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A nonlinear anisotropic hybrid diffusion equation is discussed for image denoising, which is a combination of mean curvature
smoothing and Gaussian heat diffusion. First, we propose a new edge detection indicator, that is, the diffusivity function. Based on
this diffusivity function, the newdiffusion is nonlinear anisotropic and forward-backward.Unlike the Perona-Malik (PM) diffusion,
the new forward-backward diffusion is adjustable and under control. Then, the existence, uniqueness, and long-time behavior of
the new regularization equation of themodel are established. Finally, using the explicit difference scheme (PM scheme) and implicit
difference scheme (AOS scheme), we do numerical experiments for different images, respectively. Experimental results illustrate
the effectiveness of the new model with respect to other known models.

1. Introduction

Image restoration and smoothing are important in problems
ranging frommedical diagnostic tests to defense applications
such as target recognition. Over the past 20 years, the use
of variational methods and nonlinear partial differential
equations (PDEs) has significantly grown and evolved to
address the image restoration problem. Let 𝑢

0
be the intensity

of an image obtained from a noiseless image by adding
Gaussian noise with zero mean, defined on a rectangle Ω ⊂

R2, and let 𝑢 represent the reconstructed image.The problem
is to recover the restoration image 𝑢, from the observed, noisy
image 𝑢

0
, where the two are related by 𝑢

0
= 𝑢 + noise.

1.1. Nonlinear Diffusion. A large number of image restora-
tion techniques are conveniently formulated using some
nonlinear partial differential equations (PDEs) approach.
The review article [1] provides a historical description of
the use of PDEs in image processing. In [2], Perona and
Malik developed an anisotropic diffusion scheme for image
denoising.The basic idea of this nonlinear smoothing scheme
was to smooth the imagewhile preserving the edges in it.This
was done by using equation

𝑢
𝑡
= div (𝑐 (|∇𝑢|) ∇𝑢) ,

𝑢 (0, 𝑥) = 𝑓,

(1)

where 𝑓 is the noisy image and 𝑢 is the image to be smoothed
and 𝑢

𝑡
describes its evolution over time. The diffusivity

𝑐(|∇𝑢|) controls the amount of diffusion. 𝑐(𝑠) is also an edge
indicator and a smooth nonincreasing function and has such
properties as 𝑐(0) = 1, 𝑐(𝑠) ≥ 0, and 𝑐(𝑠) → 0, as 𝑠 → ∞.
This ensures that strong edges are less blurred by the diffusion
filter than noise and low-contrast details.

In [3], Iijima employs the following linear diffusivity
function:

𝑐 (|𝑥|) = 1. (2)

Because the model is linear isotropic diffusion, it cannot
preserve the edge and some features. The PM diffusivity
function [2] is usually

𝑐PM (|𝑥|) =

1

1 + |𝑥|
2
/𝐾

2
. (3)

The PM diffusion is nonlinear anisotropic diffusion and can
preserve themost features, especially edges in the image.Here
are some of the previously employed diffusivity functions.

Charbonnier diffusivity [4]:

𝑐 (|𝑥|) =

1

√1 + |𝑥|
2
/𝐾

2

. (4)
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TV diffusivity [5]:

𝑐 (|𝑥|) =

1

|𝑥|

. (5)

Weickert diffusivity [6]:

𝑐 (|𝑥|) =

{
{

{
{

{

1, |𝑥| = 0

1 − exp(−3.31488
|𝑥|

8
/𝑘

8
) , |𝑥| > 0.

(6)

Except the diffusivity functions, there are other diffusivity
functions, such as BFB diffusivity [7] and FAB diffusivity
[8, 9]. Well-posedness results are available for linear diffu-
sivity, Charbonnier diffusivity, and TV diffusivity, since they
result from convex potentials. For PM diffusivity, Weickert
diffusivity, and BFB diffusivity, which can be related to
nonconvex potentials, some well-posedness questions are
open in the continuous setting [10, 11], while already a space-
discretisation creates well-posed processes [12]. In practice,
the ill-posedness results in a mild instability in the discrete
problem. Regions of high gradients develop a “staircase”
instability that involves dynamic coarsening of the steps as
time evolves [13, 14].

To make the images more pleasing to the eye, it would
be useful to reduce staircasing effect. Many models to reduce
this effect have been proposed in the literature. A simple
adjustment with practical applications is to include a short
range mollifier in the nonlinear diffusion [15]. The new well-
posed equation is given by

𝜕𝑢

𝜕𝑡

= div (𝑐 (

∇𝐺

𝜎
∗ 𝑢





) ∇𝑢) , in Ω × (0, 𝑇) ,

𝑢 (0, 𝑥) = 𝑢
0
, in Ω,

𝜕𝑢

𝜕�⃗�

= 0, on 𝜕Ω × (0, 𝑇) ,

(7)

where 𝐺
𝜎
is the Gaussian kernel, as described in Section 2.

Existence and uniqueness of solutions to this modified
Perona-Malik equation have been proved for initial data
𝑢
0
∈ 𝐿

2
(Ω). Another way is to use a higher-order version of

the Perona-Malik equation, examples of which are given in
[16–18].

Some authors consider a new class of fractional-order
anisotropic diffusion equations to remove the noise [19–27].
These proposed equations can be seen as generalizations of
second-order and fourth-order anisotropic diffusion equa-
tions. Numerical results show that these methods can not
only remove noise and eliminate the staircase effect efficiently
in the nontextured region but also preserve the small details
such as textures well in the textured region.

1.2. The TV Framework. The famous total variation method
first proposed by Rudin et al. [28] consists in solving the
following constrained minimization problem:

min∫
Ω

|∇𝑢| ,

∫

Ω

𝑢 𝑑𝑥 = ∫

Ω

𝑢
0
, ∫

Ω





𝑢 − 𝑢

0






2

2
𝑑𝑥 = 𝜂

2
.

