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This study deals with a mixed static and dynamic optimization of four-parameter functionally graded material (FGM) doubly
curved shells and panels. The two constituent functionally graded shell consists of ceramic and metal, and the volume fraction
profile of each lamina varies through the thickness of the shell according to a generalized power-law distribution. The Generalized
Differential Quadrature (GDQ) method is applied to determine the static and dynamic responses for various FGM shell and
panel structures. The mechanical model is based on the so-called First-order Shear Deformation Theory (FSDT). Three different
optimization schemes andmethodologies are implemented.TheParticle SwarmOptimization,Monte Carlo andGenetic Algorithm
approaches have been applied to define the optimum volume fraction profile for optimizing the first natural frequency and the
maximum static deflection of the considered shell structure. The optimization aim is in fact to reach the frequency and the
static deflection targets defined by the designer of the structure: the complete four-dimensional search space is considered for
the optimization process. The optimized material profile obtained with the three methodologies is presented as a result of the
optimization problem solved for each shell or panel structure.

1. Introduction

Shell structures are widely used in many fields of engineering
thanks to their optimum dynamic behavior, strength, and
stability guaranteed by the curvature effect. The dynamic
and static deflection of these structures, caused by different
external forces, can have serious consequences for their
strength and safety, like resonance. Therefore, an accu-
rate static deflection and frequency determination are of
paramount importance for the technical design of these
structural elements. One of the aims of this work is to
study the static and dynamic behavior of completely doubly
curved shell structures. During the last sixty years, two-
dimensional linear theories of thin shells and plates have

been developed including important contributions [1–12].
The transverse shear deformation has been incorporated into
shell theories by applying the theory of Reissner-Mindlin
[13, 14], also named First-order Shear Deformation Theory
(FSDT). Abandoning the assumption of the preservation of
the normals to the shell middle surface after the deformation,
a comprehensive analysis for elastic isotropic shells and plates
wasmade by Kraus [7] andGould [15, 16]. Indeed, the present
work is just based on the FSDT. In order to include the
effect of the initial curvature in the evaluation of the stress
resultants a generalization of the classical Reissner-Mindlin
theory (CRMT) has been proposed in the literature by Kraus
[7], by Leissa and Chang [17], by Qatu [18, 19] and by Toorani
and Lakis [20]. As a consequence of these contributions
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the stress resultants directly depend on the geometry of
the structure in terms of the curvature coefficients, and
the hypothesis of the symmetry of the in-plane shearing
force resultants and the torsional couples declines. A further
improvement of the previous theories of shells has been
proposed by Toorani and Lakis [21]. In the present work the
kinematicalmodel is generalized in order to include the effect
of the curvatures from the beginning of the shell formulation.
In this way, the strain relationships have been changed, and
the equilibrium equations in terms of displacements have
to be modified. The General First-order Shear Deformation
Theory (GFSDT) is herein considered. It is worth noting that
no results are available in the literature about this general
theory for doubly curved shells. Thus, the motivation of the
present work is based on the lack of results about completely
doubly curved shells and panels.

Due to the significant developments that have taken place
in composite materials [22], the laminated composite doubly
curved shells and panels are considered in this work. As for
the static and dynamic analysis of shells, several studies have
been presented earlier [23]. Furthermore, some complicated
effects in shell structures have been considered in the recent
years [24, 25]. Referring to the formulation of the static and
dynamic equilibrium in terms of midsurface displacements
and rotations, in this paper the system of second-order linear
partial differential equations is solved.The static and dynamic
solutions are obtained by using the numerical technique
named Generalized Differential Quadrature (GDQ) method.
The mathematical fundamentals and recent developments
of the GDQ method as well as its major applications in
engineering are discussed in detail in the book by Shu [26].
In the GDQ method the governing differential equations of
equilibrium are directly transformed in one step to obtain the
final algebraic form. The interest in researches dealing with
this procedure is increasing due to its great simplicity and
versatility. As shown in the literature [23, 27], GDQ technique
is a global method, which can obtain very accurate numerical
results by using a considerably small number of grid points.
Therefore, this simple direct procedure has been applied in a
large number of cases [28–77] to circumvent the difficulties of
programming complex algorithms for the computer, as well
as to avoid the excessive use of storage and computing time.

In the last decades, the increased use of functionally
gradedmaterials (FGMs) [39, 49–55, 57–62, 64, 65, 70, 75, 78–
91] in engineering structures calls for improved analysis and
tailored design tools. Thus, in the present paper, functionally
graded shells are considered. Typically, FGMs consist of a
mixture of ceramic and metal, or a combination of different
materials. In this study, ceramic-metal graded shells and pan-
els with two different volume fraction power-law variations
of the constituents in the thickness direction are considered.
Two different four-parameter power-law distributions, pro-
posed by Tornabene [49], are used for the ceramic volume
fraction. Various material profiles through the functionally
graded lamina thickness are chosen by varying the four
parameters of the power-law distributions.

The need for optimization lies in the mathematical
formulation of FGMs, based on the four coefficients [49]:
it is in fact quite difficult to handle these materials from

the perspective of a designer. Small changes in parame-
ters can lead in fact to strong changes in the distribution
of base materials mixing in the thickness. Moreover, the
domain of the four parameters is not continuous since
some combinations of the parameters lead to distribution
in which the mix of ceramics and metal resulting from
the mathematical formula is negative or a complex number.
From an operative perspective, a typical structural design
scenario can include the need for minimizing the weight,
the request of avoiding a resonance frequency, the control
of the maximum displacement, or other constraints: in this
case, there is no way to analytically relate the four parameter
values to these important design requirements. As an answer,
several authors proposed to apply optimization methods
to achieve a feasible solution. For instance, Yas et al. [92]
propose tominimize the weight of FGMs by using Imperialist
Competitive Algorithm and Artificial Neural Networks. A
very similar approach has been followed by Jam et al. [93] to
optimize FGM conical shells. According to these examples,
heuristic or semi heuristic methods are suitable in such a
case since they consider the function to optimize as a “black
box”, in which only inputs and outputs are considered. A
lot of heuristic (or semi heuristic) optimization techniques
have been proposed in the literature. A comprehensive
but not complete list includes Tabu Search [94], Simulated
Annealing [95, 96], Ant Colonies Optimization [97, 98],
Genetic Algorithms [99–109], Differential Evolution [110],
Particle Swarm Algorithm [111–116], Immune Systems [117,
118], Gravity Optimization [119], Imperialist Competitive
Algorithm [120], and Intelligent Water Drop [121, 122]. In
this paper, Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) will be used since they are tested,
and widespread methods and other techniques could have
been applied. Also an optimization with Monte Carlo (MC)
technique [115, 123–127] will be presented to check the good
performance of GA and PSO and to evaluate howmuch these
methods are efficient and reliable with respect to a completely
random approach. From the point of view of the software
implementation, the PSO method is more simple than the
GA, but it requires more attention to boundary conditions.
MC is considered as a support to theGA and PSO techniques:
in this paper, it is used to check the functionality of GA
and PSO and to confirm that heuristic methods are to be
preferred to random approaches. A well-designed algorithm
implementing optimization techniques like GA or PSO can
be useful to obtain a better solution than MC, requiring a
shorter time to solve the optimization problem. MC is in
fact a random technique, in which large number of tries is
necessary to obtain a good result: moreover, the search is
blind and without memory of the past, so that the previous
tests of the optimization domain are not exploited by the
following computations. The above considerations suggested
the application of heuristic methods to the optimization of
FGMs; a more detailed description of the implementation of
these methods will be provided in the next sections of the
present work.

The structure of this article is as follows: after this
introduction, the second section describes the mathematical
framework necessary to model and study FGM doubly
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curved shell structures; the third section shows the GDQ
numerical implementation for the static and dynamic anal-
yses; the fourth section describes the implementation of GA,
PSO, and MC methods with respect to peculiarities of the
case study, while the fifth one presents the results of the FGM
optimization procedure applied to a set of six structures. A
final section provides some conclusive comments regarding
the problem description, the approach followed to solve it,
and results obtained. The main novelty of the papers lies in
the proposal of a design methodology which can be used by
the designer involved in FGM applications to achieve a short
time particular performances or characteristics for the FGM
doubly curved shell structures.

2. Geometry Description and Shell
Fundamental Systems of Equations

A 2D Equivalent Single Layer (ESL) model is proposed to
study generic doubly curved shells and panels. The position
of an arbitrary point within the shell medium is defined
by coordinates 𝛼
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Finally, due to the fact that an orthogonal curvilinear
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As concerns the shell theory, the present study is based
on the following assumptions: (1) the transverse normal is
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Consistent with the assumptions of a moderately thick shell
theory reported above, the displacement field considered in
the present study is that of the First-order Shear Deformation
Theory (FSDT) and can be put in the following form:
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are the displacement components of points

lying on the middle surface (𝜁 = 0) of the shell, while 𝑡
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rotations, respectively. The kinematic hypothesis expressed
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of 𝜁. Differently from the previous works [43, 44, 47, 49–
53, 67, 68, 70], the displacement field has been improved
taking into account the effective geometry of the shell and in
particular the curvature effect has been directly introduced
into the kinematicalmodel, as proposed by Toorani and Lakis
[21].

Due to the change of the kinematical model, the relation-
ships between strains and generalized displacements along
the shell reference surface (𝜁 = 0) become the following:
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that are different from those presented in previous papers
[43, 44, 47, 49–53, 67, 68, 70]. In the above (10), the first
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are the transverse shearing

strains. The shell is assumed to be made of a linear elastic
composite material. Accordingly, the following constitutive
equations relate internal stress resultants and internal couples
with generalized strain components (10) on the middle
surface:
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, (11)

where the elastic engineering stiffnesses𝐴(𝜏)
𝑖𝑗(𝑝𝑞)

are defined as
follows:

𝐴
(𝜏)

𝑖𝑗(𝑝𝑞)
=

𝑙

∑

𝑘=1

∫

𝜁𝑘+1

𝜁𝑘

𝑄

(𝑘)

𝑖𝑗
𝜁
𝜏 𝐻1

𝐻
2

𝐻
𝑝

1
𝐻
𝑞

2

𝑑𝜁, 𝜏, 𝑝, 𝑞 = 0, 1, 2. (12)

Different approaches can be found in the literature to evaluate
the engineering elastic constants 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
[7, 17–20, 73, 76].

