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This paper proposes a robust adaptive neural network controller (RANNC) for electrode regulator system. According to the
characteristics of electrode regulator system, an affine-like equivalent model is first derived. Then, the nonlinear control law
is derived directly based on the affine-like equivalent model identified with neural networks, which avoids complex control
development and intensive computation. The control scheme is simple enough that it can be implemented on an automotive
microcontroller system, and the performance meets the system requirements. The stability of the system is established by the
Lyapunov method. Several simulations illustrate the effectiveness of the controller.

1. Introduction

Electric arc furnaces (EAF) are widely used in the steel
industry for melting scrap. The most important part of EAF
is the electrode regulator system. Its performance affects not
only the power utilisation efficiency of the furnace but also
the electrode and refractory wear costs. A fast controller
response is required to optimise the power utilisation effi-
ciency, butwhere overshoot of the required electrode position
is caused, the results are increased refractory and electrode
wear and also, possibly, the injection of unwanted carbon into
the steel in the case of a molten bath. Thus, the controller
should be designed to meet the requirements of fast response
without overshoot. However, the demands are difficult to
accomplish since the electrode regulator system is burdened
with strong nonlinearity and strong coupling among three
phases. Moreover, the control strategy should be simple
enough to be implemented on an automotivemicrocontroller
system, while it has to be robust to plant parameter variations.

Several control strategies have been considered and/or
applied to furnaces in the past few decades. As early as 1977,
Billings and Nicholson proposed a temperature-weighting
adaptive controller [1], which uses ambient arc temperature
as an additional control parameter to weigh the error feed-
back. However, the conditions of continuous temperature

measurement are not easy to achieve. Zhizhong and Jian
pointed that the arc gain can be estimated by the energy
applied into the furnace [2], to avoid the problem of contin-
uous temperature measurement, and proposed an adaptive
feedback controller for the electrode regulator system, but
they did not give an expression for calculating the arc gain.
Several of the existing control designs use a linear model of
the process and derive a state feedback decoupling controller
[3]; however, the controller is only effective around the
operating points and has some limitations in the practical
applications. Intelligent methods such as fuzzy control and
neural network control were also applied in the electrode
regulator system [4–9]. Staib et al. proposed to utilize the
neural network to control the electrode, which can learn
online during the smelt process [4, 5]. In [7–9], an adaptive
inverse control algorithm based on RBF NN is presented,
which identifies real-time decoupling by RBF NN online,
but the control law computation is too much and needs
a high-speed acquisition and processing system. Variable
structure control with the slidingmode is an effectivemethod
for the control of the nonlinear plant with a parameter
uncertainty, and it has also been applied in the electrode
regulator system in [6]; however, the stability analysis of the
closed-loop system was not given in [6]. In [10], a direct
adaptive controller is designed. However, the computation is
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too much and the control scheme is difficult to be applied in
practice.

The principal aim of this paper is to present a practice-
oriented robust adaptive neural network controller for elec-
trode regulator system.The control strategy is achieved based
on approximate model method and the Taylor expansion
technology, which avoids complex control development and
intensive computation. So, it is easily implemented in prac-
tice. Moreover, the decoupling among the three phases is
also realized and the controller has a good performance with
respect to parameters varying and falling scrap, which can be
illustrated by simulation results.

The proposed controller is acceptable in engineering
practice, as it can meet the following requirements. (1) The
proposed control scheme is simple enough that it can be
implemented on an automotive microcontroller system for
practical application. (2)The performance of the closed-loop
system satisfies the requirements, that is, a fast transient
response without overshoot. (3) Robustness of the control
system with respect to variations of process parameters is
required, which can be caused by production deviations and
variations of external conditions. (4) Stability of the closed-
loop system is rigorously established.

This paper is organized as follows. In Section 2, the non-
linear discrete-time dynamics of electrode regulator system
is derived. In Section 3, the input-output approximate model
is directly derived via the Taylor expansion and nonlinear
control law is implemented using NRBFNN modeling. In
Section 4, the robustness of the stability is rigorously estab-
lished by the Lyapunov method. Finally, several simulations
and experiments are presented to illustrate the effectiveness
of the proposed nonlinear controller.