(8)

Here, the first constrain indicates that the noise has zero
mean, and the second one uses a priori information that the
standard deviation of the noise is 𝜂. This problem is naturally
linked to the unconstrained problem

min
𝑢∈BV(Ω)

𝐸 (𝑢) = ∫

Ω

|∇𝑢| + 𝜆




𝑢 − 𝑢

0






2

𝐿
2
(Ω)

. (9)

Mathematically, this is reasonable, since it is natural to study
solutions of this problem in the space of functions of bounded
variation, BV(Ω), allowing for discontinuities which are
necessary for edge reconstruction. The TV model has been
studied extensively (see [29–32], et al.) and has proved to be
an invaluable tool for preserving edges in image restoration
problem. Given the success of TV-based diffusion, various
modifications have been introduced. For instance, in [33],
Strongand and Chan propose the Adaptive Total Variation
model

min
𝑢∈BV(Ω)

𝐸
𝑔 (
𝑢) = ∫

Ω

𝑔 (𝑥) |∇𝑢| + 𝜆




𝑢 − 𝑢

0






2

𝐿
2
(Ω)

, (10)

in which they introduce a control factor, 𝑔(𝑥), which slows
the diffusion at likely edges.The factor𝑔(𝑥) controls the speed
of the diffusion andhas demonstrated good results as it aids in
noise reduction. It is also good at reconstructing edges, since
the type of diffusion is the same as that of the original TV
model.

The TV model is well posed, but TV-based denoising
favors the piecewise constant solutions. Sometimes, this also
causes “staircasing effect” [34–41], in which noisy smooth
regions are processed into piecewise constant regions (see
Figures 3–5). The blocky solution fails to satisfy visual
impression and can develop false edges, which can mislead a
human or computer into identifying erroneous features, not
present in the true image.

Some authors consider another regularizing term to
remove the noise [34], which is as follows:

inf
𝑢
𝐸 (𝑢) = ∫

Ω

|∇𝑢|
𝑝(|∇𝑢|)

𝑑𝑥 + 𝜆




𝑓 − 𝑢






2

𝐿
2
(Ω)

, (11)

where lim
𝑠→0

𝑝(𝑠)→2, lim
𝑠→∞

𝑝(𝑠)→1, and 𝑝 is monoton-
ically decreasing.This model should reap the benefits of both
isotropic and TV-based diffusions, as well as a combination
of the two. However, it is difficult to study mathematically,
since the lower semicontinuity of the functional is not readily
evident. In [35], Chen et al. modify the model and propose
a functional with variable exponent, 1 ≤ 𝑝(𝑥) ≤ 2, which
is a combination of total variation based regularization and
Gaussian smoothing.
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From the models mentioned above, we can see that based
on the PDE framework, the diffusivity functions affect the
quality of the reconstructed image. In this paper, based on a
new diffusivity function, we propose a new image denoising
model which generalizes the approaches due to Perona and
Malik [2], Chen et al. [35], and El-Fallah and Ford [42]. In
the next section, we will describe this model more precisely.
In Section 3, we prove the existence and uniqueness of the
proposed model. The theorem can be proved by a similar
argument developed in [15], but due to the presence of high
degeneration and nonlinearity, more careful estimates are
needed. We will give a modified proof in the sections. In the
next two section, we first obtain some properties of the weak
solution for the new model, and then using these properties,
the long-time behavior of the proposed model is established.
In Section 6, we describe an iterative schemewhich converges
to the solution. In the final section, we will give the numerical
results which indicate the newmodel is able to preserve edges
and denoise better than the existing methods, for instance,
the TV model and PMmodel.

2. Nonlinear Hybrid Diffusion Model

2.1. The New Model. In this paper, we propose the following
model:

𝜕𝑢

𝜕𝑡

= div( ∇𝑢

(|∇𝑢|
2
+ 1)

(2−𝑝(|∇𝑢|
2
))/2

), in Ω × (0, 𝑇) ,

(12)
𝑢 (0, 𝑥) = 𝑓, in Ω, (13)

𝜕𝑢

𝜕�⃗�

= 0, on 𝜕Ω × (0, 𝑇) , (14)

where

𝑝 (|∇𝑢|
2
) = 1 +

1

1 + 𝑘|∇𝑢|
2
, 𝑘 > 0, 𝜎 > 0, (15)

𝑓 is the original image, 𝑘 > 0, 𝜎 and𝑇 > 0 are fixed constants,
Ω is a bounded open domain of R𝑁 with the appropriate
smooth boundary, and �⃗� denotes the unit outward normal to
the boundary 𝜕Ω.

2.2. Hybrid Diffusion. As 𝑠 → +∞, 𝑝(𝑠) → 1, the new
divergence operator is changed as follows:

div( ∇𝑢

(|∇𝑢|
2
+ 1)

(2−𝑝(|∇𝑢|))/2
) → div( ∇𝑢

√|∇𝑢|
2
+ 1

) ,

(16)

where the last term is the divergence operator of the mean
curvature diffusion equation [42]. However, when 𝑠 = 0,

𝑝(𝑠) = 2, the original divergence operator is changed as
follows:

div( ∇𝑢

(|∇𝑢|
2
+ 1)

(2−𝑝(|∇𝑢|))/2
) → Δ𝑢, (17)

where the last term is the diffusion term of the heat equation.
Hence, the new model has a hybrid diffusion type which

combined the mean curvature diffusion with the heat diffu-
sion and has the following advantages.

(i) Inside the regions where the magnitude of the gra-
dient of 𝑢 is weak, the new model acts like the heat
equation, resulting in isotropic smoothing.