In the present paper, the relations of the elastic engineering
stiffnesses 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
are numerically evaluated using an integral

function in order to avoid numerical instabilities. It is worth
noting that due to the fact that the elastic engineering
stiffnesses 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
depend on curvatures, the corresponding

derivatives, with respect to the coordinates along 𝛼
1
and 𝛼

2

directions of the reference surface, have to be evaluated. In
order to perform this operation the Differential Quadrature
rule [26] is used.Thus, the derivatives of the elastic engineer-
ing stiffnesses 𝐴(𝜏)

𝑖𝑗(𝑝𝑞)
are numerically evaluated. The corre-

sponding elastic constants 𝑄 (𝑘)

𝑖𝑗
can be found in the article

by Tornabene et al. [70, 73], in which all the constants above
introduced are explicitly defined for laminated composite
and functionally graded shells and panels. 𝜅 is the shear
correction factor, which is usually taken as 𝜅 = 5/6, such as
in the present work. In particular, the determination of shear
correction factors for composite laminated structures is still
an unresolved issue, since these factors depend on various
parameters [20]. In (11), the four components 𝑁

1
, 𝑁

2
, 𝑁

12
,

and 𝑁
21

are the in-plane force resultants, and𝑀
1
,𝑀

2
,𝑀

12
,

and 𝑀
21

are the analogous couples, while 𝑇
1
, 𝑇

2
are the

transverse shear force resultants. In the above definitions

(11) the symmetry of shearing force resultants 𝑁
12
, 𝑁

21
and

torsional couples 𝑀
12
,𝑀

21
is not assumed as a further

hypothesis, as done in Reissner-Mindlin theory [7, 12, 22].
This hypothesis is satisfied only in the case of spherical
shells and flat plates [7]. The assumption under discussion is
derived from the consideration that ratios 𝜁/𝑅

1
, 𝜁/𝑅

2
cannot

be neglected with respect to unity.
Typically, the functionally graded materials are made of a

mixture of two constituents. In the presentwork, it is assumed
that the functionally graded material lamina is made of a
mixture of ceramic and metal constituents: Silicon Nitride
and Stainless Steel.Thematerial properties of the functionally
graded shell vary continuously and smoothly in the thickness
direction 𝜁 of each lamina and are functions of volume
fractions of two constituent materials. The Young’s modulus
𝐸
(𝑘)
(𝜁), shear modulus 𝐺(𝑘)(𝜁), Poisson’s ratio ](𝑘)(𝜁), and

mass density 𝜌(𝑘)(𝜁) of the functionally graded shell 𝑘th
lamina can be expressed as

𝜌
(𝑘)
(𝜁) = (𝜌

(𝑘)

𝐶
− 𝜌

(𝑘)

𝑀
)𝑉

(𝑘)

𝐶
(𝜁) + 𝜌

(𝑘)

𝑀
, 𝐸

(𝑘)
(𝜁)

= (𝐸
(𝑘)

𝐶
− 𝐸

(𝑘)

𝑀
)𝑉

(𝑘)

𝐶
(𝜁) + 𝐸

(𝑘)

𝑀
, ]
(𝑘)
(𝜁)

= (]
(𝑘)

𝐶
− ]

(𝑘)

𝑀
)𝑉

(𝑘)

𝐶
(𝜁) + ]

(𝑘)

𝑀
, 𝐺

(𝑘)
(𝜁)

=

𝐸
(𝑘)
(𝜁)

2 (1 + V(𝑘) (𝜁))
, for 𝜁

𝑘
≤ 𝜁 ≤ 𝜁

𝑘+1
,

(13)

where 𝜌(𝑘)
𝐶
, 𝐸

(𝑘)

𝐶
, ](𝑘)
𝐶
, 𝑉

(𝑘)

𝐶
and 𝜌

(𝑘)

𝑀
, 𝐸

(𝑘)

𝑀
, ](𝑘)
𝑀
, 𝑉

(𝑘)

𝑀
represent

mass density, Young’s modulus, Poisson’s ratio, and volume
fraction of the ceramic and metal constituent materials,
respectively. In this work, the ceramic volume fraction𝑉(𝑘)

𝐶
(𝜁)
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follows two simple four-parameter power-law distributions
[49, 51, 53, 70, 75]:

FGM
1(𝑎
(𝑘)
/𝑏
(𝑘)
/𝑐
(𝑘)
/𝑝
(𝑘)
)
: 𝑉

(𝑘)

𝐶
(𝜁)

= (1 − 𝑎
(𝑘)
(

𝜁

ℎ
𝑘

−

𝜁
𝑘

ℎ
𝑘

) + 𝑏
(𝑘)
(

𝜁

ℎ
𝑘

−

𝜁
𝑘

ℎ
𝑘

)

𝑐
(𝑘)

)

𝑝
(𝑘)

,

FGM
2(𝑎
(𝑘)
/𝑏
(𝑘)
/𝑐
(𝑘)
/𝑝
(𝑘)
)
: 𝑉

(𝑘)

𝐶
(𝜁)

= (1 − 𝑎
(𝑘)
(

𝜁
𝑘+1

ℎ
𝑘

−

𝜁

ℎ
𝑘

) + 𝑏
(𝑘)
(

𝜁
𝑘+1

ℎ
𝑘

−

𝜁

ℎ
𝑘

)

𝑐
(𝑘)

)

𝑝
(𝑘)

,

(14)

where the volume fraction index 𝑝(𝑘)(0 ≤ 𝑝
(𝑘)

≤ ∞)

and the parameters 𝑎(𝑘), 𝑏(𝑘), and 𝑐(𝑘) dictate the material
variation profile through the functionally graded shell lamina
thickness. It is important to remark that the volume fractions
of all the constituent materials should add up to unity:

𝑉
(𝑘)

𝐶
+ 𝑉

(𝑘)

𝑀
= 1. (15)

In order to choose the three parameters 𝑎(𝑘), 𝑏(𝑘), and 𝑐(𝑘)
suitably, the relation (15) must be always satisfied for every
volume fraction index 𝑝(𝑘) in each lamina. By considering
the relations (14), when the power-law exponent is set equal
to zero (𝑝(𝑘) = 0) or equal to infinity (𝑝(𝑘) = ∞), the
homogeneous isotropic material is obtained as a special case
of functionally graded material. In fact, from (15), (14), and
(13) it is possible to obtain

𝑝
(𝑘)
= 0 → 𝑉

(𝑘)

𝐶
= 1, 𝑉

(𝑘)

𝑀
= 0 → 𝜌

(𝑘)
(𝜁) = 𝜌

𝐶
,

𝐸
(𝑘)
(𝜁) = 𝐸

𝐶
, ]

(𝑘)
(𝜁) = ]

𝐶
,

𝑝
(𝑘)
= ∞ → 𝑉

(𝑘)

𝐶
= 0, 𝑉

(𝑘)

𝑀
= 1 → 𝜌

(𝑘)
(𝜁) = 𝜌

𝑀
,

𝐸
(𝑘)
(𝜁) = 𝐸

𝑀
, ]

(𝑘)
(𝜁) = ]

𝑀
.

(16)

Some material profiles through the functionally graded shell
thickness are illustrated in Figures 2 and 3.

Following the Hamilton’s principle [7, 12, 19, 22, 23], the
five governing equations in terms of internal actions can be
written for the shell element:

1

𝐴
1
𝐴
2

𝜕 (𝑁
1
𝐴
2
)

𝜕𝛼
1

+

1

𝐴
1
𝐴
2

𝜕 (𝑁
21
𝐴
1
)

𝜕𝛼
2

+

𝑁
12

𝐴
1
𝐴
2

𝜕𝐴
1
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2

−
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2
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2
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+

1

𝑅
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(
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+
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+
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−

𝑀
2

𝐴
1
𝐴
2

𝜕𝐴
2
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1
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1
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+
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)
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(17)
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Figure 1: Geometry description and coordinate system of a doubly curved shell.

where

𝐼
𝜏
=

𝑙

∑

𝑘=1

∫

𝜁𝑘+1

𝜁𝑘

𝜌
(𝑘)
𝜁
𝜏
𝐻
1
𝐻
2
𝑑𝜁, 𝜏 = 0, 1, 2. (18)

Furthermore, the generalized external actions 𝑞
1
, 𝑞
2
, 𝑞
𝑛
, 𝑚

1
,

and 𝑚
2
due to the external forces, acting on the top and

bottom surfaces of the shell, can be evaluated using the
static equivalence principle [7, 23] and can be written on the
reference surface of the doubly curved shell as follows:

𝑞
1
= 𝑞

+

1
(1 +
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ℎ
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(19)

where 𝑞+
1
, 𝑞
−

1
, 𝑞
+

2
, 𝑞
−

2
, 𝑞
+

𝑛
, and 𝑞−

𝑛
are the external forces in

the three principal directions 𝛼
1
, 𝛼

2
, and 𝜁 at the top and

the bottom surface of the shell, respectively. The three basic
sets of equations, namely, the kinematic (10), constitutive
(11), and motion (17) equations, may be combined to give
the fundamental system of equations, also known as the
governing system of equations. By replacing the kinematic
equations (10) into the constitutive equations (11) and the
result of this substitution into the motion equations (17), the
complete equations of motion in terms of displacement and
rotational components can be written as
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2

0

0 𝐼
12

0 0 𝐼
2

]

]

]

]

]

]

[

[

[

[

[

[

�̈�
1

�̈�
2

�̈�
3

̈
𝛽
1

̈
𝛽
2

]

]

]

]

]

]

, (20)

where 𝐿
𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 5 are the equilibrium operators and the

new mass inertias are defined as follows:

𝐼
01
= 𝐼

0
+

2𝐼
1

𝑅
1

+

𝐼
2

𝑅
2

1

,

𝐼
11
= 𝐼

1
+

𝐼
2

𝑅
1

,

𝐼
02
= 𝐼

0
+

2𝐼
1

𝑅
2

+

𝐼
2

𝑅
2

2

,

𝐼
12
= 𝐼

1
+

𝐼
2

𝑅
2

.