2. Model Construction

As shown in Figure 1, the electrode regulator system of EAF
consists of controller, hydraulic system, andEAFmain circuit.
In this paper, the hydraulic system and the EAF main circuit
are considered to be a generalized plant.

2.1. Hydraulic System. Since we focus on the electrode regu-
lator system, the hydraulic system of EAF is approximated as
a third-order system as in [10, 11]. The transfer function can
be written as

𝐺
𝑠
(𝑠) =

𝑏
0
𝑠 + 𝑏
1

𝑎
0
𝑠3 + 𝑎

1
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2
𝑠
. (1)

2.2. EAF Main Circuit. A typical power supply system of
EAF consists of high-voltage power distribution system, EAF
transformer, short net, and electric arc.The equivalent circuit
of main circuit is presented in Figure 2, where 𝑈̇

𝑗
, (𝑗 =

𝐴, 𝐵, 𝐶) is the primary voltage, 𝑈̇
𝑗
, (𝑗 = 𝑎, 𝑏, 𝑐) is the

secondary voltage, ̇𝐼
𝑗
, (𝑗 = 𝐴, 𝐵, 𝐶) is the primary current,

̇𝐼
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, (𝑗 = 𝑎, 𝑏, 𝑐) is the secondary current, 𝑅

𝑑
is the short

net resistance, 𝑋
𝑑
is the short net reactance, and 𝑍jarc, (𝑗 =

𝑎, 𝑏, 𝑐) is the impedance of the arc. In the furnace there is
also electrical conduction between the electrodes. However,

according to [12], these currents are nearly 1% of the phase
currents and we focus on the electrode regulator system. So,
thesemutual inductances will be neglected for simplicity, and
we assume that the parameters of the three phases are the
same to each other.

In order to obtain a simpler arc model, Köhle proposed
to represent the arc as an equivalent linear circuit element
constituted by a resistive and a reactive part [13]. In his
model, Köhle defines the arc reactance 𝑋

𝐿
as a function of

its resistance as follows:𝑋
𝐿
= 𝑎𝑅
𝐿
+𝑏𝑅
2

𝐿
, where the first term

represents the influences of low frequency fluctuations and
the second represents the influences of harmonics.The values
of 𝑎 and 𝑏 vary during the melting process.

The primary coils and the secondary coils of the EAF
transformer are star connected and delta connected, respec-
tively (as shown in Figure 2). According to the Kirchoff ’s law,
we can obtain the electrode-to-neutral currents as follows:
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𝑅
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is the short net resistance, 𝑋

𝑑
is the short net reactance,

and 𝑛 is the transformer ratio.
By using the 𝑛-order approximationmethod [14], one has

𝑇𝑖
(1)

𝑗
= 𝑖
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘), 𝑇2𝑖(2)

𝑗
= 𝑖
𝑗
(𝑘 + 1) − 2𝑖

𝑗
(𝑘) + 𝑖

𝑗
(𝑘 − 1),

𝑇
3

𝑖
(3)

𝑗
= 𝑖
𝑗
(𝑘 + 1) − 3𝑖

𝑗
(𝑘) + 3𝑖

𝑗
(𝑘 − 1) − 𝑖

𝑗
(𝑘 − 2), (𝑗 = 𝑎, 𝑏, 𝑐)

with 𝑇 being the sampling period. This way, according to (1)
and (2), the generalized control plant can be described in the
discrete system as
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where 𝑓(⋅) is a vector-valued nonlinear function and 𝑓
𝑗
(⋅),

(𝑗 = 𝑎, 𝑏, 𝑐) is regarded as nonlinear mapping.

3. Control Strategy Design

In this section, a novel nonlinear controller is proposed based
on the approximate method, which avoids complex control
development and intensive computation.