(ii) Near the region’s boundaries where the magnitude
of the gradient is large, the new model acts like the
mean curvature equation, resulting in anisotropic
smoothing; the regularization is little and the edges
are preserved.

2.3. The New Diffusivity Function. Let

𝐶 (𝑠) = (1 + 𝑠)
(𝑝(𝑠)−2)/2

, (18)

where

𝑝 (𝑠) = 1 +

1

1 + 𝑘𝑠

. (19)

Now, we discuss the properties of 𝐶(𝑠) as follows.

Proposition 1. One has the following:
(a) 𝐶 : [0, +∞) → (0, +∞) is a strict decreasing fun-

ction, and 0 ≤ 𝐶(𝑠) ≤ 1, for 𝑠 ∈ R
+
(see Figure 1(a));

(b) 𝐶(0) = 1, and lim
𝑠→∞

𝐶(𝑠) = 0 (see Figure 1(a));

(c) lim
𝑠→+∞

𝑠𝐶

(𝑠)

𝐶(𝑠)

= −1/2;

(d) lim
𝑠→+∞

√1 + 𝑠𝐶(𝑠) = 1 and lim
𝑠→+∞

𝑠𝐶(𝑠
2
) = 1;

(e) lim
𝑠→+∞

𝑠 𝐶

(𝑠
2
) = 𝑘/2.

Proof. By a direct calculation, we have

𝐶 (𝑠) = exp{−𝑘𝑠 ln (1 + 𝑠)

2 (1 + 𝑘𝑠)

} ,

𝐶

(𝑠) = −𝑘𝐶 (𝑠)

𝑠 (𝑘𝑠 + 1) + (1 + 𝑠) ln (1 + 𝑠)

2 (1 + 𝑠) (1 + 𝑘𝑠)
2

< 0,

(20)

which implies (a)–(e).

Remark 2. In terms of the image processing, it is easy to see
the following.

(1) From (a) and (b), the edge detection function 𝐶(𝑠) is
like that of the original Perona-Malik diffusion.

(2) (c) implies that 𝐶(𝑠) ≈ 1/√𝑠 or 𝐶(𝑠) ≈ 1/√1 + 𝑠 as
𝑠 → +∞.

(3) The diffusion coefficient 𝐶(𝑠) is dependent on the
exponent 𝑝(𝑠), which have the similar function with
the fractional operator [19–27].
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Figure 1: (a) Diffusivity function 𝐶(𝑠), for 𝑘 = 0.01, 0.1, 10 and the PM diffusivity for 𝑘 = 5. (b) The Flux functionF(𝑠) for 𝑘 = 0.01, 0.1, 10

and PM flux function for 𝑘 = 5.

2.4. Forward-Backward Diffusion. For the diffusivity func-
tion 𝐶(𝑠) it follows the new flux function F(𝑠) which is
defined by

F (𝑠) := 𝑠𝐶 (𝑠
2
) , (21)

where the variable 𝑠 stands for the norm of the gradient
|∇𝑢|.

In the two-dimensional case, (32) can be replaced by
[43]

𝜕
𝑡
𝑢 = div (𝐶 (|∇𝑢|

2
) ∇𝑢)

= 𝐶 (|∇𝑢|
2
) 𝑢

𝑇𝑇
+F


(∇𝑢) 𝑢

𝑁𝑁
,

(22)

where we have denoted by 𝑢
𝑁𝑁

and 𝑢
𝑇𝑇

the second deriva-
tives of 𝑢 in the direction𝑁(𝑥, 𝑦) = ∇𝑢/|∇𝑢|which is parallel
to ∇𝑢 and 𝑇(𝑥, 𝑦) in the orthogonal direction to 𝑁(𝑥, 𝑦),
respectively:

𝑢
𝑁𝑁

=

𝑢
2

𝑥
𝑢
𝑥𝑥

+ 𝑢
2

𝑦
𝑢
𝑦
𝑦 + 2𝑢

𝑥
𝑢
𝑦
𝑢
𝑥𝑦

|∇𝑢|
2

,

𝑢
𝑇𝑇

=

𝑢
2

𝑥
𝑢
𝑦𝑦

+ 𝑢
2

𝑦
𝑢
𝑥
𝑥 − 2𝑢

𝑥
𝑢
𝑦
𝑢
𝑥𝑦

|∇𝑢|
2

.

(23)

Remark 3. From Proposition 1(d), we impose

lim
𝑠→∞

F
(𝑠)

𝐶 (𝑠
2
)

= 0, (24)

which implies that it is preferable to smooth more in the 𝑇-
direction than in the𝑁-direction.

Proposition 4. There exists 𝑠
0
∈ (0, +∞) such that F

(𝑠) ≥

0 for |𝑠| ≤ 𝑠
0
, and F

(𝑠) < 0 for |𝑠| > 𝑠
0
(see Figure 1(b)).

Moreover,

𝑠
0
> 𝑒

𝑘
− 1. (25)

Proof. By a direct calculation, we have

F

(𝑠) = 𝐶 (𝑠

2
) + 2𝑠

2
𝐶

(𝑠
2
)

= 𝐶 (𝑠
2
)

ℎ (𝑠
2
)

(1 + 𝑠
2
) (1 + 𝑘𝑠

2
)
2
,

(26)

where

ℎ (𝑠) = (𝑘
2
+ 𝑘) 𝑠

2
+ (2𝑘 + 1) 𝑠 + 1 − 𝑘𝑠 (1 + 𝑠) ln (1 + 𝑠) ,

(27)

for 𝑠 > 0. Then

ℎ

(𝑠) = (2𝑘

2
+ 𝑘) 𝑠 + (2𝑘 + 1) − 𝑘 (2𝑠 + 1) ln (1 + 𝑠) ,

ℎ

(𝑠) = 𝑘 ((2𝑘 − 1) − 2 ln (1 + 𝑠) +

1

1 + 𝑠

)

< 2𝑘 (𝑘 − ln (1 + 𝑠))

< 0,

(28)

for 𝑘 < ln(1 + 𝑠); that is, 𝑠 > 𝑒
𝑘
− 1. It is noticed that, for

𝑠 = 𝑒
𝑘
− 1,

ℎ (𝑠) = 𝑘𝑠
2
+ (2𝑘 + 1 − 𝑘

2
) 𝑠 + 1 > 0,

lim
𝑠→+∞

ℎ (𝑠) = −∞.