(21)

Differently from previous works [43, 44, 47, 49–53, 67, 68,
70], the equilibrium operators 𝐿

𝑖𝑗
, introduced in (20), have

been changed due to the choice of using the kinematical
model (8).

Three kinds of boundary conditions are considered,
namely, the fully clamped edge boundary condition (𝐶), the
simply supported edge boundary condition (𝑆), and the free
edge boundary condition (𝐹). The equations describing the
boundary conditions can be written as follows:

Clamped edge boundary conditions (C):

𝑢
1
= 𝑢

2
= 𝑢

3
= 𝛽

1
= 𝛽

2
= 0 at 𝛼

1
= 𝛼

0

1

or 𝛼
1
= 𝛼

1

1
, 𝛼

0

2
≤ 𝛼

2
≤ 𝛼

1

2
,

𝑢
1
= 𝑢

2
= 𝑢

3
= 𝛽

1
= 𝛽

2
= 0 at 𝛼

2
= 𝛼

0

2

or 𝛼
2
= 𝛼

1

2
, 𝛼

0

1
≤ 𝛼

1
≤ 𝛼

1

1
,

(22)

Simply supported edge boundary conditions (S):

𝑢
1
= 𝑢

2
= 𝑢

3
= 𝛽

2
= 0, 𝑀

1
= 0 at 𝛼

1
= 𝛼

0

1

or 𝛼
1
= 𝛼

1

1
, 𝛼

0

2
≤ 𝛼

2
≤ 𝛼

1

2
,

𝑢
1
= 𝑢

2
= 𝑢

3
= 𝛽

2
= 0, 𝑀

2
= 0 at 𝛼

2
= 𝛼

0

2

or 𝛼
2
= 𝛼

1

2
, 𝛼

0

1
≤ 𝛼

1
≤ 𝛼

1

1
,

(23)

Free edge boundary conditions (F):

𝑁
1
+

𝑀
1

𝑅
1

= 0, 𝑁
12
+

𝑀
12

𝑅
2

= 0,

𝑇
1
= 0, 𝑀

1
= 𝑀

12
= 0 at 𝛼

1
= 𝛼

0

1

or 𝛼
1
= 𝛼

1

1
, 𝛼

0

2
≤ 𝛼

2
≤ 𝛼

1

2
,

(24)

𝑁
2
+

𝑀
2

𝑅
2

= 0, 𝑁
21
+

𝑀
21

𝑅
1

= 0,

𝑇
2
= 0, 𝑀

2
= 𝑀

21
= 0 at 𝛼

2
= 𝛼

0

2

or 𝛼
2
= 𝛼

1

2
, 𝛼

0

1
≤ 𝛼

1
≤ 𝛼

1

1
.

(25)

In addition to the external boundary conditions (22)–(25),
the kinematic and physical compatibility conditions should
be satisfied at the common closingmeridians with 𝛼

2
= 0, 2𝜋,

if a complete shell of revolution has to be considered. The
kinematic compatibility conditions include the continuity
of displacements. The physical compatibility conditions can
only be represented by the five continuous conditions for the
generalized stress resultants. To consider complete revolute
shells characterized by 𝛼1

2
= 2𝜋, it is necessary to implement

the kinematic and physical compatibility conditions between
the two computational meridians with 𝛼0

2
= 0 and with 𝛼1

2
=

2𝜋:

Kinematic compatibility conditions along the closing meridian
(𝛼
2
= 0, 2𝜋)

𝑢
1
(𝛼

1
, 0, 𝑡) = 𝑢

1
(𝛼

1
, 2𝜋, 𝑡) , 𝑢

2
(𝛼

1
, 0, 𝑡) = 𝑢

2
(𝛼

1
, 2𝜋, 𝑡) ,

𝑢
3
(𝛼

1
, 0, 𝑡) = 𝑢

3
(𝛼

1
, 2𝜋, 𝑡) ,

𝛽
1
(𝛼

1
, 0, 𝑡) = 𝛽

1
(𝛼

1
, 2𝜋, 𝑡) , 𝛽

2
(𝛼

1
, 0, 𝑡) = 𝛽

2
(𝛼

1
, 2𝜋, 𝑡)

𝛼
0

1
≤ 𝛼

1
≤ 𝛼

1

1
,

(26)

Physical compatibility conditions along the closing meridian
(𝛼
2
= 0, 2𝜋)

𝑁
2
(𝛼

1
, 0, 𝑡) +

𝑀
2
(𝛼

1
, 0, 𝑡)

𝑅
2

= 𝑁
2
(𝛼

1
, 2𝜋, 𝑡) +

𝑀
2
(𝛼

1
, 2𝜋, 𝑡)

𝑅
2

,
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Figure 2: Variations of the ceramic volume fraction 𝑉
𝐶
through the thickness for different values of the three parameters 𝑎(1), 𝑏(1),

and 𝑐
(1) and the power-law index 𝑝

(1) for a single-layered shell: (a) FGM
1(𝑎
(1)
=1/𝑏
(1)
=0/𝑐
(1)
/𝑝
(1)
)
, (b) FGM

2(𝑎
(1)

= 1/𝑏
(1)

= 0/𝑐
(1)
/𝑝
(1)
)
, (c)

FGM
1(𝑎
(1)

= 1/𝑏
(1)

= 1/𝑐
(1)

= 2/𝑝
(1)
)
, (d) FGM

2(𝑎
(1)
=1/𝑏
(1)
=1/𝑐
(1)
=2/𝑝
(1)
)
, (e) FGM

1(𝑎= 1/𝑏= 0.5/𝑐= 2/𝑝)
, and (f) FGM

2(𝑎
(1)

= 1/𝑏
(1)

= 0 .5/𝑐
(1)

= 2/𝑝
(1)
)
.

𝑁
21
(𝛼

1
, 0, 𝑡) +

𝑀
21
(𝛼

1
, 0, 𝑡)

𝑅
1

= 𝑁
21
(𝛼

1
, 2𝜋, 𝑡) +

𝑀
21
(𝛼

1
, 2𝜋, 𝑡)

𝑅
1

,

𝑇
2
(𝛼

1
, 0, 𝑡) = 𝑇

2
(𝛼

1
, 2𝜋, 𝑡) ,

𝑀
2
(𝛼

1
, 0, 𝑡) = 𝑀

2
(𝛼

1
, 2𝜋, 𝑡) ,

𝑀
21
(𝛼

1
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(𝛼

1
, 2𝜋, 𝑡) ,

𝛼
0

1
≤ 𝛼

1
≤ 𝛼

1

1
.

(27)

In analogous way, in order to consider a toroidal shell of
revolution it is necessary to implement the kinematic and
physical compatibility conditions between the two computa-
tional parallels with 𝛼0

1
= 0 and with 𝛼1

1
= 2𝜋:

Kinematic compatibility conditions along the closing parallel
(𝛼
1
= 0, 2𝜋)

𝑢
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(0, 𝛼

2
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2
, 𝑡) ,

𝛼
0

2
≤ 𝛼

2
≤ 𝛼

1

2
,

(28)



Mathematical Problems in Engineering 11

𝑝 = 20

𝑝 = 20

𝑝 = 5

𝑝 = 5

𝑝 = 2

𝑝 = 2

𝑝 = 1

𝑝 = 1

𝑝 = 1/2

𝑝 = 1/2

𝑝 = 1/5

𝑝 = 1/5

𝑝 = 1/20

𝑝 = 1/20

−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜁

ℎ

𝑉𝑐

(a)

𝑝 = 20

𝑝 = 20

𝑝 = 5

𝑝 = 5

𝑝 = 2

𝑝 = 2

𝑝 = 1

𝑝 = 1

𝑝 = 1/2

𝑝 = 1/2

𝑝 = 1/5

𝑝 = 1/5

𝑝 = 1/20

𝑝 = 1/20

−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜁

ℎ

𝑉𝑐

(b)

𝑝 = 20

𝑝 = 20

𝑝 = 5

𝑝 = 5

𝑝 = 2

𝑝 = 2

𝑝 = 1

𝑝 = 1

𝑝 = 1/2

𝑝 = 1/2

𝑝 = 1/5

𝑝 = 1/5

𝑝 = 1/20

𝑝 = 1/20

−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜁

ℎ

𝑉𝑐

(c)

𝑝 = 20

𝑝 = 20

𝑝 = 5

𝑝 = 5

𝑝 = 2

𝑝 = 2

𝑝 = 1

𝑝 = 1

𝑝 = 1/2

𝑝 = 1/2

𝑝 = 1/5

𝑝 = 1/5

𝑝 = 1/20

𝑝 = 1/20

−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜁

ℎ

𝑉𝑐

(d)

Figure 3: Variations of the ceramic volume fraction 𝑉
𝐶
through the thickness for two-layered and three-layered laminated shells for

different values of the power-law index 𝑝 = 𝑝
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(29)