3.1. Analysis of the Controlled Object. As ‖𝑍
𝐾𝑎𝑏𝑐

‖ > 0 always
holds for𝑍

𝐾𝑎𝑏𝑐
in (2), it is easy to validate that𝑓

𝑗
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Figure 1: Schematic diagram of EAF electrode regulator system.
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Figure 2: Schematic diagram of EAF main circuit.

is derivable. For the nonlinear autoregressive moving average
(NARMA) model (3), a Taylor expansion of the plant gives

𝑖
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where Δ𝑢
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where Δ is the increment operator.
From (5), we can drop the third term on the right-hand

side of (4) to represent model (3) by
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Theorem 1 (see [16]). The remainder term 𝑅
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approaches zero, and there exists a variable 𝜏
𝑗
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0
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number. From (4)–(7), the input-output approximate model
of the plant can be derived by neglecting the term 𝑅

𝑗
(𝑘), and

thus, (3) can be simplified into
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From (8), the control law can be determined directly since
the increment Δ𝑢

𝑗
(𝑘) of the control signal appears linearly.

Before the computation of the control law, an assumption is
given.

Assumption 2. Controller output is bounded; that is,
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which considers constraints on physical variable.

Remark 3. According to Assumption 2, Δ𝑢
𝑗
(𝑘) should not be

too large in order to limit the approximation error of (8).
In electrode regulator system, this is reasonable because the
output of the hydraulic system (actuator) cannot change too
fast within a small time interval.

3.2. Derivation of Control Law. From (8), it requires precise
information about 𝑓1
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can be estimated from the NN model and is referred to as
𝑓
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Evolved from radial basis function neural network

(RBFNN), the NRBFNN has the same structure as shown
in Figure 3. For the NARMA model (3), the output of the
NRBFNN is
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Figure 3: Structure of an NRBFNN.

where 𝐶
𝑖
= [𝑐
𝑖1
⋅ ⋅ ⋅ 𝑐
𝑖𝑛
] denotes the centroid vector, 𝐿 denotes

the NN node number, and 𝑠 is the spread. The NRBFNN can
improve function approximation with a minimal number of
weights [17]. In (10), the kernel function is very similar to RBF
neural network, except that the kernel output is divided by
the sum of all the kernel outputs. Therefore, the outputs of
all the kernels add up to one; that is, ∑𝐿

𝑖=1
𝜙
𝑖
(𝑥) = 1. As the

output of every hidden node is less than 1, we can get that
the hidden output vector has the properties 0 < ‖Φ(𝑥)‖ ≤

1. These properties will be used in Section 4 for the stability
analysis of the closed-loop system.

To formulate a well-posed adaptive control problem, we
make the following assumptions. Similar assumptions are
used in [18, 19].

Assumption 4 (see [15]). An optimal weight vector Θ
𝑜

𝑗
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a trained NRBFNN exists, and the corresponding optimal
estimation error 𝑒𝑜
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𝑖̂
𝑜

𝑗
(𝑘) − 𝑖

𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑜

𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
< [𝑒
𝑜

𝑗
]
max

. (11)

Remark 5. The NRBFNN has been theoretically proven to
be capable of universal approximation in a satisfactory sense
[20]. Assumption 4 shows that a perfect function estimation
can be achieved if enough radial basis functions are used.
However, more hidden nodes means more computation.
There should be a trade-off between the computation burden
and approximation errors. In the electrode regulator system,
20 hidden nodes can meet the requirement of the estimation
errors.

The parameter update rule must be robust with respect
to modeling errors because these errors can prevent the
convergence of the weights of the neural network and thereby
destabilize the closed-loop system. One of the approaches to
ensure convergence of neural network weights is through a
“deadzone,” which suspends parameter adaption whenever
estimation error becomes small. The corresponding weights
updated law as follows:

Θ
𝑗
(𝑘 + 1) = Θ

𝑗
(𝑘) − 𝜌

𝑗
(𝑘) 𝜂
𝑗
(𝑘) [

[

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

,

(12)
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where 𝜌
𝑗
(𝑘) is the adaptive rate, and 0 < 𝜌

𝑗
(𝑘) ≤ [𝜌

𝑗
]max < 2,

and

𝜂
𝑗
(𝑘) =

{{{

{{{

{

1, if 󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
>

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

,

0, otherwise.
(13)

We have a gradient descent parameter update rule with a
deadzone, where 𝑒

𝑗
(𝑘 + 1) is the estimation error at the time

𝑘+1 and 𝑒
𝑗
(𝑘+1) = 𝑖̂

𝑗
(𝑘+1)−𝑖

𝑗
(𝑘+1).Their other parameters

such as centroids and spreads can be found in [18, 19] and thus
are not discussed here.

