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The aim of this paper is to present a fault detection algorithm (FDI) based on signal processing techniques developed for an inertial
measurement unit (IMU) with minimal redundancy of fiber optic gyros. In this work the recursive median filter is applied in order
to remove impulses (outliers) arising from data acquisition process and parity vector operations, improving the fault detection and
isolation performance.The FDI algorithm is divided into two blocks: fault detection (FD) and fault isolation (FI).The FD part of the
algorithm is used to guarantee the reliability of the isolation part and is based on parity vector analysis usingX2-CUSUMalgorithm.
The FI part is performed using parity space projection of the energy subbands obtained from wavelet packet decomposition. This
projection is an extension of clustering analysis based on singular value decomposition (SVD) and principal component analysis
(PCA). The results of the FD and FI algorithms have shown the effectiveness of the proposed method, in which the FD algorithm
is capable of indicating the low-level step bias fault with short delay and a high index of correct decisions of the FI algorithm also
with low-level step bias fault.

1. Introduction

The main goal of fault detection, isolation, and recovery
(FDIR) is to effectively detect faults and accurately isolate
them to a failed component in the shortest time possible.This
capability leads to reduction in diagnostic time or downtime
in general, increasing the system availability. A good inherent
diagnostic of a system also enhances the self-confidence in
operating system, themain aspect ofmission success. FDIR is
especially required to an on-orbit system where maintenance
may be difficult, very expensive, or even impossible. The
spacecraft AOCS (Attitude and Orbit Control Subsystem)
includes components such as sensors and actuators. Among
the attitude control devices, the gyros are widely used for the
sake of attitude control, mainly when high-accuracy require-
ments are imposed on the AOCS. This work belongs to this
area and is addressed in the scenario of the orbital dynamics
for spacecraft AOCS including inertial measurement unities

(IMU) and FDIR software. This paper does not cover the
recovery problem associated with FDIR but only with the
FDI, that is, the fault detection and isolation problem.
The methodology is based on signal processing techniques
developed for an inertial measurement unit (IMU) with
minimal redundancy of fiber optic gyros.

In the FDI problem with minimal redundancy, we are
limited only to detect faults, generally with the aid of the
parity vector analysis [1–6]. For minimal redundancy, we
mean the use of four inertial sensors (gyros or accelerom-
eters) to measure a tridimensional space where, at least,
one of the sensors should be skewed [7]. The identification
of the faulty sensor in the minimal redundancy case is
usually performed by signal processing techniques [8]. In
the last years, the increase of the wavelets applications for
fault (or variation) detection [8–11] and classification [12] has
demonstrated the potential of the wavelet for IMU status
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monitoring. In addition, actual digital systems, mainly in
prototype stage, generate high quantity of impulsive noise
(outliers) as a consequence of the data acquisition system
and/or parity vector operations [13]. To overcome this prob-
lem, removing the outliers without degenerating important
variations in the sensor signals, the median filter (MF) is
used in the recursive form. This kind of filter, widely used
in image processing, is applied here because it preserves
the edge transitions without distortions [14] and is a robust
estimator [15]. These properties are helpful in the wavelet
analyses to preserve important information in the details.
Another advantage in the MF use is the increase of the
performance in the change detection [13]. In the pattern
recognition field, the singular value decomposition (SVD)
and the principal component analysis (PCA) are useful tools
in the practical approach to detect hidden structure in the
form of clustered projections in noisy data and with reduced
number of variables [16].Therefore, this paper is dedicated to
develop an algorithm applied to faulty sensor isolation (FI)
in IMU constructed with four fiber optic gyros (FOG) in a
complementary development of the fault detection algorithm
(FD) discussed in detail by de Oliveira [6].The FD algorithm
is based on parity vector analysis processed by 𝜒2-CUSUM
algorithm [17] for change detections and is designed in order
to guarantee the reliability of the isolation part. The FI
part is designed using an approach based on parity space
projection of the energy subbands obtained from wavelet
packet decomposition. This projection is an extension of
clustering analysis based on singular value decomposition
(SVD) and principal component analysis (PCA).