3. Discretized Equations and
Numerical Implementation

The Generalized Differential Quadrature method is used to
discretize the spatial derivatives in the governing equations
in terms of generalized displacements, as well as boundary
conditions (see Tornabene [49] for a brief review). Through-
out the paper, the Chebyshev-Gauss-Lobatto (C-G-L) grid
distribution is assumed, for which the coordinates of grid
points (𝛼

1𝑖
, 𝛼

2𝑗
) along the reference surface are in the discrete

form:

𝛼
1𝑖
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2
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2
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(30)
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(e) (f)

Figure 4: Six different types of FGM shells and panels: (a) rectangular plate (degenerate panel), (b) cylindrical panel (singly curved panel),
(c) conical shell (singly curved shell), (d) toroidal shell panel (doubly curved shell panel of revolution), (e) catenoidal panel (doubly curved
panel of revolution), and (f) elliptic paraboloid (completely doubly curved panel).

where𝑁,𝑀 are the total number of sampling points used to
discretize the domain in 𝛼

1
and 𝛼

2
directions, respectively,

of the doubly curved shell. It has been proven that, for the
Lagrange interpolating polynomials, the Chebyshev-Gauss-
Lobatto sampling points rule guarantees convergence and
efficiency to the GDQ technique [23, 43–45, 67, 68]. For
the static analysis, when the inertias (21) are set to zero, the
GDQ procedure enables to write the governing equations
(20) and the boundary and compatibility conditions (22)–
(29) in discrete form, transforming each space derivative into
a weighted sumof node values of independent variables using
the Differential Quadrature rule [26, 49]:

𝜕
𝑛
𝑓 (𝑥)

𝜕𝑥
𝑛








𝑥=𝑥𝑚

=

𝑇

∑

𝑘=1

𝜍
(𝑛)

𝑚𝑘
𝑓 (𝑥

𝑘
) , 𝑚 = 1, 2, . . . , 𝑇. (31)

Each approximate equation is valid in a single sampling point.
Thus, the whole system of differential equations has been

discretized and the global assembling leads to the following
set of linear algebraic equations:

[

K
𝑏𝑏

K
𝑏𝑑

K
𝑑𝑏

K
𝑑𝑑

] [

𝛿
𝑏

𝛿
𝑑

] = [

f
𝑏

f
𝑑

] . (32)

In the abovementionedmatrices and vectors, the partitioning
is set forth by subscripts 𝑏 and 𝑑, referring to the system
degrees of freedom and standing for boundary and domain,
respectively. In this sense, 𝑏-equations represent the discrete
boundary conditions, which are valid only for the points lying
on the constrained edges of the shell, while 𝑑-equations are
the equilibrium equations, assigned on the interior nodes. In
order to make the computation more efficient, static conden-
sation of nondomain degrees of freedom is performed:

(K
𝑑𝑑
− K

𝑑𝑏
K−1

𝑏𝑏
K
𝑏𝑑
) 𝛿

𝑑
= f

𝑑
− K

𝑑𝑏
K−1

𝑏𝑏
f
𝑏
. (33)

Thedeflection of the considered structures can be determined
by solving the linear algebraic problem (33). In particular, the
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Figure 5: Square plate: Monte Carlo optimization with 𝜂 = 1; final optimized frequency 𝑓 = 265.364Hz.

solution procedure by means of the GDQ technique has been
implemented in a personal code.

Differently from the static case, when the external forces
𝑞
+

1
, 𝑞
−

1
, 𝑞
+

2
, 𝑞
−

2
, 𝑞
+

𝑛
, and 𝑞−

𝑛
(19) are set to zero, the free vibration

of laminated composite doubly curved shells and panels can
be studied. Using the method of variable separation, it is
possible to seek solutions that are harmonic in time and
whose frequency is𝑓 = 𝜔/2𝜋.The generalized displacements
can be written as follows:

𝑢
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2
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,

(34)

where the vibration spatial amplitude values 𝑈1, 𝑈2, 𝑈3, 𝐵1,
and 𝐵2 fulfil the fundamental differential system (20). Each
approximate equation is valid in a single sampling point.
Thus, the whole system of differential equations can be
discretized and the global assembling leads to a set of

linear eigenvalue problem. When kinematic condensation of
nondomain degrees of freedom is performed, one gets

(K
𝑑𝑑
− K

𝑑𝑏
(K

𝑏𝑏
)
−1K

𝑏𝑑
) 𝛿

𝑑
= 𝜔

2M
𝑑𝑑
𝛿
𝑑
. (35)

The natural frequencies of the structure 𝑓
𝑟
= 𝜔

𝑟
/2𝜋, for

𝑟 = 1, 2, . . . , 5 (𝑁 − 2) × (𝑀 − 2), can be determined by
solving the standard eigenvalue problem (35). In particular,
the solution procedure by means of the GDQ technique has
been implemented in a personal code.The above partitioning
(35) is set forth by subscripts 𝑏 and 𝑑, referring to the system
degrees of freedom and standing for boundary and domain,
respectively. Finally, the results in terms of frequencies are
obtained using an eigenvalue function. With the present
approach, differing from the finite element method, no
integration occurs prior to the global assembly of the linear
system, and this represents a further computational cost
saving in favour of the Differential Quadrature technique.

4. Optimization Algorithms

4.1. Genetic Algorithm (GA) Optimization Method. The GA
approach to optimization was probably introduced at first
by Holland [107], while a comprehensive reference including
implementation procedures and application notes can be
found in later work, like, for instance, the seminal book
by Goldberg [99]. GA tries to implement and imitate in
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Figure 6: Square plate: Genetic Algorithm optimization with 𝜂 = 1; final optimized frequency 𝑓 = 268.816Hz.

a mathematical framework the law of evolution, which
Darwin introduced to explain the changes in nature towards
individuals better suited to the environment in which they
live: GA can be in fact classified as a typical population-
based optimization algorithm. Generation by generation,
populations evolve improving the fitness function which
represents the ability to survive in a defined environment;
the individuals less adapting to the surrounding environment
do not mate and their genetic set of chromosomes is lost.
A solution is represented by a chromosome, constituted by
a set of genes representing the parameters of the solution.
The mathematical implementation follows with the coding
of a chromosome in binary and with the application of
some computational functions like mutations, crossover, and
elitarism. When elitarism is set, some of the best individuals
are replicated in the following generation without any change
in a perfect replication from father to son. The concept of
crossover implies a change between genes of two solutions
and imitates the reproduction in which the son possesses
a part of genes from his mother and the remaining from
the father. Aim of mutations, as it happens in nature, is
to randomly change some genes of the individual to test
new configurations: from an optimization point of view,
mutations help in exploring new zones of the space and are
useful to avoid the problem of “local minimum” capturing.

According to the work by Konak et al. [106], the fitness is
the main driver of the capability to survive and to pass genes
to the next generation: the chromosome is in fact decoded
from binary to decimal and tested in the fitness only after the
application of mating functions requiring a binary coding.
Modern approaches to the application of GA lie in new
formulations and in the introduction of hybridization with
other optimization strategies [108]; also Pareto-based analysis
for multiobjective optimization [103] has been evaluated, and
improvement of GA by the application of fuzzy sets and
neural networks [109] has been proposed to solve complex
tasks. The algorithm implemented in this work follows the
procedure proposed by Goldberg [99], and the fitness has
been defined by authors considering the closeness of the
solution found to the value set by the designer and the
feasibility of the volume fraction distribution in the thickness
(0 < 𝑉(𝑘)

𝐶
< 1). The pseudocode of the GA implemented is

shown in the following Pseudocode 1.

4.2. Monte Carlo (MC) Optimization Method. The Monte
Carlo technique has been developed to support early studies
related to the nuclear physics; the idea is to find the best
approximation of a constant or to solve a problem through
a statistical way, obtaining the results from a very large set
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Figure 7: Square plate: Particle Swarm Optimization with 𝜂 = 1; final optimized frequency 𝑓 = 268.710Hz.

of random inputs. From a mathematical and formal point of
view, for instance, the paper by Mosegaard and Sambridge
[123] introduces the way by which an integral in the form

𝐼 = ∫

𝑋

𝑔 (𝑥) 𝑓 (𝑥) 𝑑𝑥 (36)

can be evaluated by the generation of random samples
𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
, . . . , 𝑥

𝑆
of 𝑥, when 𝑓(𝑥) is an appropriate

probability distribution and 𝑔(𝑥) is the function of which
the integral have to be computed. The integral can be so
computed by the expression

𝐼 ≈

1

𝑆

𝑆

∑

𝑠=1

𝑔 (𝑥
𝑠
) . (37)

The MC methods are very simple, but studies are focused on
the probability distribution shapes providing best results and
on the software methods to generate random numbers; this
is not a trivial issue, since it can be complex to generate a set
of random numbers which are not dependent on the clock
of the processor or on other hardware timers. Obviously,
considering computational efforts, the MC method is very
time expensive; however, due to the increasing computations
capabilities of personal computers and the improving of the

capabilities which are a constant trend in years, this approach
has been recently reconsidered and still applied to a wide
range of applications. The continuous improvement in ran-
domizer algorithms helps in the gain of good performances,
which are often obtained exploiting the capabilities of clusters
of computers. The main critical aspect related to the MC
methods application in engineering is that it requires a lot
of iteration to obtain a solution; following this approach,
in fact, the space is explored in a completely random way
and no attention is focused on zones in which solutions
are better than the average. The literature presents a lot of
interesting applications of MC to engineering problems, like
theworks [124–126] show;MC is also widely applied to games
and strategy since it allows keeping in consideration all the
possible scenarios evolving from a situation: some papers
dealing with this issue can be found in [127]. A pseudocode
of the MC algorithm is included in Pseudocode 2.