Based on the NRBFNN model (9), we can get 𝑓1
𝑗
(𝑘); that

is,

𝑓
1

𝑗
(𝑘) =

𝜕𝑛𝑛 [𝜔 (𝑘) , 𝑢
𝑗
(𝑘)]

𝜕𝑢
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢𝑗(𝑘)=𝑢𝑗(𝑘−1), 𝜔(𝑘)=𝜔(𝑘−1)

. (14)

And according to Assumptions 2 and 4, the control law can
be determined straigthforwardly from (8) as follows:

𝑢
𝑗
(𝑘) = 𝑢

𝑗
(𝑘 − 1) + Δ𝑢

𝑗
(𝑘) , (𝑗 = 𝑎, 𝑏, 𝑐) , (15)

where

Δ𝑢
𝑗
(𝑘) =

𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

𝑓
1

𝑗
(𝑘) if 󵄨󵄨󵄨󵄨󵄨

Δ𝑢
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
≤ 𝛿
𝑗
,

Δ𝑢
𝑗
(𝑘) = 𝛿

𝑗
sign 󵄨󵄨󵄨󵄨󵄨

Δ𝑢
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
if 󵄨󵄨󵄨󵄨󵄨

Δ𝑢
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
> 𝛿
𝑗
,

(16)

where 𝛼 and 𝛿
𝑗
are given finite positive constants and 𝑟

𝑗
(𝑘) is

the reference current.
Define the tracking error at the time 𝑘 as

[𝑒
𝑐
]
𝑗
(𝑘) = 𝑟

𝑗
(𝑘) − 𝑖

𝑗
(𝑘) , (𝑗 = 𝑎, 𝑏, 𝑐) . (17)

4. Stability Analysis of RANNC

Stability and performance of the closed-loop systemwith NN
adaptive control (15) and weight updating law (12) are given
inTheorem 6.

Theorem 6. For given |𝑟
𝑗
(𝑘) − 𝑟

𝑗
(𝑘 − 1)| ≤ Δ𝑟, using

the NN control law (15) with NN weight updating law (12),
then the solution of the error system (17) is uniformly ulti-
mately bounded (UUB) [21] for all 𝑘 with ultimate bound
lim
𝑘→∞

|[𝑒
𝑐
]
𝑗
(𝑘)| ≤ (𝑘

2
/(1 − 𝑘

1
)), where 𝑘

1
= |(1 −

𝑠
𝑗
(𝑘)([𝑓

1

𝑗
(𝑘)]
2

/([𝑓
1

𝑗
(𝑘)]
2

+𝛼)))| and 𝑘
2
= 𝑘
1
⋅𝑟
0
+2[𝑒
𝑜

𝑗
]max/(2−

[𝜌
𝑗
]max), in which 0 < 𝑠

𝑗
(𝑘) ≤ 1, 𝛼, 𝑟

0
, [𝑒𝑜
𝑗
]max and [𝜌

𝑗
]max are

the same as those defined above, (𝑗 = 𝑎, 𝑏, 𝑐).

Proof. See Appendix.

5. Simulations and Experiment

5.1. Simulations. This section shows the MATLAB simula-
tions of the proposed approximate model control strategy
on the electrode regulator system. The parameter values are
selected as follows.

(1) Hydraulic system: 𝑏
0
= 5, 𝑏
1
= 95, 𝑎

0
= 1, 𝑎

1
= 9, and

𝑎
2
= 110.

(2) EAF transformer: 𝑈̇
𝐴

= 35000V, 𝑈̇
𝐵

= 𝑈̇
𝐴
𝑒
−𝑗(2/3)𝜋,

𝑈̇
𝐶

= 𝑈̇
𝐴
𝑒
𝑗(2/3)𝜋, 𝑍

𝐾
= (0.0069 + 𝑗0.076)Ω, and 𝑛 =

80.
(3) Electric arc: 𝑎 = 0.12, 𝑏 = 0.02, and 𝑅per =

0.000058Ω/mm.
(4) Short net: (𝑍

𝑑
= 0.0003 + 𝑗8.3292𝑒 − 006)Ω.

(5) Controller parameters: 𝛼 = 0.01, [𝑒0
𝑗
]max = 50A, 𝛿

𝑗
=

3.5V, 𝜌
𝑗
= 1, and 𝑠 = 0.6.