This paper is organized as follows. Section 2 discusses the
theoretical bases applied in this work composed by geomet-
rical and parity vector (PV) analysis, recursive median filter
(MF), 𝜒2-CUSUM algorithm, wavelet packet (WP) decom-
position, singular value decomposition (SVD), and principal
component analysis (PCA). Section 3 shows the development
of the FDI algorithm blocks and their relationships. In
that section, the FI model is derived with the parity space
projection of the energy subbands obtained by WP decom-
position. In Section 4, the results and respective parameters
used for FI algorithms are discussed. Section 5 presents an
overview of the work and conclusions. The appendix shows
the parameters obtained by FI algorithm calibration.

2. Background

The theoretical background and calibration methodology
applied for FD algorithm (geometrical and parity vector
analyses, recursive median filter, and 𝜒2-CUSUM algorithm)
were completely developed in previous work [6], and here
they will be omitted. This work is dedicated to design a
complete FDI algorithm, and, to reach this goal, it is needed to
introduce a new set of mathematical tools to develop the FI
algorithm. Therefore, in this section, the theoretical aspects
related to geometry, WP, SVD, and PCA will be developed.

2.1. Geometry. The geometrical aspect plays an important
role in the inertial measurement units design. Several works

[1, 3, 7, 18] address the matter of geometrical analyses,
and mainly in the optimal angular relationship between
sensors. In this work, a minimal redundancy (four gyros)
configuration of fiber optic gyros is used as shown in Figure 1.
The nominal sensor matrix (direct cosine matrix) related
to this configuration is expressed by (1) and measurement
equation by (2):
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g = H𝜔 + ^ + b + f , (2)

where g is the sensor measurement vector (𝑚 × 1); H is the
observation matrix (𝑚 × 3) relating the sensor axes with a
triorthogonal axes system; 𝜔 is the state vector (3 × 1) in
the tri-orthogonal axes system (𝜔 = [𝜔𝑥 𝜔𝑦 𝜔

𝑧]
𝑇); ^ is the

Gaussian white noise vector (𝑚 × 1); and b is the bias vector
(𝑚 × 1); f is the fault vector (𝑚 × 1); 𝑚 is the number of
sensors.

The parity vector (p) associated with this configuration is
given by [13]

Cg = C (H𝜔 + ^ + b + f) ,

p = C (H𝜔) + C (^ + b + f) ,
(3)

where the matrix C is obtained from the null space of H, so
that

CH = 0. (4)

In the absence of biases and faults, the parity vector is a
white Gaussian noise vector, and in this configuration (four
sensors in a skewed arrangement), it is possible to detect only
the fault occurrence.

2.2.Wavelet Packet. Thewavelet packet (WP) decomposition
is a method based on conventional wavelet transform theory
whose difference is the processing of both filter outputs. In
this method, the low-pass and high-pass filter outputs are
filtered at each level of decomposition in the form of a binary
symmetric decomposition tree. This method is useful when
a high spectral resolution analysis with low computational
cost is needed. TheWP decomposition structure is shown in
Figure 2. At each level of decomposition, the WP generates
2
𝑗 blocks with dim(𝑠)/2𝑗 coefficients, where 𝑗 is the decom-
position level and dim(𝑠) is the size of the buffer (number of
samples to be processed). The downsampling operator (↓ 2)
follows the LP andHPfilters at each level in order to eliminate
the redundant information [19].

2.3. SVD and PCA. The singular value decomposition (SVD)
is a mathematical operation defined in the linear algebra



Mathematical Problems in Engineering 3

(a)

Y

X

Z (north)

g1

g3
g4

g2

𝛼 𝛼

(b)

Figure 1: Tetrahedral base and respective gyro axes orientation.
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downsampling at each level of decomposition; LP: low-pass filter output (𝑎-approximations); HP: high-pass filter output (𝑑-details).

branch, that allows the real or complex matrix factorization.
Its application is very useful in signal processing and analyses
[4, 16, 20]. The SVD is defined according, Theorem 1 [21].