(29)
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Because of the continuousness of 𝑔(𝑠), there exists a unique
point 𝑠

0
∈ (0, +∞) such that ℎ(𝑠

0
) = 0, and ℎ(𝑠) ≥ 0 for

𝑒
𝑘
− 1 < 𝑠 ≤ 𝑠

0
, and ℎ(𝑠) < 0 for 𝑠 > 𝑠

0
. For 𝑘 > ln(1 + 𝑠), that

is, 0 < 𝑠 < 𝑒
𝑘
− 1,

ℎ (𝑠) = (𝑘
2
+ 𝑘) 𝑠

2
+ (2𝑘 + 1) 𝑠 + 1 − 𝑘𝑠 (1 + 𝑠) ln (1 + 𝑠)

> 𝑘𝑠
2
+ (2𝑘 + 1 − 𝑘

2
) 𝑠 + 1

> 0.

(30)

From Proposition 4, the new model is of forward diffu-
sion along isophotes (i.e., lines of constant grey value) and
of forward-backward diffusion along flow lines (i.e., lines of
maximal grey value variation).

Remark 5. (1) From Proposition 4, the threshold value 𝑠
0

about forward and backward diffusion is estimated as follows:

𝑠
0
> 𝑒

𝑘
− 1. (31)

Therefore, 𝑘 plays the role of a control parameter separating
forward from backward diffusion areas.

(2) From Figure 2, we can see, for 𝑘 ≥ 1, the part of the
backward diffusion (𝐹(𝑠) < 0) is not evident; for 𝑘 = 0.02,
the flux function is similar to the PM flux.

2.5. The Modified Regularization Equation. Using the similar
skill in [15], the new model can be regularized by

𝜕𝑢

𝜕𝑡

= div (𝐶 (




∇𝐺

𝜎
∗ 𝑢






2
) ∇𝑢) , in Ω × (0, 𝑇) , (32)

𝑢 (0, 𝑥) = 𝑓, in Ω, (33)

𝜕𝑢

𝜕�⃗�

= 0, on 𝜕Ω × (0, 𝑇) , (34)

where 𝐺
𝜎
(𝑥) is the Gaussian kernel, namely,

𝐺
𝜎
(𝑥) =

1

(4𝜋𝜎)
𝑁/2

exp(−|𝑥|
2

4𝜎

) . (35)

This small amount of linear filtering allows 𝐶(|∇𝐺
𝜎
∗ 𝑢|

2
)

to measure edges of 𝑢 in a more “global” sense, so that it is
not easily affected by local discretization. It is noticed that
equation (32)–(34) is forward diffusion. In [15], while use
of the mollifier may seem to be counterproductive, since
the original intention was to avoid the blurring caused by
linear filtering, the results can be quite impressive and are
in fact a great improvement over linear filtering. In the new
model, the forward-backward diffusion under control by the
factor 𝑘, and therefore, we do not use this skill in numerical
Experiments.

3. Existence and Uniqueness of
Weak Solutions

In this section, we establish the existence and uniqueness of
weak solutions of the proposedmodel (32)–(34) following the
arguments in [15, 43, 44].
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Figure 2: Flux function F(𝑠) for 𝑘 = 0.01, 0.02, 0.1, 1, 10 and PM
flux function for 𝑘 = 5.

The standard notations are used throughout. We denote
by 𝐻

𝑘
(Ω), 𝑘 a positive integer, the set of all functions 𝑢

defined in Ω such that 𝑢 and its distributional derivatives
𝜕
𝑚
𝑢/𝜕𝑥

𝑚 of order |𝑚| = ∑
𝑁

𝑗=1
𝑚
𝑗
≤ 𝑘 all belong to 𝐿

2
(Ω).

𝐻
𝑘
(Ω) is a Hilbert space with the norm

‖𝑢‖
𝐻
𝑘
(Ω)

= ( ∑

|𝑚|≤𝑘

∫

Ω










𝜕
𝑚
𝑢

𝜕𝑥
𝑚










2

𝑑𝑥)

1/2

. (36)

The space 𝐿∞(0, 𝑇;𝑋) consists of all functions 𝑢 such that,
for almost every 𝑡 in (0, 𝑇), 𝑢 belongs to 𝑋. 𝐿∞(0, 𝑇;𝑋) is a
normed space with the norm

‖𝑢‖𝐿
∞
(0,𝑇;𝑋)

= ess sup
0≤𝑡≤𝑇

‖𝑢 (⋅, 𝑡)‖𝑋
. (37)

We denote by𝐻1
(Ω)

 the dual of𝐻1
(Ω).

We introduce the solution space𝑊 of the problem (32)–
(34) as follows:

𝑊(0, 𝑇) = {𝑤 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
(Ω)) ;

𝑑𝑤

𝑑𝑡

∈ 𝐿
2
(𝑄

𝑇
)} . (38)

Obviously,𝑊 is a Banach space with the norm

‖𝑤‖𝑊
= ‖𝑤‖𝐿

∞
(0,𝑇;𝐻

1
(Ω))

+










𝜕𝑤

𝜕𝑡








𝐿
2
(𝑄
𝑇
)

. (39)

The solutions considered here are in the followingweak sense.

