 𝑄 are set 0.1 and 200, respectively, in
both the polynomial kernel and Gaussian kernel. Moreover,
the feature dimension and empirical feature dimension are
set 100 in both KPCA and KOPCA criterion. In order to
reflect the performance of optimizing kernel in real-world
application, the simplest nearest neighbor (NN) classifier is
selected.

Suppose the distance between two samples 𝑥
𝑖
and 𝑥

𝑗
is

defined by 𝑑(𝑥
𝑖
, 𝑥
𝑗
) = ‖𝑥

𝑖
− 𝑥
𝑗
‖
1
, where ‖ ⋅ ‖

1
denotes l1-

norm.
Then, if a test sample 𝑥 satisfies 𝑑(𝑥, 𝑥

𝑗
) = min

𝑖
𝑑(𝑥, 𝑥

𝑖
),

and 𝑥
𝑖
belongs to class 𝑘, then 𝑥 belongs to class 𝑘.

Tables 1 and 2 show the recognition rates of KPCA and
KOPCA with polynomial kernel and Gaussian kernel using
the nearest neighbor (NN) classifier, respectively. From them,
we can see that using the proposed data-dependent kernel
optimization algorithm with KPCA criterion, recognition
rate can be increased 10% ∼15% in both polynomial kernel
and Gaussian kernel compared with conventional KPCA in
the whole process. The class separability in the empirical
feature space is improved, and thus, recognition rate is
improved.

Now, we will conduct another experiment to discuss
sparse representation-based classifier (SRC). In the first part,
we validate its effectiveness to deal with pattern classification
task after extracting features via KOPCA (KOPCA: SRC)
when compared with other classifiers, such as 𝐾-nearest
neighbor (KNN) classifier, support vector classifier (SVC),
and linear regression classifier (LRC) [22]. In the second
part, in order to verify the sparsity of sparse representation-
based classifier (SRC) via BPDN, we randomly choose a
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Figure 3: Representation coefficients to a chosen testing sample in
the third class.

testing sample and show its representation coefficients on the
training set.

Tables 3 and 4, respectively, show the recognition rates
of KOPCA with KNN, SVC, LRC, and SRC classifiers corre-
sponding to polynomial kernel and Gaussian kernel.

From Table 3, we see that sparse representation-based
classifier (SRC) outperforms other classifiers no matter what
the order of polynomial kernel is. In the whole experiment
process, the recognition rate of KOPCA: SRC achieves higher
than 95% while others are lower than 95%. Only KOPCA:
LRC is close to KOPCA: SRC, the others are lower than 10%,
even 20% compared with it. Meanwhile, notice that there
exists an interesting phenomenon, that is, though the order
of polynomial kernel varies from 1 to 10, variations of recog-
nition rates of all the algorithms are less than 10%. However,
it is inapplicable to Gaussian kernel. From Table 4, we learn
that KOPCA: SRC has the superiority and effectiveness, that
is, (1) when parameter 𝜎 of Gaussian kernel is between 1𝑒1

and 1𝑒5, recognition rate of KOPCA: SRC is slightly lower
than KOPCA: LRC, the difference is no more than 2%, but it
is better than KOPCA: KNN and KOPCA: SVM. (2)Though,
KOPCA: LRC performs well, but it has limitations when 𝜎 is
equal or greater than 1𝑒6 since the recognition rate degrades
quickly and significantly, while KOPCA: SRC remains stable
and superior. (3) The performance of all these algorithms
decreases rapidly when 𝜎 is greater than 1𝑒8 while KOPCA:
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Table 3: Recognition rates of KOPCA with polynomial kernel using different classifier.

Polynomial kernel (𝑑) 1 2 3 4 5 6 7 8 9 10
KOPCA: KNN 85.11 85.33 87.78 83.56 83.33 84.22 82.89 80.89 82.00 81.33
KOPCA: SVC 74.00 91.33 88.44 88.44 88.00 86.22 86.00 85.56 83.33 82.67
KOPCA: LRC 88.67 92.44 93.78 94.22 94.44 93.56 93.56 92.89 92.22 91.56
KOPCA: SRC 98.44 98.44 98.22 98.22 98.00 97.56 98.22 98.00 97.56 97.78

Table 4: Recognition rates of KOPCA with Gaussian kernel using different classifier.