Theorem 1 (SVD). Let A be a matrix (real or complex)
𝑚 × 𝑛 of rank 𝑟. Therefore, there exist an unitary matrix U
(orthogonal if A is real) with order 𝑚, an unitary matrix V
(orthogonal) with order 𝑛, and a diagonal matrix S with order
𝑟 (with positive values), so that,

A = U [
S 0
0 0]V

∗ (5)

or

A = UΣV∗, (6)

where, V∗ is the conjugate transpose of V and Σ is 𝑚 × 𝑛. The
values in the main diagonal of S are the singular values of A.

The SVD and the eigenvalues and eigenvectors decompo-
sition are related as follows.

(i) The left-hand side singular vectors of A (columns of
U) are the eigenvectors of AA∗.

(ii) The right-hand side singular vectors ofA (columns of
V) are the eigenvectors of A∗A.

(iii) The nonnull singular values of S are the square root of
the non-null eigenvectors of AA∗ or A∗A.

Being the covariance matrix of A given by A∗A, the singular
values of A are the square root of the eigenvalues of its
covariance matrix.

A∗A = VS2V∗. (7)

By using SVD the principal components from a given matrix
can be obtained. Mathematically, the PCA is defined as a
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Table 1: Block of data set with rank 𝑛.

Seq. Samples
1 𝑥

11
𝑥
12

⋅ ⋅ ⋅ 𝑥
1𝐾

2 𝑥
21

𝑥
22

⋅ ⋅ ⋅ 𝑥
2𝐾

3 𝑥
31

𝑥
32

⋅ ⋅ ⋅ 𝑥
3𝐾

...
...

𝐽 𝑥
𝐽1

𝑥
𝐽2

⋅ ⋅ ⋅ 𝑥
𝐽𝐾

linear operation that projects a data set into a new coordinate
systems, so that the major variance component be associated
with the first coordinate, the second major variance com-
ponent with the second coordinate, and so on [22]. In this
way, a set of correlated variables are transformed into another
uncorrelated variable set called principal components. The
principal components can be obtained by decomposition of
eigenvalues from covariance matrix or using SVD. The main
advantage of use the PCA is the possibility of reducing the
dimensionality of the data set space (size𝑛), by selecting the𝑚
main components from the space of size 𝑛 (𝑚 < 𝑛), ensuring
an optimal orthogonal transformation [22]. Mathematically,
PCA can be obtainedwith the aid of the SVDby defining a set
of data (X) arranged as a matrix according to Table 1, where
they are stacked 𝐽 sequences of 𝐾 samples, being 𝑟 the rank
of the matrix. In order to calculate the effective direction of
themaximum variation, it is extracted the average value from
each line as follows:

xj=
1
K

K
∑

k=1
xj,k, j = 1 ⋅ ⋅ ⋅ J,

MX = X − x1
𝐾
, 1
𝐾
= [1 1 ⋅ ⋅ ⋅ 1]

1×𝐾
.

(8)

With data set centered at zero mean, the SVD on the matrix
MX can be performed as follows:

[U S V] = svd (MX) . (9)

By sorting the data in decreasing order, the major values,
and respective eigenvectors, can be selected considering a
properly threshold criteria. By defining 𝐸

𝑆
as a pseudoenergy

related to sum of all singular values obtained in the form,

𝐸
𝑆
=

𝐽

∑

𝑗=1

𝑠
𝑗𝑗
, (10)

where 𝑠
𝑗𝑗
are the diagonal elements of S; and the cumulative

pseudoenergy 𝑒
𝑠
(𝑗) as a cumulative the sum of the pseudoen-

ergies related to each eigenvector:

𝑒
𝑠
(𝑗) =

𝑗

∑

𝑝=1

𝑠
𝑝𝑝
, 𝑗 = 1, . . . , 𝐽, (11)

a threshold is established in order to define a number 𝐿 of
principal components (eigenvectors) that should be selected
as follows:

𝑒
𝑠
(𝑗 = 𝐿)

𝐸
𝑆

≥ th. (12)

After defining the 𝐿most significant components, the matrix
V can be resized considering only the first 𝐿 columns. Then,

W = V
𝑝𝑞
, (13)

where 𝑝 = 1, . . . , 𝐽 and 𝑞 = 1, . . . , 𝐿.