Definition 6. A function 𝑢 is called a weak solution of the
problem (32)–(34), if 𝑢 ∈ 𝑊satisfies (32) and conditions (33)
and (34) a.e. with derivatives of 𝑢 in the sense of distributions.
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(a) Noisy: 𝜎 = 20, PSNR = 22.08 (b) Original

(c) AOS: PSNR = 39.00, MAE = 1.86 (d) PMS: PSNR = 40.70, MAE = 1.62

(e) PM: PSNR = 39.74, MAE = 1.78 (f) TV: PSNR = 37.08, MAE = 2.52

Figure 3: Synthetic image (128×128) (a) Noisy image corrupted by Gaussian noise for 𝜎 = 20. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 0.02, 𝜏 = 2 (11 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (62 steps). (e) PM algorithm, 𝐾 = 5, 𝜏 = 0.25 (90 steps). (f) TV algorithm,
𝜏 = 0.1 (360 steps).
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(a) Noisy: 𝜎 = 35, PSNR = 17.19 (b) Original

(c) AOS: PSNR = 35.43, MAE = 2.75 (d) PMS: PSNR = 36.61, MAE = 2.43

(e) PM: PSNR = 34.81, MAE = 2.76 (f) TV: PSNR = 34.05, MAE = 3.65

Figure 4: Synthetic image (128 × 128). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 35. (b) Original image. (c) Our algorithm by
AOS, 𝑘 = 0.02, 𝜏 = 2 (11 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (115 steps). (e) PM algorithm, 𝐾 = 7, 𝜏 = 0.25 (130 steps). (f) TV
algorithm, 𝜏 = 0.1 (600 steps).
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(a) Noisy: 𝜎 = 50, PSNR = 14.11 (b) Original

(c) AOS: PSNR = 32.94, MAE = 3.48 (d) PMS: PSNR = 33.72, MAE = 3.30

(e) PM: PSNR = 31.90, MAE = 3.66 (f) TV: PSNR = 31.36, MAE = 4.88

Figure 5: Synthetic image (128 × 128). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 50. (b) Original image. (c) Our algorithm by
AOS, 𝑘 = 0.02, 𝜏 = 2 (11 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (115 steps). (e) PM algorithm, 𝐾 = 7, 𝜏 = 0.25 (130 steps). (f) TV
algorithm, 𝜏 = 0.1 (600 steps).
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We will show the existence of weak solutions by the
Schauder fixed point theorem. For this purpose, we need to
discuss the corresponding linearized problem

𝜕𝑢

𝜕𝑡

= div (𝐶 (




∇𝐺

𝜎
∗ 𝑤






2
) ∇𝑢) , in Ω × (0, 𝑇) , (40)

𝑢 (0, 𝑥) = 𝑓, in Ω, (41)

𝜕𝑢

𝜕�⃗�

= 0, on 𝜕Ω × (0, 𝑇) . (42)

Proposition 7. For any 𝑓 ∈ 𝐿
2
(Ω), the problem (40)–(42)

admits a unique weak solution 𝑢 ∈ 𝑊.

By classical theory, Proposition 7 can be proved by the
Galerkin method (see [29, 31] for details).

Now, the theorem for the existence and uniqueness of
weak solutions is stated as follow.

Theorem 8. Let 𝑓 ∈ 𝐻
1
(Ω) and ‖ 𝑓‖

𝐻
1
(Ω)

is appropriately
small. Then the problem (32)–(34) admits one and only one
weak solution 𝑢(𝑥, 𝑡) such that 𝜕𝑢/𝜕𝑡 ∈ 𝐿

2
(𝑄

𝑇
), 𝑢 ∈

𝐿
∞
(0, 𝑇;𝐻

1
(Ω) ∩ 𝑢 ∈ 𝐶([0, 𝑇], 𝐿

2
(Ω)).

Proof. Firstly, we consider the proof of the existence, which is
based on the Schauder fixed point argument. Let𝑤 ∈ 𝑊 such
that

‖𝑤‖𝐿
∞
(0,𝑇;𝐿

2
(Ω))

≤




𝑓



𝐿
2
(Ω)

,










𝜕𝑤

𝜕𝑡








𝐿
2
(𝑄
𝑇
)

≤




𝑓



𝐻
1
(Ω)

.

(43)

We consider the following linear problem (𝑃
𝑤
):

⟨

𝑑𝑢 (𝑡)

𝑑𝑡

, V⟩
𝐻
1
(Ω)

×𝐻
1
(Ω)

+ ∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑤






2
) ∇𝑢 (𝑡) ∇V (𝑡) 𝑑𝑥 = 0

(𝑃
𝑤
)

for all V ∈ 𝐻
1
(Ω), a.e. 𝑡 ∈ [0, 𝑇]. Since 𝑤 and 𝜕𝑤/𝜕𝑡

satisfy (43), then |∇𝐺
𝜎
∗ 𝑤| and |∇𝐺

𝜎
∗ (𝜕𝑤/𝜕𝑡)| belong to

𝐿
∞
((0, 𝑇); 𝐶

∞
(Ω)) and there exists a constant𝑀 = 𝑀(𝐺

𝜎
, ‖

𝑓‖
𝐻
1
(Ω)

) such that |∇𝐺
𝜎
∗ 𝑤| ≤ 𝑀 and |∇𝐺

𝜎
∗ (𝜕𝑤/𝜕𝑡)| ≤ 𝑀

a.e. 𝑡, for all 𝑥 ∈ Ω. Since 𝐶(𝑠) is decreasing and positive, it
follows that a.e. in (0, 𝑇) × Ω:

