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Because of the complexity of the practical environments,many distributedmultiagent systems cannot be illustratedwith the integer-
order dynamics and can only be described with the fractional-order dynamics. In this paper, collaboration control problems of
continuous-time networked fractional-order multiagent systems via sampled control and sampling delay are investigated. Firstly,
the sampled-data control ofmultiagent systemswith fractional-order derivative operator is analyzed in a directedweighted network
ignoring sampling delay. Then, the collaborative control of fractional-order multiagent systems with sampled data and sampling
delay is studied in a directed and symmetrical network. Many sufficient conditions for reaching consensus with sampled data and
sampling delay are obtained. Some numerical simulations are presented to illustrate the utility of our theoretical results.

1. Introduction

In recent years, consensus problems in distributed networked
multiagent systems have attracted increasing attention of
more and more researches including control theory, math-
ematics, biology, physics, computer science, and robotics.
The applications of multiagent systems are extensive, ranging
from multiple space-craft alignment, heading direction in
flocking behavior, distributed computation, and rendezvous
of multiple vehicles. Based on certain quantities of interest,
collaboration control problems of agent systems have been
studied bymany researchers andmany important results have
been achieved in much literature [1–8].

With the development of digital sensors and controllers,
in many cases that the system itself is a continuous process,
the synthesis of control law can only use the data sampled
at the discrete sampling instants. Compare to continuous-
time systems with continuous-time controller, continuous-
time systems via sampled control havemany advantages, such
as flexibility, robustness, and low cost. Therefore, sampled
control for continuous-time system is more coincident with
applications in our real life. Robots, vehicles, airplanes,
satellites, and almost all of the modern artificial products

are controlled by digital controller where continuous signals
are transferred into discrete ones. For consensus problems
of continuous-time multiagent systems via sampled control,
some interesting results about consensus problem for mul-
tiagent system have been reported [9–15]. However, in the
many real applications, we always want to find how large
the sampling period should be chosen to guarantee that the
system runs well.This requires us to look for an upper bound
of sampling period. Moreover, sampling delay of the system
cannot be ignored and sometimes may play a key role in the
stability analysis of the networks.Therefore, wewill also study
the case when sampling delay exists.

The important results of the above literature focus the
consensus problems ofmultiagent systemswith integer-order
dynamical equation. In the complex environment, many
phenomena cannot be explained by the framework of integer-
order dynamics, for example, the synchronized motion of
agents in complex environments such as macromolecule
fluids and porous media [16–18]. Under these circumstances,
many dynamic characteristics of natural phenomena can
only be described in the dynamics of fractional-order (non-
integer order) behavior, for example: flocking movement
and food searching by means of the individual secretions
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and microbial, submarine underwater robots in the bottom
of the sea with a large number of microorganisms and
viscous substances, unmanned aerial vehicles running in
the complex space environment [19, 20]. Cao et al. [21, 22]
studied distribution coordination of multiagent systems with
fractional-order dynamics firstly and gave the relationship
between the number of individuals and the fractional order
in the stable multiagent systems. However, to the best of our
knowledge, there are few researches done on the coordination
control of fractional-order multiagent systems via sampled
data.

In this paper, we investigate the consensus of fractional-
order multiagent systems (FOMAS) with sampled-data con-
trol. Because few methods are presented to analyze the
fractional-order systems with sampling delay, the problems
of the fractional-order systems with sampling delay and
sampled data will become more difficult. The main inno-
vation of this paper lies in the study on the distributed
coordination of FOMAS with sampled data and sampling
delay. The rest of the paper is organized as follows. In
Section 2, we recall some basic definitions about fractional
calculus. In Section 3, some preliminaries about graph theory,
fractional-order coordination model of multiagent systems
are shown out. A distributed coordination algorithm for
FOMAS with sampled data control is studied in Section 4.
Section 5 presents the consensus of FOMAS with sampled
data and sampling delay. In Section 6, numerical examples
are simulated to verify the theoretical analysis. Conclusions
are finally drawn in Section 7.