3. FDI Algorithm

The basic structure of the gyros processing with FDI blocks
embedded is shown in Figure 3. In that structure, each
gyro output is filtered by a recursive median filter (MF-1)
in order to remove the outliers (impulsive noise), and in
the sequence the gyro measurements are adjusted properly
by scale factor (SF) block. After that, the measurements
follow two different branches. The first one points towards
GN&C (guidance, navigation, and control) block through a
generic filter and sensor matrix blocks. As a consequence
of the geometry presented in Figure 1, and respective model
discussed through (1)-(2), the sensor matrix block performs
the transformation from sensors space (tetrahedron) to state
space (rotations about 𝑥, 𝑦, and 𝑧) according to (14), which
represents a Least Square Estimation of the state, considering
sensor measurements with errors. The second branch points
to FDI blocks and it is divided in to two distinct sets. One
of them performs the on-line fault detection processing,
and the other performs the faulty sensor identification (fault
isolation) after a fault is detected. Once the faulty sensor is
identified, its influence is removed from the sensor matrix
(𝐻∗), and the GN&C starts to operate only with three pieces
of FOG information:

𝜔̂ = H∗g (14)

H∗=(HTH)
−1
HT

. (15)

3.1. Fault Detection Algorithm. The detection of faults in an
IMU with redundant sensors can be performed by PV anal-
ysis as defined in (3). Under normal conditions, that is, bias
and faults with null values, the PV should present a normal
distributionN(0, 𝜎

2
). However, in actual systems, impulsive

noise may occur [13]. In the FD block, the recursive MF is
used in order to remove impulsive noise and to improve the
detection performed by 𝜒2-CUSUM algorithm. In Figure 3
the FD processing structure in the left branch is shown.
Under minimal redundancy configuration (four gyros), the
FD algorithm can only indicate the fault occurrence. So,
this information is used to start the identification process
with high confidence of the fault occurrence. After the signal
from gyros is processed by PV block according (3), the
measurements are filtered by a second recursive MF (MF-
2) to remove the spikes (or outliers) generated in the PV
processing [6].The filtered PV is applied to𝜒2-CUSUMblock
that performs the fault detection according to the algorithm
and calibration presented in previous work [6].

3.2. Fault Isolation Algorithm. The fault isolation (FI) algo-
rithm begins processing the data information stored in the
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Table 2: Validation results using the parameters obtained in the calibration over a different data set. Parameters: buffer = 64; WP db6; 𝑗 = 3;
step bias fault = 0,6∘/s; 𝑃̌ given by (A.5)–(A.8).

gyro % Run Mean
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

#1
PFA 2,6316 2,6316 2,6316 2,6316 2,6316 2,6316 2,6316 2,6316 2,6316 2,6316 2,6316
PMD 0,2506 0,2506 0,2506 0,2506 0,2506 0,5013 0,1253 0 0,5013 0,3759 0,2757
CD 99,7494 99,7494 99,7494 99,7494 99,7494 99,4987 99,8747 100 99,4987 99,6241 99,7243 ± 0,1541

#2
PFA 1,8797 1,8797 1,8797 1,8797 1,8797 1,8797 1,8797 1,8797 1,8797 1,8797 1,8797
PMD 0,3760 0,5013 0,5013 0,6266 0,6266 0,3760 0,5013 0,6266 0,6266 0,8772 0,5640
CD 99,6241 99,4987 99,4987 99,3734 99,3734 99,6241 99,4987 99,3734 99,3734 99,1228 99,4361 ± 0,1477

#3
PFA 2,8822 2,8822 2,8822 2,8822 2,8822 2,8822 2,8822 2,8822 2,8822 2,8822 2,8822
PMD 0,2506 0 0 0 0,5013 0,2506 0 0 0,6266 0,1253 0,1754
CD 99,7494 100 100 100 99,4987 99,7494 100 100 99,3734 99,8747 99,8246 ± 0,2303