Gaussian kernel (𝜎) 1𝑒1 1𝑒2 1𝑒3 1𝑒4 1𝑒5 1𝑒6 1𝑒7 1𝑒8 1𝑒9 1𝑒10
KOPCA: KNN 85.33 86.67 86.67 86.44 84.44 85.11 85.56 85.33 50.00 43.11
KOPCA: SVC 89.33 89.78 89.78 89.78 89.78 89.33 89.78 58.44 33.33 33.33
KOPCA: LRC 96.89 96.89 96.68 96.68 96.89 55.78 55.78 55.78 55.33 35.78
KOPCA: SRC 94.89 94.89 94.89 94.89 95.33 95.33 95.56 95.33 68.00 55.78

SRC can still hold about 70%, the others are equal or lower
than 50%.

The basis pursuit (RB) method is introduced to optimize
l1-norm based minimization problem in our experiment.
Here, we randomly choose a testing sample in the third class.
Intuitively, most nonzero representation coefficients for the
testing sample lie in the range from 301 to 450 (since each
class has 150 training samples, so the index for the third
class is from 301 to 450). Fortunately, our result demonstrates
it. From Figure 3, we see that the representation coefficients
are sparse with respect to the basis, that is, the training
set. Moreover, the nonzero coefficients are mostly located
in the range from 301 to 450. As the end, we are to say
that BPDN algorithm is fast enough to perform our SAR
images’ recognition and classification. The BPDN software
package that we use is from the “L1 Homotopy” homepage:
http://users.ece.gatech.edu/∼sasif/homotopy/. The running
time is in second level, which is as the same level as LRC and
SVC.

Through the complete discussion above, we can come
to the conclusion that optimizing kernel PCA can indeed
enhance the class separability in the empirical feature space
compared to conventional KPCA and thus improve recog-
nition rate. In the meantime, sparse representation-based
classifier is robust and of high efficiency for classification
compared to other nice classifiers.

6. Conclusion

In this paper, we proposed an efficient pattern classification
method named kernel optimized PCA with sparse repre-
sentation classifier (KOPCA: SRC). After conducting several
experiments, we can come to the following conclusions with
the experimental results.

(1) We have proposed a new space called the empirical
feature space, in which the data is embedded in a

way that the geometrical structure of the data in the
feature space is preserved.

(2) We have presented a general form of data-dependent
kernel and derived an effective algorithm for opti-
mizing kernel by maximizing class separability of
the dataset in the empirical feature space via Fisher
criterion.

(3) We have for the first time applied sparse
representation-based classifier for pattern
classification on MSTAR SAR image and experiment
results reveal that it is more effective and robust than
existing classifiers.

Appendix

Proof. Note the empirical feature mapping Φ
𝑟
: 𝑋 → R𝑟,

and 𝑦
𝑖

= Φ
𝑟
(𝑥
𝑖
), we know the dot product matrix 𝐾 has

exactly 𝑟 positive eigenvalues.
Let 𝑌

𝑇
= [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
], 𝑌𝑇
𝑖

= [𝑦
𝑖

1
, 𝑦
𝑖

2
, . . . , 𝑦

𝑖

𝑁𝑖
], 𝑖 =

1, . . . , 𝐶. Then, we have

𝑚
𝑖
=

1

𝑁
𝑖

𝑁𝑖

∑

𝑗=1

𝑦
𝑗
=

1

𝑁
𝑖

𝑌
𝑖

𝑇
1
𝑁𝑖
,

𝑚
0
=

1

𝑁

𝑁

∑

𝑘=1

𝑦
𝑘
=

1

𝑁
𝑌
𝑇
1
𝑁
.

(A.1)

As the empirical feature space preserves the dot product,
that is,

[
[
[
[

[

𝑌
1

𝑌
2

...
𝑌
𝐶

]
]
]
]

]

[𝑌
𝑇

1
𝑌
𝑇

2
⋅ ⋅ ⋅ 𝑌
𝑇

𝐶
]
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(A.2)
therefore
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(A.4)

Note formula (3), we easily get 𝐵 = 𝑄𝐵
0
𝑄, 𝑊 = 𝑄𝑊

0
𝑄,

simultaneously, 1𝑇
𝑁
𝑄 = q𝑇 and 𝑄1
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= q. Hence,
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