2. Fractional Calculus

Fractional derivatives provide an excellent instrument to
describe the memory and hereditary features of various
materials and processes. Fractional calculus also appears
in the control of dynamical systems, when the controlled
system and the controller are described by a fractional-
order differential equation. This is the main advantage of
fractional derivatives in comparison with classical integer-
order models, in which such effects are in fact neglected. The
advantages of fractional-order derivatives become evident
in modeling mechanical and electrical characteristics of real
materials, as well as in many fields to describe the rheological
properties of rocks.

Fractional operator plays an important role in modern
science, which is used as a generalization of integration and
differentiation with noninteger order fundamental operator
𝑎
𝐷
𝑝

𝑡
, where a and t are the limits of the operation and 𝑝 ∈ 𝑅.

The continuous integrodifferential operator is defined as

𝑎
𝐷
𝑝

𝑡
=

{{{{{{{{{

{{{{{{{{{

{

𝑑
𝑝

𝑑𝑡𝑝
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−𝑝

, 𝑝 < 0.

(1)

Three definitions most frequently used for the general
fractional operators are the Grünwald-Letnikov (GL) defini-
tion, the Riemann-Liouville (RL), and the Caputo definition
[16–18]. The GL definition is given by

𝐺
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where [⋅] means the integer part, and (
𝑝

𝑘
) is fractional

binomial coefficients. The RL definition is given as

𝑅

𝑎
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for (𝑛 − 1 < 𝑝 < 𝑛) and where Γ(⋅) is the Gamma function.
The Caputo definition can be written as

𝐶

𝑎
𝐷
𝑝

𝑡
𝑓 (𝑡) =

1

Γ (𝑝 − 𝑛)
∫

𝑡
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(𝑛)
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The initial conditions for the fractional order differential
equations with the Caputo derivatives are in the same form as
that for the integer-order differential equations. In this paper,
a simple notation 𝑓

(𝑝) is used to replace
𝑎
𝐷
𝑝

𝑡
𝑓(𝑡).

3. Problem Statement

Assume that multiagent system consists of 𝑛 autonomous
agents then connected relations between the agents constitute
a network topology G. Assume G = {𝑉, 𝐸, 𝐴} represents
a directed weighted graph, in which 𝑉 = {V

1
, V
2
, . . . , V

𝑛
}

represents a collection of 𝑛 nodes, and its set of edges is
𝐸 ⊆ 𝑉 × 𝑉. The node indexes belong to a finite index set
𝐼 = {1, 2, . . . , 𝑛}, with adjacency matrix 𝐴 = [𝑎

𝑖𝑙
] ∈ 𝑅
𝑛×𝑛 with

weighted adjacency elements 𝑎
𝑖𝑙
≥ 0. An edge of the weighted

diagraphG is denoted by 𝑒
𝑖𝑙
= (V
𝑖
, V
𝑙
) ∈ 𝐸.We assume that the

adjacency element 𝑎
𝑖𝑙
> 0when 𝑒

𝑖𝑙
∈ 𝐸; otherwise, 𝑎

𝑖𝑙
= 0.The

set of neighbors of a node 𝑖 is denoted by𝑁
𝑖
= {𝑙 ∈ 𝐼 : 𝑎

𝑖𝑙
> 0}.

LetG be a weighted digraph without self-loops, that is, let
𝑎
𝑖𝑖

= 0, and matrix 𝐷 = diag{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} be the diagonal

matrix with the diagonal elements 𝑑
𝑖
= ∑
𝑛

𝑙=1
𝑎
𝑖𝑙
representing

the sum of the elements in the 𝑖th row of matrix 𝐴. The
Laplacian matrix of the weighted digraphG is defined as 𝐿 =

𝐷−𝐴. For two nodes 𝑖 and 𝑙, there is subscript set {𝑙
1
, 𝑙
2
, . . . 𝑙
𝑘
}

satisfying 𝑎
𝑖𝑙
1

> 0, 𝑎
𝑙
1
𝑙
2

> 0, . . . , 𝑎
𝑙
𝑘
𝑙
> 0, and then there is

a directed linked path between node 𝑖 and node 𝑙 which is
used for the information transmission, also we can say that
node 𝑖 can receive the information from node 𝑙. If node 𝑖 can
find a path to reach any node of the graph, then node 𝑖 is
globally reachable from every other node in the digraph. In
this paper, the directed graph and directed symmetrical graph
for fractional-order multiagent systems will be considered.