#4
PFA 4,01 4,01 4,01 4,01 4,01 4,01 4,01 4,01 4,01 4,01 4,01
PMD 6,3910 6,1404 4,8872 5,3883 5,5138 4,7619 5,8897 4,8872 6,1404 4,3860 5,43859
CD 93,6090 93,8596 95,1128 94,6115 94,4862 95,2381 94,1103 95,1128 93,8596 95,6140 94,5614 ± 0,6894
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Figure 3: Connection between Scale Factor block and FD/FI blocks is missed.

buffers when the fault occurrence is indicated by FD block.
The four buffers (one for each gyro) operate in FIFO mode.
The operation of the FI algorithm is based on the analysis of
the principal components in the energy subbands of the data
stored in the buffers. The energy subbands are obtained by
using the wavelet packet decomposition up to certain level.
The idea behind this approach is to obtain a signature of the
sensors in normal conditions given in terms of null space
projection matrix and then use this matrix as kernel of FI
analysis as demonstrated in the sequence.

3.2.1. FI Algorithm Model. The modeling of the FI algorithm
begins with WP decomposition of a large amount of data
from sensors divided in to pieces with properly defined

size. The WP decomposition follows the schema illustrated
in Figure 2. Once the appropriated level of decomposition
is reached, the respective subband elements are processed
according to (16) that represents the average pseudo-energy
level at each subband:

𝑒y =
1

𝑁
(
sby)
𝑇

(
sby) , (16)

where𝑁 and sby are the amounts of wavelet coefficients and
respective wavelet coefficients vector at given subband.

At each decomposition level 𝑗, we have 2𝑗 subbands.
The first subband (superscripts 𝑎, 𝑎𝑎, 𝑎𝑎𝑎, . . .) is composed
by approximation coefficients and represents the sensor state
information (low-pass filter output), and this information
will not be used in FI processing. The remaining subbands
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will form the pseudo-energy matrix (𝑗 ≥ 2) because those
subbands contain the noise information decomposed in
several spectral bands. As a consequence, after processing
each buffer, the number of useful subbands is given by 𝑛

𝑏
=

2
𝑗
− 1, and processing 𝑚 buffers we can form the pseudo-

energymatrix E according to (17), whose dimension is 𝑛
𝑏
×𝑚:

E =
[
[
[
[

[

𝑒
1,1

𝑒
1,2

⋅ ⋅ ⋅ 𝑒
1,𝑚

𝑒
2,1

𝑒
2,2

⋅ ⋅ ⋅ 𝑒
2,𝑚

...
... ⋅ ⋅ ⋅

...
𝑒
𝑛𝑏 ,1

𝑒
𝑛𝑏 ,2

⋅ ⋅ ⋅ 𝑒
𝑛𝑏 ,𝑚

]
]
]
]

]

. (17)

From wavelet theory, the detailed coefficients are like noise
with zero mean, and perturbations with rich spectral content
will introduce the variations in the subbands pseudo-energy
magnitude. So, the SVD/PCA analysis can be applied to
obtain the hidden structure in the matrix E as established in
(9).

Note 1. The idea behind this is to consider the noise and other
noise-like variations as hidden structures of the sensors or, in
other words, a sensor pattern.

By decomposing E in to singular values (S), right eigen-
vectors (U), and left eigenvectors (V) and using (9),

E = USV𝑇 (18)

and selecting its principal components (PCA) as stated in
(10)–(13), (18) becomes

Ẽ = ŨS̃Ṽ𝑇, (19)

where Ũ, S̃, and ṼT are partial matrices obtained from U, S,
and VT according to PCA. The matrices Ẽ and E possess the
same dimensions, but with different content.

From PCA theory, it is known that U is an orthonormal
matrix that performs a rotation; then there exist, a null space
projection matrix P, so that

PŨ = 0. (20)

In the sequence, applying P in (19), we obtain,

PẼ = PŨS̃Ṽ𝑇,

PẼ = 0.
(21)

The meaning of (21) is that pseudo-energy vector obtained
from buffer with certain number of samples at any time can
be projected into a null space. So, the idea behind this is that
thematrixP represents a signature of the sensor in the normal
operational condition.