1 ≥ 𝐶 (




∇𝐺

𝜎
∗ 𝑤






2
) ≥ 𝐶 (𝑀

2
) = ]. (44)

Then by applying Proposition 7 on the linearized problem,we
will prove that the problem (𝑃

𝑤
) has a unique solution 𝑢

𝑤
∈

𝑊 satisfying the estimates




𝑢
𝑤




𝐿
∞
(0,𝑇;𝐻

1
(Ω))

≤ 𝑐
1
, (45)





𝑢
𝑤




𝐿
∞
(0,𝑇;𝐿

2
(Ω))

≤




𝑓



𝐿
2
(Ω)

, (46)









𝜕𝑢
𝑤

𝜕𝑡








𝐿
2
(𝑄
𝑇
)

≤




𝑓



𝐻
1
(Ω)

, (47)

where 𝑐
1
is the constant depending only on the constant ],𝐺

𝜎
,

and ‖ 𝑓‖
𝐻
1
(Ω)

. Choosing V = 𝑢
𝑤
in (𝑃

𝑤
), integrating over the

interval (0, 𝑡), we arrive to the inequality

1

2

∫

Ω

𝑢
2

𝑤
𝑑𝑥 + ]∫

𝑡

0

∫

Ω





∇𝑢

𝑤






2
𝑑𝑥 𝑑𝑠 ≤

1

2

∫

Ω

𝑓
2
𝑑𝑥, (48)

which implies (46). Choosing V = 𝜕𝑢
𝑤
/𝜕𝑡 in (𝑃

𝑤
), integrating

by parts yields

∫

Ω

(

𝜕𝑢
𝑤

𝜕𝑡

)

2

𝑑𝑥 +

1

2

∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑤






2
)

𝜕




∇𝑢

𝑤






2

𝜕𝑡

𝑑𝑥 = 0.

(49)

Integrating over the interval (0, 𝑡) we arrive to that

∫

𝑡

0

∫

Ω

(

𝜕𝑢
𝑤

𝜕𝑠

)

2

𝑑𝑥 𝑑𝑠 +

1

2

∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑤






2
)




∇𝑢

𝑤






2
𝑑𝑥

=

1

2

∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑤






2
)




∇𝑓






2
𝑑𝑥

+

1

2

∫

𝑡

0

∫

Ω

𝐶

(




∇𝐺

𝜎
∗ 𝑤






2
)

× ∇ (𝐺
𝜎
∗ 𝑤)∇(𝐺

𝜎
∗

𝜕𝑤

𝜕𝑠

)




∇𝑢

𝑤






2
𝑑𝑥 𝑑𝑠.

(50)

From Proposition 1 and (48), noticing that |𝐶(𝑠2)𝑠| ≤ 𝑘, we
can deduce that

∫

𝑡

0

∫

Ω

(

𝜕𝑢
𝑤

𝜕𝑠

)

2

𝑑𝑥 𝑑𝑠 +

]

2

∫

Ω

|∇𝑢|
2
𝑑𝑥

≤ ∫

Ω





∇𝑓






2
𝑑𝑥 +

𝑀𝑘

4]
∫

Ω

𝑓
2
𝑑𝑥 𝑑𝑠.

(51)

Since ‖ 𝑓‖
𝐻
1
(Ω)

is small, letting𝑀𝑘/(8]) ≤ 1 yields (45) and
(47). From (45)–(47), we introduce the subspace 𝑊

0
of 𝑊

defined by

𝑊
0
= {𝑤 ∈ 𝑊(0, 𝑇) , 𝑤 (0) = 𝑓

‖𝑤‖𝐿
∞
(0,𝑇;𝐻

1
(Ω))

≤ 𝑐
1
,

‖𝑤‖𝐿
∞
(0,𝑇;𝐿

2
(Ω))

≤




𝑓



𝐿
2
(Ω)

,










𝑑𝑤

𝑑𝑡








𝐿
2
(𝑄
𝑇
)

≤




𝑓



𝐻
1
(Ω)

} .

(52)

By construction,𝑤 → 𝑆(𝑤) ≡ 𝑢
𝑤
is a mapping from𝑊

0
into

𝑊
0
. Moreover, one can prove that 𝑊

0
is not empty, convex,

and weakly compact in𝑊(0, 𝑇).
In order to use the Schauder fixed point theorem, we need

to prove that the mapping 𝑆 : 𝑤 → 𝑢
𝑤
is weakly continuous

from𝑊
0
into𝑊

0
. Let𝑤

𝑗
be a sequence that converges weakly

to some 𝑤 in 𝑊
0
and let 𝑢

𝑗
= 𝑢

𝑤
𝑗

. We have to prove that
𝑆(𝑤

𝑗
) = 𝑢

𝑗
converges weakly to 𝑆(𝑤) = 𝑢

𝑤
. From (45)–

(47), and classical results of compact inclusion in Sobolev
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spaces [45], we can extract from 𝑤
𝑗
, respectively, from 𝑢

𝑗
, a

subsequence such that, for some 𝑢, we have

𝑑𝑢
𝑗

𝑑𝑡

⇀

𝑑𝑢

𝑑𝑡

, weakly in 𝐿
2
(𝑄

𝑇
) ,

𝑢
𝑗
→ 𝑢, in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝜕𝑢
𝑗

𝜕𝑥
𝑘

⇀

𝜕𝑢

𝜕𝑥
𝑘

, weakly ∗ in 𝐿
∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑤
𝑗
→ 𝑤, in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝜕𝐺
𝜎

𝜕𝑥
𝑘

∗ 𝑤
𝑗
→

𝜕𝐺
𝜎

𝜕𝑥
𝑘

∗ 𝑤,

in 𝐿
2
(Ω) , a.e. on (0, 𝑇) × Ω,

𝐶 (






∇𝐺

𝜎
∗ 𝑤

𝑗







2

) → 𝐶(




∇𝐺

𝜎
∗ 𝑤






2
) ,

in 𝐿
2
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑗
(0) → 𝑢 (0) , in 𝐿

2
(Ω) .