Lemma 1 (see [5]). 0 is a simple eigenvalue of Laplacian
matrix 𝐿, and 𝑋

0
= 𝐶[1, 1, . . . , 1]

𝑇 is corresponding right
eigenvector, that is, 𝐿𝑋

0
= 0, if and only if the digraph G =

(𝑉, 𝐸, 𝐴) has a globally reachable node.
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Given that the dynamics of multiagent systems indicated
with fractional derivative in the complex environments, the
fractional dynamical equations are defined as

𝑥
(𝛼)

𝑖
= 𝑢
𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑛, (5)

where 𝑥
𝑖
(𝑡) ∈ 𝑅 and 𝑢

𝑖
(𝑡) ∈ 𝑅 represent the 𝑖th agent’s state

and control input, respectively, and 𝑥
(𝛼)

𝑖
represents the𝛼 (𝛼 >

0) order fractional derivative. Assume that the following con-
trol protocols are used in multiagent systems:

𝑢
𝑖
(𝑡) = −𝛾∑

𝑙∈𝑁
𝑖

𝑎
𝑖𝑙
[𝑥
𝑖
(𝑡) − 𝑥

𝑙
(𝑡)] , 𝑖 = 1, . . . , 𝑛, (6)

where 𝑎
𝑖𝑙
represents the (𝑖, 𝑙) elements of adjacency matrix

𝐴, 𝛾 > 0 is control gain, and 𝑁
𝑖
represents the neighbors

collection of the 𝑖th agent.
Suppose that for any initial value of the system, the states

of autonomous agents meet lim
𝑡→∞

(𝑥
𝑖
(𝑡) − 𝑥

𝑙
(𝑡)) = 0, for

𝑖, 𝑙 ∈ 𝐼, and then multiagent systems asymptotically reach
consensus.

4. Sampled Control of FOMAS

Suppose that the sampling period is ℎ; then the discrete-time
dynamics ofmultiagent systemswith fractional derivative can
be rewritten as

𝑥
𝑖
(𝑘 + 1) = 𝛼𝑥

𝑖
(𝑘) + ℎ

𝛼

𝑢
𝑖
(𝑘) , 𝑖 = 1, . . . , 𝑛, (7)

we have

𝑋 (𝑘 + 1) = Ψ𝑋 (𝑘) , (8)
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1
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2
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𝑛
(𝑘)]
𝑇,Ψ = 𝛼𝐼

𝑛
−ℎ
𝛼

𝛾𝐿, and
𝐼
𝑛
is a unit matrix with 𝑛-dimensions. If the norm of matrix

Ψ is satisfying ||Ψ|| < 1, the fractional-order discrete-time
multiagent system (8) will asymptotically reach consensus.

Theorem 2. Suppose that multiagent systems are composed of
𝑛 independent agents, whose connection network topology is
directed, and there is a global reachable node. Then fractional-
order multiagent system (7) with sampled data can asymptoti-
cally reach consensus, if 𝛼 < 1 and

ℎ < min
{{{
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{
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,

(9)

where 𝜆
𝑖
is the eigenvalue of the Laplacian matrix 𝐿.

Proof. Since the spectral radius 𝜌 of the matrixΨ is satisfying
𝜌 ≤ ||Ψ||, we will require the spectral radius 𝜌 < 1. By the
definition 𝜌(Ψ) = max{|𝜂

𝑖
|, 𝑖 = 1, . . . , 𝑛} where 𝜂

𝑖
is the

characteristic value of the matrix Ψ, we should calculate the
characteristic value 𝜂

𝑖
of the matrix Ψ with |𝜂

𝑖
| < 1.

For anymatrix𝐿, there exists a unitarymatrix𝑃 satisfying

Λ = 𝑃𝐿𝑃
𝐻

, (10)

where conjugate matrix 𝑃
𝐻

= 𝑃
−1, Λ is an upper triangular

matrix, and its diagonal elements 𝜆
1
, . . . , 𝜆

𝑛
are the eigenval-

ues of matrix 𝐿. From 𝑃Ψ𝑃
𝐻

= 𝛼𝐼
𝑛
−ℎ
𝛼

𝛾Λ, we can obtain the
characteristic values of matrix Ψ being

𝜂
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𝛼
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𝑖
, 𝑖 = 1, . . . , 𝑛. (11)

Suppose that the connection network topology of FOMAS is
directed, and there is a global reachable node; thenRank(𝐿) =

𝑛 − 1 and 𝜆 = 0 is a single eigenvalue of Laplacian matrix 𝐿.
Suppose 𝜆

1
= 0, we have 𝜂

1
= 𝛼 − ℎ

𝛼

𝛾𝜆
1

= 𝛼. From the
stability requirement of the system (7), we obtain 𝛼 < 1.