Performing the operation given in (21) over 𝑚 pseudo-
energy vectors (see (17)) a dispersion about zero can be
obtained (see 2D example in Figure 4). Now, assuming the
rank of P as 𝑝, the Euclidean distance ( 𝑝𝑑

𝑖
) of the 𝑖th

projection point is given by

𝑝
𝑑
𝑖
= √(

1
𝑥
𝑖
)
2

+ (
2
𝑥
𝑖
)
2

+ (
3
𝑥
𝑖
)
2

+ ⋅ ⋅ ⋅ + (
𝑝
𝑥
𝑖
)
2

. (22)

2X

1X

d1
d2

dm

3𝜎

1𝜎

Figure 4: 2D example of the null space projection distances of the
pseudo-energy vectors.

As a consequence, the mean distance and its variance are
given by

𝑝

𝑑 =
1

𝑚

𝑚

∑

𝑖=1

𝑝
𝑑
𝑖
, (23)

var ( 𝑝𝑑) = 𝐸 [( 𝑝𝑑−
𝑝

𝑑)

2

] , (24)

respectively.

3.2.2. Noise Effect Reduction. The noise influence can be
reduced by using a normalization technique as presented by
de Oliveira [12]. In this technique the following model is
assumed:

y=cf + 𝜂, (25)

where cf is a coefficient vector associated to the fault and 𝜂 is
the sensor noise vector.

Assuming the average pseudo-energy at each subband
as the autocorrelation of y at 𝜏 = 0 and that cf and 𝜂 are
uncorrelated, the energy equation becomes

𝑒
𝑦
= 𝑒
𝑐𝑓
+ 𝑒
𝜂
, (26)

and the normalization is given by

̆𝑒
𝑦
=

𝑒
𝑦

𝑒
𝜂

=

𝑒
𝑐𝑓

𝑒
𝜂

+ 1. (27)

Considering the variation of the noise energy between
buffers, (27) can be rewritten as

̆𝑒
𝑦
=

𝑒
𝑦

𝑒
𝜂

≈

𝑒
𝑐𝑓

𝑒
𝜂

+ 1, (28)
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Figure 5: Scatter plot of 200 projections. (a) Rotation (Ũ)𝑇Ẽ; (b) normalized rotation (
̃̆U)𝑇 ̃̆E; (c) Parity space projection PẼ; and (d)

normalized Parity space projection P̆̃̆E.
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Figure 6: Normalized parity space tridimensional projection of the
sensor (gyro #2) noise decomposed by wavelet packet db4 at level
𝑗 = 3 with 4𝜎 spherical threshold.

where the 𝑘th subband average energy (𝑒
𝜂
) considering 𝑚

buffers is given by

(𝑒
𝜂
)
𝑘
=
1

𝑚

𝑚

∑

𝑙

(𝑒
𝜂
)
𝑘,𝑙
, 𝑘 = 1 : 𝑛

𝑏
and 𝑙 = 1 : 𝑚. (29)

Therefore, the normalized pseudo-energy matrix becomes

E =
[
[
[
[

[

̆𝑒
1,1

̆𝑒
1,2

⋅ ⋅ ⋅ ̆𝑒
1,𝑚

̆𝑒
2,1

̆𝑒
2,2

⋅ ⋅ ⋅ ̆𝑒
2,𝑚

...
... ⋅ ⋅ ⋅

...
̆𝑒
𝑛𝑏 ,1

̆𝑒
𝑛𝑏 ,2

⋅ ⋅ ⋅ ̆𝑒
𝑛𝑏 ,𝑚

]
]
]
]

]

(30)

and can be used instead of E ((17)).
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Figure 7: Normalized parity space tridimensional projection of the
sensor (gyro #2) noise (black) and step bias fault (red) decomposed
by wavelet packet db4 at level 𝑗 = 3 with 4𝜎 spherical threshold.