Here, three controllers’ (including the PID controller
(PIDC), inverse neural network controller (INNC), Robust
adaptive neural network controller (RANNC)) capability
of following set-point, restraining parameters varying and
falling scrap is studied by simulation.

There are strong coupling among three phases in the
electrode regulator system. To validate the decoupling perfor-
mance of the proposed controller, several set-point trackings
are performed with different operating points and reference
changes. Figure 4 shows the simulation results of the current
𝐴 and current 𝐵. We can know from figures that the RANNC
is better in respect of tracking the set value, and the current
𝐵 is almost not influenced by the changes of current 𝐴.
Approximate decoupling is realized. When the PIDC and
INNC are used, the system has slower response and larger
overshoot, and its performance is worse than RANNC.

In the smelting process, production deviation and varia-
tions of external condition can cause the variation of process
parameters, and falling scrap is also common. In order
to make the proposed control strategy more acceptable in
practice, we simulate these situations and the parameters
change at 25 s and 50 s, respectively. The simulation results
are illustrated in Figure 5. We can know from figures that
the RANNCpreserves important performancemeasures, like
fast response, the little overshoot, and accuracy within the
measurement resolution.

Three phase electrodes discharge tomolten steel, forming
star connection, so there are strong coupling among three
phases. In PIDC system, there is three controllers for three
phases individually and the coupling effects are not con-
sidered. The performance of INNC is better than that of
PIDC as the coupling effects are regarded as disturbances
in INNC system. However, the complete decoupling is still
not achieved. In RANNC system, the control law is directly
derived from the approximate model, which fully reflects
the coupling effects among the three phases. Approximate
complete decoupling can be realized. From Figures 4 and 5,
we can get that the performance of the RANNC is better than
that of PIDC and INNC.

5.2. Experiment. The experiment apparatus is shown in
Figure 6, and our robust adaptive neural network controller
is implemented on SIEMENS CPU414-2. The parts of the
experiment system include arc modelMachine, programmer,
HMI, electrode PLC,master PLC, and othermodelsMachine,
and they communicate via industry ethernet. Long-distance
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Figure 6: Schematic diagram of EAF electrode system.
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Figure 7: Output of the currents.

𝐼/𝑂 interface ET200M is connected with Master PLC with
ProfibusDP.Thepowermodule is PS407, and the analog input
module and analog output module are AI431 and AO432;
digital inputmodule and digital outputmodule are DI321 and
DO322, respectively. Similar to the simulations, we verify the
effectiveness of the controller via decoupling performance,
robustness, and antidisturbance ability.The results are shown
in Figure 7.

The corresponding parameters are changed at 105 s.
Figure 7 shows experimental results of the three phase cur-
rents when only RANNC is used. As is shown in Figure 7,
the RANNC has a good performance, that is, faster response
and smaller overshoot, which means more power utilisation
efficiency and less refractory and electrode wear. From the
experiments, we can come to the following conclusions.

(i) As the coupling effects by other two phases are
considered in the approximate model, the coupling
among three phases is decreased greatly. Real-time
decoupling and control scheme are realized for the
electrode regulator system.

(ii) In our proposed controller, small nodes of NRBFNN
are chosen, which renders our control scheme pos-
sible application in real-time control of electric arc
furnace.

6. Conclusion

Many nonlinear discrete systems can be described by
NARMA model. In this paper, a generalized model for
electrode regulator system on NARMA form is established.
With a novel 𝐼/𝑂 approximation proposed for the NARMA
model, a robust adaptive controller is derived directly from
the approximation being and it can be implemented straight-
forwardly by using neural network. The controller design
method can be also applied on other systems such as
electronic throttle valve and distributed curing process etc., in
which the approximationmodel can be derived by the similar
procedure. The design of the proposed nonlinear controller
is simple and practical. Simulation results illustrate the good
performance of this controller.
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Appendix

Wewill prove, one by one in the order of the NN weights, the
estimation error and the tracking error are bounded.