For other characteristic values of Laplacian matrix 𝐿

with 𝜆
𝑖

̸= 0(𝑖 ̸= 1), the corresponding characteristic values of
matrix Ψ are being 𝜂

𝑖
= 𝛼 − ℎ

𝛼

𝛾𝜆
𝑖
, 𝑖 = 2, . . . , 𝑛. Let 𝜆 =

Re(𝜆
𝑖
)+𝑗 Im(𝜆

𝑖
) (where 𝑗 is complex number unit), and then

the corresponding characteristic values, for 𝑖 = 2, . . . , 𝑛, are

𝜂
𝑖
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𝛼

𝛾 (Re (𝜆
𝑖
) + 𝑗 Im (𝜆

𝑖
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From |𝜂
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𝛼
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𝑖
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(14)

Then, the condition of the fractional-order multiagent
system (7) is obtained. The proof is finished.

Corollary 3. Suppose that multiagent systems are composed
of 𝑛 independent agents, whose connection network topology
is directed and symmetrical, and there is a global reachable
node.Then FOMAS (7) can asymptotically reach consensus via
sampled data, if 𝛼 < 1 and

ℎ < (
𝛼 + 1

𝛾𝜆
𝑛

)

1/𝛼

, (15)

where 𝜆
𝑛
is the maximum eigenvalue of the Laplacian matrix

𝐿.

Corollary 4. Suppose multiagent systems are composed of
𝑛 independent agents, whose connection network topology is
directed and symmetrical, and there is a global reachable node.
Then multiagent system (7) with 𝛼 = 1 can asymptotically
reach consensus via sampled data, if

ℎ <
2

𝛾𝜆
𝑛

, (16)

where 𝜆
𝑛
is the maximum eigenvalue of the Laplacian matrix

𝐿.
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Remark 5.ThesystemofCorollary 4 forfractional-order𝛼 = 1

becomes the first-order multiagent system. The consensus
condition obtained in Corollary 4 is same as that in [9].

5. Consensus of FOMAS with Sampled
Data and Sampling Delay

In the practical application, the sampled-data transferring
will result in the communication delays. The sampling delays
will affect the control features of the system and sometimes
may play a key role in the stability analysis of the network.
In this section, we will study the consensus of multiagent
systems with sampled data and sampling delay.

Suppose that land the sampling period is ℎ, the sampling
delay is 𝜏. The sampled control protocols are used in multia-
gent systems as follows:

𝑢
𝑖
(𝑡)

=

{{{{

{{{{

{

−𝛾∑

𝑙∈𝑁
𝑖

𝑎
𝑖𝑙
[𝑥
𝑖
(𝑘 − 1) − 𝑥

𝑙
(𝑘 − 1)] , 𝑡 ∈ [𝑘ℎ, 𝑘ℎ + 𝜏) ,

−𝛾∑

𝑙∈𝑁
𝑖

𝑎
𝑖𝑙
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𝑖
(𝑘) − 𝑥

𝑙
(𝑘)] , 𝑡 ∈ [𝑘ℎ + 𝜏, 𝑘ℎ + ℎ) .

(17)

Based on (7) and (17), the dynamics of FOMAS with
sampled data and sampling delay can be rewritten as

(

𝑋 (𝑘 + 1)

𝑋 (𝑘)
) = Φ(

𝑋 (𝑘)

𝑋 (𝑘 − 1)
) , (18)

where

𝑋(𝑘) = [𝑥
1
(𝑘) , 𝑥

2
(𝑘) , . . . , 𝑥

𝑛
(𝑘)]
𝑇

,

Φ = (

𝛼𝐼
𝑛
− 𝛾 (ℎ

𝛼

− ℎ
𝛼

𝜏) 𝐿 −𝛾ℎ
𝛼

𝜏𝐿

𝐼
𝑛

0
) ,

(19)

and 𝐼
𝑛
is a unit matrix with 𝑛-dimensions. If the norm of

matrixΦ is satisfying ‖Φ‖ < 1, the discrete-time FOMAS (18)
will asymptotically reach consensus.