4.3. Particle Swarm Optimization (PSO) Method. The PSO
algorithm used in this paper is similar to the one proposed
by Birge [115], with some variations due to the particular
application to the FGM optimization problem. According to
the general implementation of PSO, the position of a particle
in the 𝑛-dimensional solution space can be considered a
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Figure 8: Cylindrical panel: Monte Carlo optimization with 𝜂 = 1; final optimized displacement 𝑤 = 1.1596 ⋅ 10−5m.

solution to the problem in the 𝑛-dimensional space of the
parameters; the 𝑛-dimensional speed which is computed in
the algorithm represents the direction towards a new position
in the 𝑛-dimensional space. The velocity can be obtained by

V
(𝑚)

𝑖
= 𝜙

(𝑚)
V
(𝑚−1)

𝑖
+ 𝑐

1
𝑎
1
(𝑃

𝑏𝑖
− 𝑃

(𝑚−1)

𝑖
) + 𝑐

2
𝑎
2
(𝑃

𝑏𝐺𝑏
− 𝑃

(𝑚−1)

𝑖
),

(38)

where𝑚 is the algorithm step (𝑛
𝐺
generations); 𝑖 is the index

of parameter of the single particle; 𝜙(𝑚) is the inertia function;
V(𝑚)
𝑖

is the velocity of the 𝑖th particle at the 𝑚-step; 𝑃
𝑏𝑖
is

the best position found by the 𝑖th particle; 𝐺
𝑏
is the global

best position (it is the best position found by the whole
swarm); 𝑎

1
, 𝑎
2
are the acceleration constants; 𝑐

1
, 𝑐
2
are random

numbers in the interval [0, 1].
The following formulation can be applied to obtain the

new position:

𝑃
(𝑚)

𝑖
= 𝑃

(𝑚−1)

𝑖
+ V

(𝑚)

𝑖
, (39)

where 𝑃(𝑚)
𝑖

is the position of the 𝑖th particle at the 𝑚-step
and V(𝑚)

𝑖
is the velocity of the 𝑖th particle at the 𝑚-step. One

of the problems of the FGM profile shape in the thickness
is that a small variation in 𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), and 𝑝(𝑘) power-law

parameters can lead to a solution showing a volume fraction
inconsistent (𝑉(𝑘)

𝐶
< 0 or 𝑉(𝑘)

𝐶
> 1). The PSO algorithm, in

fact, belongs to the so-called “trajectory based methods” and
sweeps the space following a path inwhich the newposition is
equal to the previous one plus a constant segment (the speed).
For this reason, sometimes the updated position of a particle
lies in a zone in which the volume fraction is out of limit; in
this case, the classical implementation of the algorithm stops
since the trajectory enters in a trap fromwhich it is impossible
to escape. The new position, in fact, can lead to inconsistent
volume fractions and the algorithm stalls. In order to solve
this problem, a check has been introduced in the algorithm
(step 11 and step 12 in Pseudocode 3), so that if an unfeasible
position is found by the algorithm, the velocity is rejected and
changed until a new valid position is found. By this way, a
forecast of the new position is computed and the PSO velocity
is accepted if leading to a valid solution, randomized if it
does not. The end criterion is due to one of these conditions:
the achievement of the maximum number of iterations, or a
condition in which after 𝑛

𝜀
generations the solution does not

improve.ThePSO seems to be very attractive for optimization
since the studies by Hu et al. [116] and by Ceruti et al. [102]
present advantages with respect to GA: easiness of software
code implementation, need for the definition of few setting
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Figure 9: Cylindrical panel: Genetic Algorithm optimization with 𝜂 = 1; final optimized displacement 𝑤 = 1.1668 ⋅ 10−5m.

0 5 10

0

5

10

0 10 20 30 40 50
0

5

10

15

20

0 0.5 1

0

0.05

0.1

0 5 10

180

185

190

195

200

205

210

215

0 5 10

1.05

1.1

1.15

1.2

1.25

0 5 10

2

4

6

8

10

−10
−10

−5
−0.1

−0.05−5

𝑝 𝑉𝑐𝑏

𝑐

𝑓 𝑤

𝑎 𝜁

𝐹

×10−5 ×10−3

n n n

Figure 10: Cylindrical panel: Particle Swarm Optimization with 𝜂 = 1; final optimized displacement 𝑤 = 1.1653 ⋅ 10−5m.
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Figure 11: Conical shell: Monte Carlo optimization with 𝜂 = 0.5; final optimized frequency𝑓 = 330.946Hz and final optimized displacement
𝑤 = 5.2073 ⋅ 10

−7m.

parameters, and good fitting to engineering application. The
PSO implementation and the modifications introduced for
this application are described in Pseudocode 3, where an
illustrative pseudocode is presented.

5. Numerical Applications and Results

In the present section, some results and considerations about
the mixed static and dynamic optimization problem of four-
parameter functionally graded doubly curved and degenerate
shells and panels are presented.The analysis has been carried
out by means of numerical procedures illustrated above.
Different types of structures are considered in the present
paper.One of the aims of this study is to show somenumerical
examples about flat plates, singly curved, and doubly curved
shells and panels made of FGMs. The six considered struc-
tures are depicted in Figure 4. In order to describe themiddle
surface of the given structures, theoretical formulae of differ-
ential geometry [7, 23, 43, 74, 78] are used.Themathematical
development of the differential geometry applied to doubly
curved shells was deeply explained in [23, 43, 74, 78]. So, in
the following, only a few formulae are reported. Furthermore,
it is worthwhile noting that the GDQ procedure enables
to evaluate the parameters concerning the shell geometry
as reported in [74, 78]. For all the GDQ results presented
below, the Chebyshev-Gauss-Lobatto grid distributions (30)
with 𝑁 = 𝑀 = 31 along the reference surface have

been assumed, and the geometrical parameters with their
derivatives are numerically evaluated using the GDQmethod
[26]. The FGM nomenclature used in the present work is
identified by the same convention presented in the previous
work by Tornabene et al. [70]. In an analogous way, the
geometrical boundary conditions are defined considering
similar convention used in the previous works [23, 43, 44, 47,
49–53, 68–76] for shell and panel structures.

For a rectangular flat plate, the position vector [74, 78] can
be written as

r (𝛼
1
, 𝛼

2
) = −𝛼

2
e
2
+ 𝛼

1
e
3
. (40)

In Figure 4(a) the considered square plate has the sides 𝑎 =
𝑏 = 1m, thickness ℎ = 0.1m, and it is subjected to a
normal load 𝑞+

𝑛
= −10000Pa at the top surface. The plate

is free on two adjacent sides and clamped on the other
two. The boundary conditions are indicated by the current
nomenclature as CCFF. The square plate is a single-layered
structure with FGM

1(𝑎
(1)
/𝑏
(1)
/𝑐
(1)
/𝑝
(1)
)
four-parameter power-

law distribution. In this case, the four parameters 𝑎 = 𝑎(1), 𝑏 =
𝑏
(1)
, 𝑐 = 𝑐

(1), and 𝑝 = 𝑝
(1) have to be determined by the

optimization procedure.
The position vector for the cylindrical panel and conical

shell of Figures 4(b) and 4(c) can be obtained from the conical
shell formula, already presented in [74, 78] and reported here
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Figure 12: Conical shell: Genetic Algorithm optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 321.890Hz and final optimized
displacement 𝑤 = 5.2624 ⋅ 10−7m.

Step (1) Set a max and min value for each gene
Step (2) Set the max number of generations (𝑇), the convergence tolerance (𝜀) and the number of consecutive no improvements

loops (𝑛
𝜀
) after which algorithm ends, the number of genes (𝑛

𝑔
), and the number of population (𝑛pop) members

Step (3) Initialize the first generation of population (𝑃) by randomly set 𝑛pop chromosomes, each one made by 𝑛
𝑔
genes

Step (4) while (𝑖 < 𝑇) or (𝜀 for 𝑛
𝜀
loops false)

Step (5) Select 𝑃 ⊂ 𝑃 (mating pool), initialize 𝑃 = 0 (set of children)
Step (6) for 𝑗 = 1 to 𝑛
Step (7) Randomly select individuals (chromosomes 𝑥

𝑎
and 𝑥

𝑏
) from 𝑃



Step (8) Obtain 𝑥child by applying crossover to 𝑥𝑎 and 𝑥𝑏 (with probability 𝑝cross)
Step (9) Mutate produced child 𝑥child to 𝑥𝑎 and 𝑥𝑏 (with probability 𝑝mut)
Step (10) Apply elitarism (if set)
Step (11) Update population 𝑃 = 𝑃 ∪ 𝑥child
Step (12) end for
Step (13) P = survival respect to the fitness∗ (𝑃, 𝑃)
Step (14) end while
Step (15) best chromosome detection
∗In this case the fitness is multiplied by a penalty term if one of the sets [𝑎(𝑘), 𝑏(𝑘), 𝑐(𝑘), 𝑝(𝑘)] leads to volume fractions which are
not feasible (e.g. percentage of one constituent in the thickness larger than 1, less than 0, imaginary number).

Pseudocode 1: Genetic Algorithm pseudocode.
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Step (1) Set a max and min value for each parameter
Step (2) Set the max number of population (𝑛

𝑔
) members, the convergence tolerance (𝜀) and

the number of consecutive no improvements loops (𝑛
𝜀
)

Step (3) while (𝑖 < 𝑛
𝑔
) or (𝜀 for 𝑛

𝜀
loops false)

Step (4) Randomly generate a member of population 𝑃
𝑖
, following a probability

distribution (normal, exponential, Weibull [113]).
Step (5) Compute volume fraction distribution (𝑉

𝐶
) in the thickness for 𝑃

𝑖

Step (6) if 0 < 𝑉
𝐶
< 1

Step (7) 𝑖 = 𝑖 + 1

Step (8) Compute Fitness
Step (9) if Fitness (𝑖) > Best Fitness
Step (10) Best Fitness = Fitness (𝑖)
Step (11) Best member = 𝑖
Step (12) end if
Step (12) end if
Step (13) end while

Pseudocode 2: Monte Carlo pseudocode.