(1) Boundedness of the weights: Choose a Lyapunov
candidate𝑉

𝑗
(𝑘, Θ̃
𝑗
(𝑘)) = Θ̃

𝑇

𝑗
(𝑘)Θ̃
𝑗
(𝑘), where Θ̃

𝑗
(𝑘) = Θ

𝑗
(𝑘)−

Θ
𝑜

𝑗
, Θ𝑜
𝑗
is the optimal weight vector as in Assumption 4; then

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= 𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1)) − 𝑉 (𝑘, Θ̃

𝑗
(𝑘))

= Θ̃
𝑇

𝑗
(𝑘 + 1) Θ̃

𝑗
(𝑘 + 1) − Θ̃

𝑇

𝑗
(𝑘) Θ̃
𝑗
(𝑘) .

(A.1)

According to [15]

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= 2Θ̃
𝑇

𝑗
(𝑘) ⋅ [ΔΘ̃

𝑗
(𝑘 + 1)]

+ [ΔΘ̃
𝑗
(𝑘 + 1)]

𝑇

⋅ ΔΘ̃
𝑗
(𝑘 + 1) ,

(A.2)

where ΔΘ̃
𝑗
(𝑘 + 1) = Θ̃

𝑗
(𝑘 + 1) − Θ̃

𝑗
(𝑘), and from (12), we get

ΔΘ̃
𝑗
(𝑘 + 1) = −𝜌

𝑗
(𝑘) 𝜂
𝑗
(𝑘) [

[

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

. (A.3)

Note that the estimation error is

𝑒
𝑗
(𝑘 + 1) = 𝑖̂

𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘 + 1)

= Θ̃
𝑇

𝑗
(𝑘) ⋅ Φ

𝑗
(𝑘) + 𝑒

𝑜

𝑗
(𝑘 + 1) .

(A.4)

We consider two cases associated with (A.3) separately.

Case 1 (|𝑒
𝑗
(𝑘 + 1)| ≤ 2[𝑒

𝑜

𝑗
]
max

/(2 − [𝜌
𝑗
]max)). Equation (A.3)

implies Θ̃
𝑗
(𝑘+1) = Θ̃

𝑗
(𝑘), therefore,Δ𝑉

𝑗
(𝑘+1, Θ̃

𝑗
(𝑘+1)) = 0.

Case 2 (|𝑒
𝑗
(𝑘 + 1)| > 2[𝑒

𝑜

𝑗
]
max

/(2 − [𝜌
𝑗
]max)). Equation (A.3)

implies

ΔΘ̃
𝑗
(𝑘 + 1) = Θ̃

𝑗
(𝑘 + 1) − Θ̃

𝑗
(𝑘)

= − 𝜌
𝑗
(𝑘) [

[

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

.

(A.5)

From (A.4)

Θ̃
𝑇

𝑗
(𝑘) ⋅ Φ

𝑗
(𝑘) = 𝑒

𝑗
(𝑘 + 1) − 𝑒

𝑜

𝑗
(𝑘 + 1) . (A.6)

Therefore, substituting for Θ̃𝑇
𝑗
(𝑘) andΔΘ̃

𝑗
(𝑘+1) in (A.2) gives

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= 2 [𝑒
𝑗
(𝑘 + 1) − 𝑒

𝑜

𝑗
(𝑘 + 1)] ⋅ [

[

−𝜌
𝑗
(𝑘)

𝑒
𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

+ [

[

−𝜌
𝑗
(𝑘)

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

⋅ [

[

−𝜌
𝑗
(𝑘)

𝑒
𝑗
(𝑘 + 1)Φ

𝑗
(𝑘)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

.

(A.7)

This implies

Δ𝑉
𝑗
(𝑘 + 1, Θ̃

𝑗
(𝑘 + 1))

= −𝜌
𝑗
(𝑘) [

[

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

⋅ [

[

2(1 −

𝑒
𝑜

𝑗
(𝑘 + 1)

𝑒
𝑗
(𝑘 + 1)

) − 𝜌
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

.

(A.8)

Using the fact that |𝑒
𝑗
(𝑘 + 1)| > 2[𝑒

𝑜

𝑗
]
max

/(2 − [𝜌
𝑗
]max) and

0 < 𝜌
𝑗
(𝑘) ≤ [𝜌

𝑗
]max < 2, simple algebraic manipulations of

(A.8) can be used to show that Δ𝑉
𝑗
(𝑘) ≤ 0.