4. Results

4.1. FI Algorithm. The analyses of algorithm performance
were made upon two different data sets: One for analysis and
calibration (alpha) and the other for validation (beta). Using
the model developed in Section 3.2, wavelet db4 (Daubechies
4), three decomposition levels (𝑗 = 3), and a time series
(alpha) with 51200 samples divided in to 200 buffers of
dimension 256 samples, the matrices E7×200 and Ĕ7×200 were
constructed. The dimension of the matrices is given by
number of subbands (𝑛

𝑏
= 2
𝑗
− 1) and the number of

buffers. In this case, the rank of the matrices is seven (seven
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Figure 8: PFA, PMDandCD results for seven different wavelet fam-
ilies applied to gyro #2 data, considering the following parameters:
buffer = 256; 𝑗 = 3; step fault = 0.8∘/s.

singular values). From those matrices with seven singular
values four components were identified that represent more
than 90% of the total energy (four principal components).
With rank seven and using the first four greatest singular
values, the matrix P (or P̆) will present the dimension
3 × 7 (see (A.5)–(A.8)), and consequently, a tridimensional
projection ( 1𝑥, 2𝑥, and 3𝑥) according to the idea represented
in Figure 4. In order to visualize, efficiency of the proposed
model were performed the following operations:

(a) rotation: (Ũ)𝑇Ẽ,

(b) normalized rotation: (̃̆U)𝑇 ̃̆E,
(c) parity space projection: PẼ,

(d) normalized parity space projection: P̆̃̆E,

whose tridimensional projections are shown in Figure 5 as
scatter plot. In those four projections, the increase of the
algorithm performance is straightforward when the parity
space projections approach is used (Figures 4(c) and 4(d))
compared to rotations (Figures 4(a) and 4(b)). Using (24), a
4𝜎 spherical threshold was established in order to verify the
consistency of the proposed model in terms of probability
of false alarm (PFA), probability of miss detection (PMD),
and correct decision (CD). In Figure 6 the tridimensional
projection of the normalized parity space of the sensor noise
decomposed bywavelet packet db4 at level 𝑗 = 3. As expected,
the most of noise projections (about 97%) remains inside of
the sphere, indicating a low occurence of false alarm. With
a step bias fault randomly inserted in time into all of 200
buffers, it is expected the indication of 200 fault projections.
In Figure 7 it is shown this operation comparing the noise and
fault projections for the case of normalized parity space. The
fault is of step bias kind with magnitude 0.8∘/s.
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Figure 9: PFA, PMD and CD results for buffers dimensions 64,
128 and 256 applied to gyro #4 data, considering the following
parameters: waveler db6; 𝑗 = 3; step fault = 0.8∘/s.

After extensive analyses comparing wavelet families (db2,
db4, db6, haar, symlet 3, coiflet 1, and biorthogonal 3.1),
decomposition level, buffer dimension, and fault level, it is
summarized in Figures 8 and 9 the best set of parameters
to be used in the construction of the parity space projection
matrix. Therefore, the best parameters found in order to
used in the validation tests are WP db6, buffer size 64, and
decomposition level 𝑗 = 3.The respective projectionmatrices
(P̆) to be applied in validation tests are given by (A.5)–(A.8).
So, using these parameters in another data set obtained with
different movements of the IMU, it was found the results
summarized in Table 2, where the low performance of gyro
#4 is explained as a result of its higher noise level with respect
to the others sensors.