(53)

The above convergence allows us to pass to the limit in the
problem (𝑃

𝑤
𝑗

) and obtain 𝑢 = 𝑢
𝑤
= 𝑆(𝑤). Moreover, since

the solution is unique, the whole sequence 𝑢
𝑗

= 𝑆(𝑤
𝑗
)

converges weakly in 𝑊
0
to 𝑢 = 𝑆(𝑤); that is, 𝑆 is weakly

continuous. Consequently, thanks to Schauder’s fixed-point
theorem, there exists 𝑤 ∈ 𝑊

0
such that 𝑤 = 𝑆(𝑤) = 𝑢

𝑤
. The

function 𝑢
𝑤
solves (32)–(34).

Now,we turn to the proof of the uniqueness, following the
idea in [44]. Let 𝑢

1
and 𝑢

2
be twoweak solutions of (32)–(34).

For almost every 𝑡 in [0, 𝑇] and 𝑖 = 1, 2, we have

𝑑

𝑑𝑡

(𝑢
1
− 𝑢

2
) (𝑡) − div (𝛼

1
(𝑡) ∇ (𝑢

1
− 𝑢

2
) (𝑡))

= div ((𝛼
1
− 𝛼

2
) (𝑡) ∇𝑢

2
(𝑡)) ,

(𝑢
1
− 𝑢

2
) (0, 𝑥) = 0, in Ω,

𝜕 (𝑢
1
− 𝑢

2
)

𝜕�⃗�

= 0, on 𝜕Ω × (0, 𝑇) ,

(54)

in the distribution sense, where

𝛼
𝑖
= 𝐶 (





∇𝐺

𝜎
∗ 𝑢

𝑖






2
) . (55)

Then multiplying the above equality by (𝑢
1
− 𝑢

2
), integrating

over Ω, and using the Neumann boundary condition, we get
a.e. 𝑡 ∈ [0, 𝑇],

1

2

𝑑

𝑑𝑡

∫

Ω

(𝑢
1
(𝑡) − 𝑢

2
(𝑡))

2
𝑑𝑥 + ∫

Ω

𝛼
1





∇𝑢

1
(𝑡) − ∇𝑢

2
(𝑡)





2
𝑑𝑥

= −∫

Ω

(𝛼
1
− 𝛼

2
) ∇𝑢

2
(𝑡) ⋅ (∇𝑢

1
(𝑡) − ∇𝑢

2
(𝑡)) 𝑑𝑥.

(56)

Since 𝐶(𝑠) is decreasing and positive, it follows that a.e. in
(0, 𝑇) × Ω, 𝛼

𝑖
≥ ], which implies from (56),

1

2

𝑑

𝑑𝑡

∫

Ω

(𝑢
1
(𝑡) − 𝑢

2
(𝑡))

2
𝑑𝑥+]∫

Ω





∇𝑢

1
(𝑡) − ∇𝑢

2
(𝑡)





2
𝑑𝑥

≤ ∫

Ω





𝛼
1
− 𝛼

2










∇𝑢

2
(𝑡) ⋅ (∇𝑢

1
(𝑡) − ∇𝑢

2
(𝑡))





𝑑𝑥.

(57)

Moveover, since 𝐶(𝑠), 𝐺
𝜎
1

, and 𝐺
𝜎
are smooth, we have





𝛼
1
(𝑡) − 𝛼

2
(𝑡)



𝐿
∞
(Ω)

≤ 𝐶
4





𝑢
1
(𝑡) − 𝑢

2
(𝑡)



𝐿
2
(Ω)

, (58)

where 𝐶
4
is a constant that depends only on 𝑔

1
, ], and 𝐺

𝜎
.

From (58) and by using Young’s inequality, we obtain

1

2

𝑑

𝑑𝑡

∫

Ω

(𝑢
1 (
𝑡) − 𝑢

2 (
𝑡))

2
𝑑𝑥+ ]∫

Ω





∇𝑢

1 (
𝑡) − ∇𝑢

2 (
𝑡)





2
𝑑𝑥

≤

1

2]
𝐶
2

4
∫

Ω

(𝑢
1 (
𝑡) − 𝑢

2 (
𝑡))

2
𝑑𝑥∫

Ω





∇𝑢

2 (
𝑡)





2
𝑑𝑥

+

]

2

∫




∇ (𝑢

1
− 𝑢

2
) (𝑡)






2
𝑑𝑥,

(59)

from which we deduce
𝑑

𝑑𝑡

∫

Ω

(𝑢
1
(𝑡) − 𝑢

2
(𝑡))

2
𝑑𝑥

≤

1

]
𝐶
2

4
∫

Ω

(𝑢
1
(𝑡) − 𝑢

2
(𝑡))

2
𝑑𝑥∫

Ω





∇𝑢

2
(𝑡)





2
𝑑𝑥.

(60)

Since 𝑢
1
(0) = 𝑢

2
(0) = 𝑓, using Gronwall’s inequality yields

∫

Ω

(𝑢
1
(𝑡) − 𝑢

2
(𝑡))

2
𝑑𝑥 ≤ 0; (61)

that is, 𝑢
1
= 𝑢

2
.

Remark 9. Let 𝑢 be the weak solution of problem (32)–(34)
obtained in the proof of Theorem 8. Then from the proof we
get that 𝑢 ∈ 𝐿

∞
(R+

; 𝐻
1
(Ω)), 𝜕𝑢/𝜕𝑡 ∈ 𝐿

2
(𝑄

∞
), where 𝑄

∞
=

Ω ×R+.