Step (1) Set number of particles (𝑛
𝑃
), number of parameters for each particle (𝑛param), max

number of generations (𝑛
𝐺
), convergence tolerance (𝜀) and the number of

consecutive no improvements loops (𝑛
𝜀
), 𝛿 (ratio between position and speed)

Step (2) Set particles boundary values: max (1 : 𝑛param), min (1 : 𝑛param)
Step (3) Randomly generate particles position (𝑃(0)

𝑖
) | min (𝑖) < 𝑃(0)

𝑖
< max (𝑖) and velocity V(0)

𝑖

Step (4) Evaluate fitness function 𝐹
𝑖
= 𝑓 (𝑃

(0)

𝑖
) , 𝑖 = 1, . . . , 𝑛

𝑃

Step (5) Set 𝑃
𝑏
= 𝑃

(0), 𝐹best = 𝐹, 𝐺𝑏 = min (𝐹
𝑖
), 𝑔

𝑏
= index of the (min (𝐹

𝑖
)) value

Step (6) for𝑚 = 1 to 𝑛
𝐺

Step (7) for 𝑖 = 1 to 𝑛
𝑃

Step (8) ΔV
𝑖
= 𝑐

1
𝑎
1
(𝑃

𝑏𝑖
− 𝑃

(𝑚−1)

𝑖
) + 𝑐

2
𝑎
2
(𝑃
𝑏𝐺𝑏

− 𝑃
(𝑚−1)

𝑖
)

Step (9) V(𝑚)
𝑖
= 𝜙

(𝑚)V(𝑚−1) + ΔV
𝑖

Step (10) 𝑃
(𝑚)

𝑖
= 𝑃

(𝑚−1)

𝑖
+ V(𝑚)

𝑖

Step (11) Compute Volume fraction distribution (𝑉
𝐶
) in the thickness for 𝑃(𝑚)

𝑖

Step (12) while (𝑃(𝑚)
𝑖

> max (𝑖)) or (𝑃(𝑚)
𝑖

< min (𝑖)) or (𝑉
𝐶
< 0) or (𝑉

𝐶
> 1)

Step (13) V(𝑚)
𝑖
= V(𝑚−1) + 𝛿 ⋅ (max (𝑖) −min (𝑖)) ⋅ random (0 ÷ 1)

Step (14) 𝑃
(𝑚)

𝑖
= 𝑃

(𝑚−1)

𝑖
+ V(𝑚)

𝑖

Step (15) end while
Step (16) Evaluate fitness 𝐹

𝑖
= 𝑓 (𝑃

(𝑚)

𝑖
) , 𝑖 = 1, . . . , 𝑛

𝑃

Step (17) for 𝑖 = 1, . . . , 𝑛
𝑃

Step (18) if 𝐹
𝑖
< 𝐹

𝑏𝑖
then 𝑃

𝑏𝑖
= 𝑃

(𝑚)

𝑖
and 𝐹

𝑏𝑖
= 𝐹

𝑖

Step (19) if 𝐹
𝑖
< 𝐺

𝑏
then 𝐺

𝑏
= 𝐹

𝑖
and 𝑔

𝑏
= 𝑖

Step (20) end for
Step (21) end for
Step (22) end for

Pseudocode 3: Particle Swarm Optimization pseudocode.

for the sake of completeness. The position vector for the
conical shell can be written as follows:

r (𝛼
1
, 𝛼

2
) = (𝑅

𝑏
+ 𝛼

1
sin𝛼) cos𝛼

2
e
1

− (𝑅
𝑏
+ 𝛼

1
sin𝛼) sin𝛼

2
e
2
+ 𝛼

1
cos𝛼e

3
.

(41)

As it is well known [7, 74, 78], a conical shell [23, 42, 43, 49,
52] is a 2D structure having the middle surface generated by
the rotation, about a fixed vertical axis, of an inclined straight
line. The angle 𝛼 is the top vertex angle of the cone, where

the meridian angle 𝜑 can be written as a function of it: 𝜑 =
𝜋/2 − 𝛼. Thus, for cylindrical panel, considering 𝛼 = 0, the
position vector (41) takes the form

r (𝛼
1
, 𝛼

2
) = 𝑅

𝑏
cos𝛼

2
e
1
− 𝑅

𝑏
sin𝛼

2
e
2
+ 𝛼

1
e
3
. (42)

The meridian abscissa 𝛼
1
is defined as 𝛼

1
∈ [0, 𝐿], where

𝐿 is the length of the meridian. The presented parameters
are graphically shown in the works [23, 42, 43, 49, 52]. The
cylindrical panel (Figure 4(b)) is defined by 𝑅 = 𝑅

𝑏
= 2m,
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Table 2: Optimization of the six different structures of Figure 4: (a) square plate, (b) cylindrical panel, (c) conical shell, (d) toroidal shell
panel, (e) catenoidal panel, and (f) elliptic paraboloid. 𝜂 = 1: optimization of the first frequency 𝑓

1
; 𝜂 = 0: optimization of maximum bending

displacement 𝑤max = 𝑢3max; 𝜂 = 0.5: optimization of the first frequency 𝑓
1
and maximum bending displacement 𝑤max = 𝑢3max.

Method 𝑎 𝑏 𝑐 𝑝 Final frequency Final displacement Final fitness Computational time (min)
Rectangular plate

𝜂 = 1: target frequency 𝑓
1𝑇
= 268.753Hz

MC 0.05582 −0.56831 17.86455 9.14279 265.36499 1.8270𝐸 − 05 1.2606𝐸 − 02 25
GA 0.08800 −0.06160 5.02440 9.53080 268.81630 1.7493𝐸 − 05 2.3583𝐸 − 04 42
PSO −0.25829 −0.13011 0.67170 3.43176 268.71000 1.7466𝐸 − 05 1.5970𝐸 − 04 31

Cylindrical panel
𝜂 = 0: target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 1.1646 ⋅ 10

−5m
MC 1.11895 1.10588 1.09493 13.33798 186.78559 1.1596𝐸 − 05 4.3053𝐸 − 03 32
GA 0.12710 −0.33040 6.11930 3.03030 202.41150 1.1668𝐸 − 05 1.8770𝐸 − 03 14
PSO 0.35190 −0.26277 6.90518 1.75727 197.75230 1.1653𝐸 − 05 5.8904𝐸 − 04 20

Conical shell
𝜂 = 0.5: target frequency 𝑓

1𝑇
= 268.753Hz and target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 5.2639 ⋅ 10

−7m
MC 0.00984 −0.74086 14.77422 27.83370 330.94622 5.2073𝐸 − 07 1.9799𝐸 − 02 35
GA 0.08800 −0.32650 16.65690 7.72240 321.89420 5.2624𝐸 − 07 4.9477𝐸 − 04 25
PSO 0.05769 −0.49331 9.85753 8.35549 322.04900 5.2615𝐸 − 07 8.2088𝐸 − 04 43

Toroidal shell panel
𝜂 = 0: target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 3.9516 ⋅ 10

−5m
MC 0.05350 −0.54251 17.60320 20.64836 20.21863 3.9727𝐸 − 05 5.3396𝐸 − 03 21
GA 0.02930 −0.78200 12.72730 25.90420 20.56750 3.9495𝐸 − 05 5.3143𝐸 − 04 3
PSO 0.10430 −0.58284 8.53859 8.22430 20.48775 3.9519𝐸 − 05 7.5919𝐸 − 05 6

Catenoidal panel
𝜂 = 1: target frequency 𝑓

1𝑇
= 590.557Hz

MC 1.06122 0.90588 2.06831 2.50895 595.86858 3.9753𝐸 − 07 8.9937𝐸 − 03 55
GA 0.08800 −0.48390 13.11830 13.97850 590.77480 4.0135𝐸 − 07 3.6832𝐸 − 04 45
PSO 0.09089 −0.32061 18.33638 14.94431 590.11938 4.0129𝐸 − 07 7.4152𝐸 − 04 43

Elliptic paraboloid
𝜂 = 0.5: target frequency 𝑓

1𝑇
= 327.239Hz and target displacement 𝑤max𝑇 = 𝑢3max𝑇 = 1.9073 ⋅ 10

−6m
MC 0.29917 0.02997 19.54311 2.65521 332.68799 1.8923𝐸 − 06 1.2258𝐸 − 02 43
GA 0.08800 −0.29910 3.01080 4.93650 327.62800 1.9075𝐸 − 06 6.4729𝐸 − 04 22
PSO 0.25269 −0.65120 13.49764 2.90612 327.39815 1.9065𝐸 − 06 4.5339𝐸 − 04 25

Table 3: Perceptual relative errors in first frequtency 𝑒
𝑓
= ((𝑓

1
− 𝑓

1𝑇
)/𝑓

1𝑇
) ⋅ 100 and in maximum bending displacement 𝑒

𝑤
= ((𝑤max −

𝑤max𝑇)/𝑤max𝑇) ⋅ 100 with Monte Carlo, Particle Swarm Optimization, and Genetic Algorithm methods.