5. Conclusion

In this paper, it was developed a FDI algorithm based on
signal processing techniques applied to IMU with minimal
redundancy of fiber optic gyros. This unity was built with
low-quality FOGs and a prototype of acquisition system that
generates a high quantity of impulsive noise, justifying the use
of recursive median filter. The first of median filters (MF-1)
was applied to remove the high-level impulses, outliers with
huge magnitude arising from data acquisition process. This
filter is adjusted to introduce a short delay. The second filter
(MF-2) was used to reduce the low-level impulses arising
from parity vector operations and,consequently, to improve
the fault detection performance. However, this filter adds
a new delay in the detection process, being greater than
MF-1. The fault detection part of the algorithm is used to
guarantee the reliability of the isolation part, avoiding the
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actions when the fault occurrence is not confirmed by 𝜒2-
CUSUM algorithm. In the fault detection part a calibration
referenced on fault isolation characteristics was developed,
mainly the dimension of the buffer used in the wavelet
decomposition. The fault detection results demonstrated the
effectiveness of the algorithm at low level of fault with short
delay (about 10 samples for 0.3∘/s step bias fault) [6].The fault
isolation algorithm, based on parity space projection of sub-
band energy obtained from wavelet packet decomposition,
provided expressive results in terms of correct decisions (CD
> 94% for 0.6∘/s step bias fault). This parity space projection
of subband energy is an extension of clustering analysis based
on PCA. The step bias fault was used in both algorithms in
order to verify the sensibility, but this algorithm can detect
other kinds of faults that perform variations in the spectral
contents of the sensors.

Appendix

Calibration of the FI Algorithm

By following the development presented in Section 3 (FI
algorithm) normalizing the pseudo-energy matrix Ĕ (30) the
following values were obtained for the FI blocks.

For the subband average energy (29):
Gyro #1:

𝑒
𝜂1

= [0.0078 0.0032 0.0058 0.0002 0.0002 0.0015 0.0004]

(A.1)

Gyro #2:

𝑒
𝜂2

= [0.0078 0.0057 0.0056 0.0002 0.0002 0.0021 0.0004]

(A.2)

Gyro #3:

𝑒
𝜂3

= [0.0078 0.0032 0.0062 0.0002 0.0002 0.0014 0.0004]

(A.3)

Gyro #4:

𝑒
𝜂4

= [0.0238 0.0117 0.0182 0.0005 0.0005 0.0049 0.0012]

(A.4)

For the normalized null space projection matrix P̆ (21)
using (30):

Gyro #1:

P̆
1

= [

0.1494 −0.2426 −0.5568 0.6341 0.2067 −0.3937 −0.0955

0.0210 −0.7327 0.0442 0.0879 0.2181 0.6292 0.9785

−0.0198 −0.2648 −0.0999 −0.2698 −0.0602 −0.3727 0.8392

]

(A.5)

Gyro #2:

P̆
2

=[

0.1060 −0.5123 −0.3848 0.6963 0.1555 −0.2626 0.1665

0.0118 −0.6102 0.1178 −0.1089 0.0441 0.7669 0.1083

0.0720 −0.1530 −0.1206 −0.2519 −0.2407 −0.2505 0.8791

]

(A.6)

Gyro #3:

P̆
3

=[

−0.0606 0.7408 0.1681 −0.0322 −0.1801 −0.0715 −0.6170

0.0992 −0.3210 −0.1233 0.4786 0.2421 0.4957 −0.5818

0.1620 0.1110 −0.5799 0.4954 0.0446 −0.6146 −0.0083

]

(A.7)

Gyro #4:

P̆
4

=[

0.1171 −0.2952 −0.5324 0.5027 0.1995 −0.5684 0.0012

0.0564 −0.7845 −0.0024 0.0867 0.1613 0.5551 0.1990

−0.0201 −0.1048 0.0032 −0.3849 −0.1479 −0.3431 0.8372

]

(A.8)

For the 4𝜎 threshold-square root of (24):
Gyro #1:

4 × 𝜎
𝑝𝑑
= 4 × √var ( 𝑝𝑑) = 4 × 0.6910 (A.9)

Gyro #2:

4 × 𝜎
𝑝𝑑
= 4 × √var ( 𝑝𝑑) = 4 × 0.6607 (A.10)

Gyro #3:

4 × 𝜎
𝑝𝑑
= 4 × √var ( 𝑝𝑑) = 4 × 0.7480 (A.11)

Gyro #4:

4 × 𝜎
𝑝𝑑
= 4 × √var ( 𝑝𝑑) = 4 × 0.6844. (A.12)
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