Lemma 6 (see [23, Hermite-Biehler Theorem]). Suppose the
polynomial

𝑝 (𝑠) = 𝑝
0
+ 𝑝
1
𝑠 + ⋅ ⋅ ⋅ + 𝑝

𝑛
𝑠
𝑛

. (20)

Substituting 𝑠 = 𝑖𝜔 into the polynomial 𝑝(𝑠) yields

𝑝 (𝜔) = 𝑚 (𝜔) + 𝑖𝑛 (𝜔) . (21)

Then, the polynomial 𝑝(𝑠) is Hurwitz stability if and only if
the related pair 𝑚(𝜔) and 𝑛(𝜔) is interlaced, and 𝑚(0)𝑛



(0) −

𝑚


(0)𝑛(0) > 0.

Theorem 7. Suppose that multiagent systems are composed of
𝑛 independent agents, whose connection network topology is
directed and symmetrical, and there is a global reachable node.

Then FOMAS (18) with sampled data and sampling delay can
asymptotically reach consensus, if 𝛼 < 1 and

ℎ < [
1

𝛾𝜏𝜆
𝑛

]

1/𝛼

, 𝜏 >
1

(3 + 𝛼)
,

ℎ < [
1 + 𝛼

𝛾𝜆
𝑛
(1 − 2𝜏)

]

1/𝛼

, 𝜏 ≤
1

(3 + 𝛼)
,

(22)

where 𝜆
𝑛
is the maximum eigenvalue of the Laplacian matrix

𝐿.

Proof. In order to prove the asymptotical consensus of
discrete-time systems (18), the spectral radius 𝜌 of the matrix
Φ should be satisfied with 𝜌(Φ) < 1. Since 𝜌(Φ) =

max{|]
𝑖
|, 𝑖 = 1, . . . , 𝑛} where ]

𝑖
is the characteristic value of

the matrix Φ, we should calculate the characteristic value ]
𝑖

of the matrixΦ with |]
𝑖
| < 1.

Suppose that the network topology of FOMAS is directed
and symmetrical, and there is a global reachable node; then
Rank(𝐿) = 𝑛 − 1 and 𝜆 = 0 is a single eigenvalue of Laplacian
matrix 𝐿. There exists an orthogonal matrix 𝑃 satisfying Λ =

𝑃𝐿𝑃
𝑇where𝑃𝑇 = 𝑃

−1,Λ is a diagonalmatrix, and its diagonal
elements 𝜆

1
, . . . , 𝜆

𝑛
are the characteristic values of matrix 𝐿.

Without loss of generality, we suppose 0 = 𝜆
1
< 𝜆
2
≤ ⋅ ⋅ ⋅ ≤

𝜆
𝑛
. The characteristic equation of matrixΦ will be calculated

as follows:
det (]𝐼

2𝑛×2𝑛
− Φ)

= det(]𝐼𝑛 − 𝛼𝐼
𝑛
+ 𝛾 (ℎ

𝛼

− ℎ
𝛼

𝜏) 𝐿 𝛾ℎ
𝛼

𝜏𝐿

−𝐼
𝑛
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𝑛

)

= det (]2𝐼
𝑛
− ] (𝛼𝐼

𝑛
− 𝛾 (ℎ

𝛼

− ℎ
𝛼

𝜏) 𝐿) + 𝛾ℎ
𝛼

𝜏𝐿)

= Π
𝑛

𝑖=1
[]
2

− ]𝛼 + (]ℎ
𝛼

− ]ℎ
𝛼

𝜏 + ℎ
𝛼

𝜏) 𝛾𝜆
𝑖
] .