Optimization
method

Square plate Cylindrical panel Conical shell Toroidal shell panel Catenoidal panel Elliptic paraboloid
𝑒
𝑓 𝑒

𝑤
𝑒
𝑓 𝑒

𝑤
𝑒
𝑤

𝑒
𝑓

𝑒
𝑓 𝑒

𝑤

MC −1.261 −0.431 2.884 −1.076 0.534 0.899 1.665 −0.786
GA 0.024 0.188 0.070 −0.029 −0.053 0.037 0.119 0.010
PSO −0.016 0.059 0.118 −0.046 0.008 −0.074 0.049 −0.042

𝐿 = 3m, circumferential angle 𝛼
2
= 𝜗 ∈ [0, 120

∘
], and

a thickness ℎ = 0.2m. It is subjected to a normal load
𝑞
+

𝑛
= −10000Pa at the top surface, and its boundary

conditions are SFSF. On the contrary, the conical shell
(Figure 4(c)) has 𝑅

𝑏
= 1m, 𝐿 = 3m, circumferential angle

𝛼
2
= 𝜗 ∈ [0, 360

∘
], 𝛼 = 30∘, and a thickness ℎ = 0.3m. Also

the conical shell is subjected to a normal load 𝑞+
𝑛
= −10000Pa

at the top surface. The conical shell is clamped at the bottom
and free at the top, so the boundary conditions are indicated
by CF. The cylindrical panel is a two-layered structure
with FGM

2(𝑎
(1)
/𝑏
(1)
/𝑐
(1)
/𝑝
(1)
)
/FGM

1(𝑎
(2)
/𝑏
(2)
/𝑐
(2)
/𝑝
(2)
)

lamination
scheme, while the conical shell presents FGM

1(𝑎
(1)
/𝑏
(1)
/𝑐
(1)
/𝑝
(1)
)
/
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Figure 13: Conical shell: optimization by Particle Swarm Algorithm with 𝜂 = 0.5; final optimized frequency 𝑓 = 322.049Hz and final
optimized displacement 𝑤 = 5.2615 ⋅ 10−7m.

FGM
2(𝑎
(2)
/𝑏
(2)
/𝑐
(2)
/𝑝
(2)
)
lamination scheme. In these two cases

the FGM four parameters of the two different power-law
distributions are assumed to be equal to the two different
laminae of the structure. Thus, only the four parameters
𝑎 = 𝑎

(1)
= 𝑎

(2)
, 𝑏 = 𝑏

(1)
= 𝑏

(2)
, 𝑐 = 𝑐

(1)
= 𝑐

(2), and
𝑝 = 𝑝

(1)
= 𝑝

(2) have to be determined by the optimization
procedure.

As already reported in [74, 78], the position vector of a
toroidal shell panel (Figure 4(d)) can be written as

r (𝛼
1
, 𝛼

2
) = (𝑅

𝑏
+ 𝑅 sin𝛼

1
) cos𝛼

2
e
1

− (𝑅
𝑏
+ 𝑅 sin𝛼

1
) sin𝛼

2
e
2
+ 𝑅 cos𝛼

1
e
3
,

(43)

where 𝑅
𝑏
is the shift of the circular meridian curve with

respect to the axis of revolution [23, 43, 44, 47, 68, 69] and 𝑅
is the radius of the circular curve section of the toroidal shell
panel. The toroidal structure is characterized by 𝑅

𝑏
= 9m,

𝑅 = 3m, meridian angle 𝛼
1
= 𝜑 ∈ [0, 360

∘
], circumferential

angle 𝛼
2
= 𝜗 ∈ [0, 120

∘
], and a thickness ℎ = 0.6m.

Also the toroidal shell has CF boundary conditions, and the
normal load 𝑞+

𝑛
= −10000Pa is applied at its top surface.

When a catenary curve is considered as a meridian curve of

a revolution shell, the position vector of the catenoidal panel
(Figure 4(e)) assumes the aspect

r (𝛼
1
, 𝛼

2
) = (𝐴 cosh(arcsinh( 1

tan𝛼
1

)) + 𝑅
𝑏
) cos𝛼

2
e
1

− (𝐴 cosh(arcsinh( 1

tan𝛼
1

)) + 𝑅
𝑏
) sin𝛼

2
e
2

+ 𝐴 arcsinh( 1

tan𝛼
1

) e
3
,

(44)

where 𝐴 is the distance of the throat apex of the catenary
curve. For further details about the geometry definition of
the catenary curve, the reader might refer to [23, 43, 74, 78].
Regarding the catenoidal panel (Figure 4(e)) its geometrical
properties are 𝐴 = 2m, 𝐵 = 2m, 𝐷 = 1m, 𝑅

𝑏
= 0m,

circumferential angle 𝛼
2
= 𝜗 ∈ [0, 90

∘
], and a thickness ℎ =

0.5m. The catenoidal panel has CFCF boundary conditions,
and it is subjected to a normal load 𝑞+

𝑛
= −10000Pa at the

top surface. The toroidal shell panel and catenary panel of
revolution have the same three-layered lamination scheme
FGM

2(𝑎
(1)
/𝑏
(1)
/𝑐
(1)
/𝑝
(1)
)
/FGM

𝐶
/FGM

1(𝑎
(3)
/𝑏
(3)
/𝑐
(3)
/𝑝
(3)
)
. The lami-

nation scheme presents the middle lamina of the structure
made of ceramic isotropic material. Also, in these two
cases the FGM parameters of the two different power-law
distribution are assumed to be equal to the first and the third
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Figure 14: Toroidal shell panel: Monte Carlo optimization with 𝜂 = 0; final optimized displacement 𝑤 = 3.9727 ⋅ 10−5m.
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Figure 15: Toroidal shell panel: Genetic Algorithm optimization with 𝜂 = 0; final optimized displacement 𝑤 = 3.9495 ⋅ 10−5m.



24 Mathematical Problems in Engineering

0 5 10

0

5

10

0 10 20 30 40 50
0

5

10

15

20

0 0.5 1

0

0.1

0.2

0.3

0 1 2 3 4

18

19

20

21

22

0 1 2 3 4

3.6

3.8

4

4.2

4.4

0 1 2 3 4

2

4

6

8

10

12

14

16

−10
−10

−5

−5
−0.1

−0.2

−0.3

×10−5 ×10−3

𝑐

𝑓 𝑤

𝑎 𝜁

𝐹

𝑝 𝑉𝑐𝑏

n n n

Figure 16: Toroidal shell panel: Particle Swarm Optimization with 𝜂 = 0; final optimized displacement 𝑤 = 3.9519 ⋅ 10−5m.
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Figure 17: Catenoidal panel: Monte Carlo optimization with 𝜂 = 1; final optimized frequency 𝑓 = 595.868Hz.
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Figure 18: Catenoidal panel: Genetic Algorithm optimization with 𝜂 = 1; final optimized frequency 𝑓 = 590.800Hz.

laminae of the structure. In this way, only the four parameters
𝑎 = 𝑎

(1)
= 𝑎

(3)
, 𝑏 = 𝑏

(1)
= 𝑏

(3)
, 𝑐 = 𝑐

(1)
= 𝑐

(3)
, and

𝑝 = 𝑝
(1)
= 𝑝

(3) have to be determined by the optimization
procedure.

Finally, the position vector of the reference surface of the
elliptic paraboloid is given in [74, 78]:
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(45)

If the generatrix parabola needs to be characterized (the other
parabola can be defined analogously), it can be described by
the following equation:

(𝑅
𝛼1

0
)

2

− 𝜅
𝛼1
𝑥
𝛼1

3
= 0, (46)

where 𝜅𝛼1 = (𝐴2 − 𝐷2
)/𝐵 is a characteristic parameter of the

parabolic curve, 𝑅𝛼1
0
is the abscissa of a point of the parabola,

and 𝑥𝛼1
3
is its ordinate in the generatrix plane of the parabolic

curve. The abscissa 𝑅𝛼1
0
(𝛼
1
) of the parabolic curve assumes

the form

𝑅
𝛼1

0
(𝛼

1
) =

𝜅
𝛼1 tan𝛼

1

2

. (47)

The parameters describing the two parabolas of the elliptic
paraboloid under consideration are 𝐴 = 3m, 𝐶 = −3m,
𝐷 = 0m, and 𝐵 = 0.8m, and the thickness is ℎ = 0.4m.
The elliptic paraboloid is completely clamped at its four edges
(CCCC), and it is subjected to a normal load 𝑞+

𝑛
= −10000Pa

at the top surface. The elliptic paraboloid is a single-layered
structure with FGM

2(𝑎
(1)
/𝑏
(1)
/𝑐
(1)
/𝑝
(1)
)
four-parameter power-

law distribution. In this case, the four parameters 𝑎 = 𝑎(1), 𝑏 =
𝑏
(1)
, 𝑐 = 𝑐

(1), and 𝑝 = 𝑝
(1) have to be determined by the

optimization procedure.
In Table 1 the first ten frequencies and maximum static

deflections for the six structures of Figure 4 are presented. In
particular, the two limit cases of functionally gradedmaterials
are considered. For the first case, named FGM

𝐶
, the single-

layered structure is made of ceramic isotropic material, while
for the second one, named FGM

𝑀
, the single-layered struc-

ture is made of metal isotropic material. In the present work,
it is assumed that the functionally graded material lamina is
made of a mixture of ceramic and metal constituents: Silicon
Nitride and Stainless Steel. Young’s modulus, Poisson’s ratio,
andmass density for the SiliconNitride are 𝐸

𝐶
= 322.27GPa,

]C = 0.24, and 𝜌𝐶 = 2370 kg/m
3, and for the Stainless Steel

are 𝐸
𝑀
= 207.78GPa, ]

𝑀
= 0.3177, and 𝜌M = 8166 kg/m3,

respectively.
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Figure 19: Catenoidal panel: Particle Swarm optimization with 𝜂 = 1; final optimized frequency 𝑓 = 590.119Hz.