Clearly, the system must operate under Cases 1 or 2 or
alternate between both cases. Since Δ𝑉

𝑗
(𝑘) ≤ 0, for Cases 1

and 2, then Δ𝑉
𝑗
(𝑘) ≤ 0 for 𝑘 = 0, 1, 2, . . .. This implies

𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) =

󵄩󵄩󵄩󵄩󵄩
Θ̃
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Θ̃
𝑗
(0)

󵄩󵄩󵄩󵄩󵄩

2

, for 𝑘 = 0, 1, 2, . . . .

(A.9)

This proves that Θ̃
𝑗
(𝑘) is uniformly bounded. Since ‖Θ̃

𝑗
(𝑘)‖

is uniformly bounded and Θ̃
𝑗
(𝑘) = Θ

𝑗
(𝑘) −Θ

𝑜

𝑗
, whereΘ𝑜

𝑗
is a

constant, then ‖Θ
𝑗
(𝑘)‖ is uniformly bounded.

(2) Boundedness of the estimation error: since
𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) converges

lim
𝑘→∞

Δ𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) = 0. (A.10)

Clearly, this can only happen if there exists some 𝑘
0
, such that

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
≤

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

, for 𝑘 = 𝑘
0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . .

(A.11)

This implies

Θ̃
𝑗
(𝑘 + 1) = Θ̃

𝑗
(𝑘) , for 𝑘 = 𝑘

0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . (A.12)
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which, in turn, implies

Δ𝑉
𝑗
(𝑘, Θ̃
𝑗
(𝑘)) = 0, for 𝑘 = 𝑘

0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . . (A.13)

The fact that 𝑘
0
exists is proven by contradiction as shown

below. If 𝑘
0
described above does not exist, we consider

subsequence 𝑡
𝑘
(𝑖), 𝑖 = 1, 2, . . . of instants 𝑘 = 0, 1, 2, . . ., when

weights of the neural network are updated; that is,

𝑡
𝑘
=

{

{

{

𝑘 :
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
>

2[𝑒
0

𝑗
]
max

2 − [𝜌
𝑗
(𝑘)]max

}

}

}

. (A.14)

Under this case,

Δ𝑉
𝑗
(𝑡
𝑘
+ 1, Θ̃

𝑗
(𝑡
𝑘
+ 1))

= −𝜌
𝑗
(𝑘) [

[

𝑒
2

𝑗
(𝑡
𝑘
+ 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

]

]

⋅ [

[

2(1 −

𝑒
𝑜

𝑗
(𝑡
𝑘
+ 1)

𝑒
𝑗
(𝑡
𝑘
+ 1)

) − 𝜌
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

]

]

.

(A.15)

From (A.8),

𝑉
𝑗
(𝑟, Θ̃
𝑗
(𝑟)) = 𝑉

𝑗
(0, Θ̃
𝑗
(0))

+

𝑟

∑

𝑘=1

− 𝜌
𝑗
(𝑘) [

[

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

⋅ [

[

2(1 −

𝑒
𝑜

𝑗
(𝑘 + 1)

𝑒
𝑗
(𝑘 + 1)

)

−𝜌
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

]

]

≤ 𝑉
𝑗
(0, Θ̃ (0))

− 𝜆

𝑟

∑

𝑘=1

[

[

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2

]

]

for 𝜆 > 0.

(A.16)

Hence

𝑟

∑

𝑘=1

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2
≤

1

𝜆
[𝑉 (0, Θ̃

𝑗
(0)) − 𝑉 (𝑟, Θ̃

𝑗
(𝑟))] .

(A.17)

When 𝑟 → ∞, we get

∞

∑

𝑘=1

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2
< ∞. (A.18)

In other words, sequence 𝑒
2

𝑗
(𝑘 + 1)/(1 + ‖Φ

𝑗
(𝑘)‖
2

) con-

verges. Normalized error 𝑒
𝑗
(𝑘 + 1)/√1 + ‖Φ

𝑗
(𝑘)‖
2 is squared

summable, and it follows that

lim
𝑘→∞

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2
= 0. (A.19)

Then, from 0 < ‖Φ
𝑗
(𝑘)‖
2

≤ 1, this implies

𝑒
2

𝑗
(𝑘 + 1)