(23)

Let 𝑎(]) = ]2−]𝛼+(]ℎ𝛼−]ℎ𝛼𝜏+ℎ𝛼𝜏)𝛾𝜆
𝑖
.When𝜆

1
= 0 and

𝑎(]) = ]2 − ]𝛼, we can obtain the characteristic values ]
1
= 0

and ]
2
= 𝛼. From the stability requirement of the system (18),

we obtain 𝛼 < 1.
When 𝜆

𝑖
> 0 (𝑖 = 2, . . . , 𝑛), applying the bilinear

transform ] = (𝑠 + 1)/(𝑠 − 1), 𝑎(]) can be converted into 𝑏(𝑠)

as follows:

𝑏 (𝑠) = (1 − 𝛼 + ℎ
𝛼

𝛾𝜆
𝑖
) 𝑠
2

+ 2 (1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
) 𝑠

+ (1 + 𝛼 − ℎ
𝛼

𝛾𝜆
𝑖
+ 2ℎ
𝛼

𝜏𝛾𝜆
𝑖
) .

(24)

Let 𝑠 = 𝑗𝜔, and the we have

𝑏 (𝜔) = 𝑚 (𝜔) + 𝑗𝑛 (𝜔) , (25)

where𝑚(𝜔) = −(1−𝛼+ℎ
𝛼

𝛾𝜆
𝑖
)𝜔
2

+ (1+𝛼−ℎ
𝛼

𝛾𝜆
𝑖
+2ℎ
𝛼

𝜏𝛾𝜆
𝑖
)

and 𝑛(𝜔) = 2(1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
)𝜔. Applying Lemma 6, we have the

following.
(1) Bymeans of𝑚(0)𝑛



(0)−𝑚


(0)𝑛(0) = 2(1+𝛼−ℎ
𝛼

𝛾𝜆
𝑖
+

2ℎ
𝛼

𝜏𝛾𝜆
𝑖
)(1 − ℎ

𝛼

𝛾𝜏𝜆
𝑖
) > 0, we have

1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
> 0, (26)

1 + 𝛼 − ℎ
𝛼

𝛾𝜆
𝑖
+ 2ℎ
𝛼

𝜏𝛾𝜆
𝑖
> 0. (27)
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Based on (26), it has

ℎ
𝛼

<
1

𝛾𝜏𝜆
𝑖

. (28)

Discussing (27), if 𝜏 ≥ 0.5, then (27) comes into existence. If
𝜏 < 0.5, then it require is

ℎ
𝛼

<
1 + 𝛼

𝛾𝜆
𝑖
(1 − 2𝜏)

. (29)

(2) When 2(1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
) ̸= 0 from (26), the solution of

𝑛(𝜔) = 0 is 0. Since 𝛼 < 1 we have 1 − 𝛼 + ℎ
𝛼

𝛾𝜆
𝑖
> 0 and

1 + 𝛼 − ℎ
𝛼

𝛾𝜆
𝑖
+ 2ℎ
𝛼

𝜏𝛾𝜆
𝑖
> 0 from (27); then the solutions of

𝑚(𝜔) = 0 are ±√(1 + 𝛼 − ℎ𝛼𝛾𝜆
𝑖
+ 2ℎ𝛼𝜏𝛾𝜆

𝑖
)/(1 − 𝛼 + ℎ𝛼𝛾𝜆

𝑖
).

Therefore, the solutions of the related pair𝑚(𝜔) and 𝑛(𝜔) are
interlaced.

By comparing the right parts of (28) and (29), we can
obtain that when 𝜏 > 1/(3 + 𝛼), 1/𝛾𝜏𝜆

𝑖
< (1 + 𝛼)/𝛾𝜆

𝑖
(1 − 2𝜏);

otherwise, when 𝜏 ≤ 1/(3 + 𝛼), 1/𝛾𝜏𝜆
𝑖
≥ (1 + 𝛼)/𝛾𝜆

𝑖
(1 − 2𝜏).

Then, the consensus conditions of the multiagent system are
obtained. The proof is finished.

Remark 8. Suppose that the fractional-order 𝛼 = 1; we can
get the consensus condition ℎ < 1/𝛾𝜏𝜆

𝑛
when 𝜏 > 1/4, and

ℎ < 2/𝛾𝜆
𝑛
(1 − 2𝜏) when 𝜏 ≤ 1/4, where 𝜆

𝑛
is the maximum

eigenvalue of matrix 𝐿.