As described before, one of the goals of the present paper
is to develop and test an operative methodology to support
the design of FG materials. Several problems can be faced
by the designer; in particular some of the most commonly
occurred engineering needs are to avoid resonance frequency,
to reduce or control the deformations, to increase the strength
to weight ratio, to reduce stresses due to different dilatation
properties of two materials, and so on. In this study, fre-
quency and deformation and a combination of the two will
be considered. The fitness function 𝐹 has been modelled to
obtain a defined first resonance frequency target (𝑓

1𝑇
) set by

user, a maximum displacement target (𝑤max𝑇 = 𝑢3max𝑇) due
to bending deformation, or to try to satisfy at the best both
the requirements. In this latter case, the designer candecide to
stressmore the importance on one of the two requirements by
using the coefficient 𝜂 which acts as a weight: in this way the
fitness 𝐹 is still monodimensional but keeps into account two
aspects, ranging 𝜂 from zero to one. According to the above
considerations, the fitness expression 𝐹 can be so represented
by the formula

𝐹 = 𝜂√(

𝑓
1
− 𝑓

1𝑇

𝑓
1𝑇

)

2

+ (1 − 𝜂)√(

𝑤max − 𝑤max𝑇
𝑤max𝑇

)

2

. (48)

It is worth to note that the minimization of the fitness
𝐹 is equivalent to obtain values of frequency (𝑓 = 𝑓

1
)

and of displacement (𝑤 = 𝑤max = 𝑢
3max) as close as

possible to the desired ones (𝑓
1𝑇
, 𝑤max𝑇 = 𝑢

3max𝑇), and

the ratio between the difference from the obtained value
minus the target and the target value itself is used to make
dimensionless frequencies and displacements. By this way,
parameters with different magnitudes can be compared,
allowing to equate itemswith unit ofmeasurement defined by
the experimenter depending on his practice. In the paper, this
simplemonoobjective fitness has been considered to privilege
the simplicity and to suggest the use of this approach also
in industrial applications, but more complex multiobjective
fitness functions can be implemented depending on the
specific case study and on the requirements and needs
expressed by the designer.

Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, and 22 present the results of the optimization of the six
structures described above. A mix of values of 𝜂 parameter
has been chosen (𝜂 = 0, 0.5, 1), keeping it constant for
each structure as to make possible the comparison of the
optimization methods. Following formula (48), if 𝜂 = 1

only the frequency is optimized, while for 𝜂 = 0 only the
displacement is considered; an intermediate value 𝜂 = 0.5

can be set to find the better compromise between the guess
of both frequency and displacement. Each figure presents in
the upper left corner the values of 𝑎 and 𝑏 parameter for
each try; the best solution is represented by a red circle. In
the upper centre there are the values of 𝑐 and 𝑝 parameters
for each try with the best solution in red; in the upper left
corner there is the material distribution in the thickness of
the structure; an FGM made by one, two, or three layers
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Figure 20: Elliptic paraboloid: Monte Carlo optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 332.688Hz and final optimized
displacement 𝑤 = 1.8923 ⋅ 10−6m.

can be visualized, depending on the structure definition
(e.g. rectangular plate presents only one layer; cylindrical
panel presents two symmetric layers, while, for instance, the
conical shell ismade by a sandwich between an homogeneous
material and two symmetric about the midplane layers of
FG materials): the final optimized distribution is in red. The
lower part of the figures from left to right presents the trend of
frequency, displacement, and fitness in time. In case ofMonte
Carlo frequency anddisplacement of the single run are shown
(with in blue the trend of the best solution found), while in
case of Particle Swarm andGenetic Algorithms the frequency
and the displacement referred to the best individual found
at the moment are shown. A green line represents the target
values for the frequency and the displacement, while in case
of the fitness, the ideal value is obviously equal to zero.

Figures 5–7 present the optimization of a rectangular
plate when the designer is interested in setting the first
resonance frequency of the structure. The plate is made by
only one FGM lamina, and a value of 𝜂 = 1 is set. Figures 8–
10 depict the result of the optimization with MC, PSO, and
GA of a cylindrical panel made by two symmetrical FGM
distributions about themidplane; in this case 𝜂 = 0 is set since
the need for a required maximum displacement is simulated.
Figures 11–13 refer to a singly curved conical shell made by
two FGM laminae, with a distribution symmetric about the
midplane of the whole structure; in this case 𝜂 = 0.5 is set
to consider an interest both in frequency and in maximum

displacement. Figures 14–16 present a toroidal shell panel
which is a doubly curved shell panel of revolution, made
by three laminae: a homogeneous core and two external
symmetrical FGM laminae as to simulate a typical sandwich
structure.The interest is in maximum displacement, so that 𝜂
is set equal to zero. Figures 17–19 list the optimization trend
of a catenoidal panel structure which can be defined as a
doubly curved panel of revolution; the laminate is obtained by
three layers also in this case, representing a typical sandwich
structure; in this case the attention is focused on frequency
optimization, so that 𝜂 = 1 is set. Finally, Figures 20–22
present an elliptic paraboloid which is a completely doubly
curved panel structure made by only one FGM lamina;
considerations will be addressed both on frequency and
displacement since 𝜂 = 0.5.

As to help the interpretation of the optimization process,
the final results are collected in Table 2: the final value of
the fitness provides an idea of the goodness of the results
found. It is important to note that heuristic methods do not
provide the best solution, but a suboptimal solution; in other
words, sometimes, similar results of the fitness function can
be found with several different set of parameters 𝑎, 𝑏, 𝑐, and
𝑝. The Genetic Algorithm has been run with a population
of 30 individuals and the Particle Swarm with a number
of particles of 30; these algorithms stop when a maximum
number of runs are reached or no improvements are found
in solution (or alternatively when the percentage error is less
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Figure 21: Elliptic paraboloid: Genetic Algorithm optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 327.600Hz and final optimized
displacement 𝑤 = 1.9075 ⋅ 10−6m.

than the 0.5%). The Monte Carlo simulation has been run
for 200 times for each optimization problem, in order to
obtain a comparable number of runs with Genetic Algorithm
and Particle Swarm Optimizers. A first comparison between
methods can be performed based on Figure 23, in which
there is a graph collecting final fitness versus computational
time for each optimization performed. Values for Monte
Carlo are in red triangles, Particle Swarm in blue squares,
while Genetic Algorithm in red circles. As expected GA and
PSO results are better than MC ones and provide data with
good approximation in a relative short time, which is also
compatible with the needs of conceptual design or Multidis-
ciplinary Optimization. Simulations have been carried out
on a Notebook equipped with an 8GB RAM, a 2GHz core
processor, and Windows 7 operating system. Table 3 lists
the errors in frequency and in displacement (depending on
the case study) for each simulation run; as can be seen by
data provided, both GA and PSO present a similar efficiency.
The two methods exploit different strategies to solve the
optimization problem in this complex task: in this case, in
fact, the domain is not continuous and some combinations of
the four parameters 𝑎, 𝑏, 𝑐, and 𝑝 can lead to a distribution
of metal and ceramics which is not consistent (percentage
represented by a negative or complex or major than one
number, which is physically unfeasible). As well described
before in the paper, one of the challenges is that slight

changes in one of the four parameters can lead to inconsistent
solutions. When a particle of the PSO arrives to the border
of the domain with a speed pointing to an inconsistent zone
of the domain, it is needed to randomly redirect the particle
towards an allowed zone, and this reduces the efficiency of
themethod. On the other hand, GA solves in a better way this
problem sincemutations and crossover help in exploring new
zones of the domain in which the solution is feasible and the
distribution percentage of the FGM distributions (ceramics
and metal) is always a positive number between zero and one
in all the thickness of the structure. Only a small part of the
individuals of a generation should mutate because it slows
down the convergence. After tests performed it seems that
these two effects compensate and both PSO andGA present a
very good behavior in optimization.The comparison between
random optimization (MC) with heuristic methods (GA,
PSO) shows a different relative efficiency ofMCwhen applied
to cases in which only frequency or displacement is studied
or when both are considered. In the first case the difference
in precision obtained by MC with respect to GA and PSO
is quite small, while this difference increases dramatically
when both frequency and displacement are considered: it can
be inferred that when the fitness function deals with only
one parameter also the MC alone can be used, while in case
of fitness involving more parameters an heuristic or semi
heuristic method provides better results.
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Figure 22: Elliptic paraboloid: Particle Swarm Optimization with 𝜂 = 0.5; final optimized frequency 𝑓 = 327.398Hz and final optimized
displacement 𝑤 = 1.9065 ⋅ 10−6m.
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6. Conclusion Remarks and Summary

Functionally graded material applications are increasing due
to their potentialities in problems related to aggressive envi-
ronments, thermal properties, and special structural needs.

Theoretical frameworks have been developed to solve the
static and dynamic analysis of this type of structures. In
the present paper, the Generalized Differential Quadrature
method has been presented as a mean to investigate the static
and dynamic analysis of functionally graded and laminated
composite doubly curved shells and panels.The adopted shell
theory is the First-order Shear Deformation Theory. In par-
ticular, the Toorani-Lakis theory has been used as a starting
point to obtain the governing equations for shells. The 2D
equilibrium equations have been discretized with the GDQ
method through standard linear algebraic and eigenvalue
problems.Thanks to the mathematical approach, the analysis
of an FGM shell or panel can be provided. The material
distribution can be expressed by a four-parameter power-
law. However, the main drawback of this approach from a
designer perspective is that it is impossible to analytically
relate the set of the four parameters to static or dynamic
performances of the structures. An approach based on the
application of optimization algorithms to the problem has
been carried out to evaluate its suitability to the topic. Due
to the domain of the four parameters which includes zones in
which no solutions can be found, the optimization algorithms
have been modified and tested. Genetic Algorithm, Particle
SwarmOptimization, andMonte Carlo algorithms have been
selected for tests and applied to six different geometrical
structures optimizing the first frequency, maximum bending
displacement, or a mix of the two. Results obtained show
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the convergence of the optimization for GA and PSO, which
provides better results than MC for similar computational
effort. In particular, GA and PSO aremore precise when both
frequency and displacement are considered at the same time.
The herein developedmethodology can dramatically help the
designer in the definition of the mix ceramics/metal which
can present the requested properties.
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