1 + 1
≤

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2
(A.20)

or

𝑒
2

𝑗
(𝑘 + 1) ≤ 2

𝑒
2

𝑗
(𝑘 + 1)

1 +
󵄩󵄩󵄩󵄩󵄩
Φ
𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩

2
. (A.21)

In the limit as 𝑘 → ∞, the right-hand side of (A.21)
converges zero which results in

lim
𝑘→∞

𝑒
𝑗
(𝑘) = 0. (A.22)

This conclusion clearly contradicts the assumption that
|𝑒
𝑗
(𝑡
𝑘
+ 1)| > 2[𝑒

𝑜

𝑗
]max/(2 − [𝜌

𝑗
]max) for all 𝑡𝑘. Therefore, the

only possibility is that an integer 𝑘
0
exists such that

󵄨󵄨󵄨󵄨󵄨
𝑖̂
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
≤

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

(A.23)

for 𝑘 = 𝑘
0
, 𝑘
0
+ 1, 𝑘
0
+ 2, . . . which implies

lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
= lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
𝑖̂
𝑗
(𝑘) − 𝑖

𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
≤

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

. (A.24)

(3) Boundness of the tracking error: define a variable
𝑠
𝑗
(𝑘), where 0 < 𝑠

𝑗
(𝑘) ≤ 1 for all 𝑘. The control law (15) is

equivalently expressed as

Δ𝑢
𝑗
(𝑘) = 𝑠

𝑗
(𝑘)

𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

𝑓
1

𝑗
(𝑘) , (A.25)

where 𝑠
𝑗
(𝑘) = 1 if |Δ𝑢

𝑗
(𝑘)| < 𝛿

𝑗
, and 0 < 𝑠

𝑗
(𝑘) < 1 if

|Δ𝑢
𝑗
(𝑘)| > 𝛿. Using (A.25), one has

[𝑒
𝑐
]
𝑗
(𝑘 + 1) = 𝑟

𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘 + 1)

= 𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘) − 𝑓

1

𝑗
(𝑘) Δ𝑢

𝑗
(𝑘)
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= 𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

− 𝑓
1

𝑗
(𝑘) Δ𝑢

𝑗
(𝑘) + 𝑒

𝑗
(𝑘 + 1)

= 𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)

− 𝑠
𝑗
(𝑘) [𝑓

1

𝑗
(𝑘)]
2 𝑟𝑗 (𝑘 + 1) − 𝑖

𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

+ 𝑒
𝑗
(𝑘 + 1)

= (1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

)

× (𝑟
𝑗
(𝑘 + 1) − 𝑖

𝑗
(𝑘)) + 𝑒

𝑗
(𝑘 + 1)

= (1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

)

× (Δ𝑟
𝑗
(𝑘 + 1) + [𝑒

𝑐
]
𝑗
(𝑘)) + 𝑒

𝑗
(𝑘 + 1) .

(A.26)

Therefore

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
𝑐
]
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

)

× (Δ𝑟
𝑗
(𝑘 + 1) + [𝑒

𝑐
]
𝑗
(𝑘)) + 𝑒

𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑒
𝑐
]
𝑗
(𝑘)(1 − 𝑠

𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝑟
𝑗
(𝑘 + 1)(1 − 𝑠

𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

)

+𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
𝑐
]
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ |Δ𝑟| ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨
.

(A.27)

From (A.24), one has

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
𝑐
]
𝑗
(𝑘 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
𝑐
]
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑟
0
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑠
𝑗
(𝑘)

[𝑓
1

𝑗
(𝑘)]
2

[𝑓
1

𝑗
(𝑘)]
2

+ 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

2[𝑒
𝑜

𝑗
]
max

2 − [𝜌
𝑗
]max

= 𝑘
1

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑒
𝑐
]
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑘
2
.

(A.28)

Since 0 ≤ 𝑘
1

< 1 and 𝑘
2
is bounded, according to [14,

Lemma 13.1], one concludes that, using the control law (15),
the solutions of error system (17) are UUB for all 𝑘 with
ultimate bound lim

𝑘→∞
|[𝑒
𝑐
]
𝑗
(𝑘)| ≤ (𝑘

2
/(1 − 𝑘

1
)).
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