Remark 9. Suppose that the communication delay 𝜏 = 0, we
can get 𝜏 < 1/(3 + 𝛼); therefore, ℎ < ((1 + 𝛼)/𝛾𝜆

𝑛
)
1/𝛼 where

𝜆
𝑛
is the maximum eigenvalue of matrix 𝐿. This result is the

same as the consensus condition in Corollary 3.

6. Simulations

Suppose that the system is composed of four fractional-order
dynamical agents (Figure 1).The connectionweights between
individuals are 𝑎

21
= 𝑎
12

= 0.7, 𝑎
42

= 𝑎
24

= 0.8, 𝑎
31

= 𝑎
13

=

0.9, and 𝑎
14

= 𝑎
41

= 1. Through the network topology of the
system, we can get the adjacency matrix

𝐴 = (

0 0.7 0.9 1

0.7 0 0 0.8

0.9 0 0 0

1 0.8 0 0

) . (30)

Suppose that the order of the fractional multiagent
dynamics is 𝛼 = 0.8 and the system control gain is 𝛾 = 1;
then we can obtain the relationship between the sampling
period and the upper bound of sampling delays (Figure 2)
from the conditions in Theorem 7. In order to make the
system meet the condition of reaching consensus, we can set
the sampling period according to the sampling delay of the
system or decide the stable fields of sampling delays bymeans
of the sampling period. Suppose the order of the fractional
multiagent dynamics is 𝛼 = 0.8 and the control gain 𝛾 = 1;
then we can obtain that the upper bound of sampling period
ℎmax = 1.0993 s corresponding delay 𝜏 = 0.2632 s from
Figure 2.

1 2

3 4

Figure 1: Network topology of the multiagent systems.
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Figure 2: Relationship between the communication delay and the
upper bound of sampling period.

Simulation 1. Assume the sampling delay of multiagent sys-
tem is 𝜏 = 0.25 s, we can obtain the upper bound of sampling
period is 1.0272 s. In computer simulation, selecting the sam-
pling period ℎ = 0.90 s, the consensus can be asymptotically
reached (Figure 3) through fractional-order coordination
algorithm.

Simulation 2. Assume the sampled delay of multiagent sys-
tem is 𝜏 = 0.49 s, the upper bound of sampling period is
0.5054 in Figure 2. In computer simulation, selecting the
sampling period ℎ = 0.50 s, the consensus can be asymptoti-
cally reachedmuchmore slowly with increasing of time delay
(Figure 4).

Simulation 3. Assume the sampling delay of multiagent
system is 𝜏 = 0.50 s, the upper bound of sampling period
is 0.4928 in Figure 2. In computer simulation, selecting the
sampling period ℎ = 0.50 s, the movement trajectories of the
multiagent systems will be asymptotically diverged and the
consensus cannot be reached (Figure 5) through fractional-
order coordination algorithm.

Simulation 4. Let time delay continue increasing, suppose the
sampling delay is 𝜏 = 0.80 s, the upper bound of sampling
period will be 0.2739 in Figure 2. In computer simulation,
selecting the sampling period ℎ = 0.25 s, the movement
trajectories of the multiagent systems will be asymptotically
converged and the consensus can be reached (Figure 6).
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Figure 3: Movement trajectories of the multiagent systems with
delay 0.25 s and sampling period 0.90 s.
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Figure 4: Movement trajectories of the multiagent systems with
delay 0.49 s and sampling period 0.50 s.

Although the sampling period is less than the sampling delay,
the consensus can be still achieved under the condition of
Theorem 7.

7. Conclusions

This paper studies distributed coordination of fractional-
order multiagent system with sampled control and sam-
pling delay. By applying the stability theory of discrete-
time domain, sampled-data control of FOMAS with directed
network topology is investigated, and the upper bound of
the sampling period is obtained. Based on the Hermite-
BiehlerTheorem, the collaborative control of fractional-order
multiagent systems with sampled data and sampling delay is
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Figure 5: Movement trajectories of the multiagent systems with
delay 0.50 s and sampling period 0.50 s.
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Figure 6: Movement trajectories of the multiagent systems with
delay 0.80 s and sampling period 0.25 s.

studied. The relations between sampling delay and sampled
period are obtained to ensure the consensus of FOMAS.
Research of the robust stability of FOMAS will be carried out
in the following work.
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