4. Some Properties of Weak Solution

In this section, we first investigate the continuity with
respect to initial data of the weak solution for (32)–(34), and
then investigate the stability of the weak solution and the
maximum principle. According to the uniqueness proof in
Theorem 8, we obtain the following theorem.

Theorem 10. Assume 𝑢 is the weak solutions of problem (32)–
(34) with the initial data 𝑓. Then

∫

Ω

(𝑢 − 𝑓) 𝑑𝑥 = 0,





𝑢 (⋅, 𝑡) − 𝑓

Ω




𝐿
2
(Ω)

≤ 𝑒
−]𝑡/𝜇




𝑓 − 𝑓

Ω




𝐿
2
(Ω)

,

(62)

𝑎.𝑒. 𝑡 ∈ [0, +∞), where 𝑓
Ω

= (

1

|Ω|

) ∫
Ω
𝑓𝑑𝑥, and |Ω| is

Lebesgue measure ofΩ.
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Proof. Let 𝑢 be the solutions for problem (32)–(34) with the
initial data 𝑓. For almost every 𝑡 in [0, 𝑇], we have

𝜕𝑢

𝜕𝑡

= div (𝐶 (




∇𝐺

𝜎
∗ 𝑢






2
) ∇𝑢) , in Ω × (0, 𝑇) , (63)

𝑢 (0, 𝑥) = 𝑓, in Ω, (64)

𝜕𝑢

𝜕�⃗�

= 0, on 𝜕Ω × (0, 𝑇) , (65)

in the distribution sense. Integrating over the interval (0, 𝑡)
and using the Neumann boundary condition yield

∫

Ω

(𝑢 − 𝑓) 𝑑𝑥 = 0. (66)

Then, multiplying the above equality (63) by (𝑢 − 𝑓
Ω
), and

integrating overΩ, and integrating by parts yield

1

2

𝑑

𝑑𝑡

∫

Ω

(𝑢 − 𝑓
Ω
)
2
𝑑𝑥 + ∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑢






2
) |∇𝑢|

2
𝑑𝑥 = 0.

(67)

Using the following Poincaré-Wirtinger inequality [46, page
148], we have










𝑢 −

1

|Ω|

∫

Ω

𝑢𝑑𝑥










2

𝐿
2
(Ω)

=




𝑢 − 𝑓

Ω






2

𝐿
2
(Ω)

≤ 𝜇∫

Ω

|∇𝑢|
2
𝑑𝑥,

(68)

with the constant 𝜇 ≡ 𝜇(Ω). Substituting (68) to (67) yields

𝑑

𝑑𝑡

∫

Ω

(𝑢 − 𝑓
Ω
)
2
𝑑𝑥 ≤ −

2]

𝜇

∫

Ω

(𝑢 − 𝑓
Ω
)
2
𝑑𝑥. (69)

Multiplying this inequality by 𝑒2]𝑡/𝜇 and integrating over the
interval (0, 𝑡) we arrive to the inequality

∫

Ω

(𝑢 − 𝑓
Ω
)
2
𝑑𝑥 ≤ 𝑒

−2]𝑡/𝜇
∫

Ω

(𝑓 − 𝑓
Ω
)
2
𝑑𝑥. (70)

Hence, we obtain the assertion of the theorem.

Next, let us build upon themaximumprinciple as follows.

Theorem 11. Let 𝑢 be the weak solutions of problem (32)–(34)
with the initial data 𝑓 and 𝑓 ∈ 𝐿

∞
(Ω). Then

inf
𝑥∈Ω

𝑓 ≤ 𝑢 ≤ sup
𝑥∈Ω

𝑓. (71)

Proof. Let 𝐼 := sup
𝑥∈Ω

𝑓, and 𝐽 := inf
𝑥∈Ω

𝑓. Multiply (32) by
(𝑢 − 𝐼)

+
, where

(𝑢 − 𝐼)
+
= {

𝑢 − 𝐼, if 𝑢 −𝑀 > 0,

0, otherwise,
(72)

and integrate over Ω to get

1

2

𝑑

𝑑𝑡

∫

Ω

(𝑢 (𝑡) − 𝐼)
2

+
𝑑𝑥

+ ∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑢

𝑖






2
)




∇(𝑢 (𝑡) − 𝐼)

+






2
𝑑𝑥 = 0.

(73)

Then
1

2

𝑑

𝑑𝑡

∫

Ω

(𝑢 (𝑡) − 𝐼)
2

+
𝑑𝑥 ≤ 0. (74)

Therefore, (1/2)(𝑑/𝑑𝑡) ∫
Ω
(𝑢(𝑡) − 𝐼)

2

+
𝑑𝑥 is decreasing in 𝑡, and

since

∫

Ω

(𝑢 (𝑡) − 𝐼)
2

+
𝑑𝑥 ≥ 0, ∫

Ω

(𝑢 (𝑡) − 𝐼)
2

+
𝑑𝑥







𝑡=0

= 0, (75)

we have that

∫

Ω

(𝑢 (𝑡) − 𝐼)
2

+
𝑑𝑥 = 0, ∀𝑡 ∈ [0, +∞) , (76)

and so

𝑢 (𝑡) ≤ sup
𝑥∈Ω

𝑓 a.e. on Ω, ∀𝑡 > 0. (77)

Multiplying (32) by (𝑢−𝐽)
−
, a similar argument yields that 𝑢 ≥

𝐽 for all 𝑡 ∈ [0, +∞). Equation (71) is followed directly.

5. Behavior as 𝑡 → ∞

In this section, we investigate the asymptotic behavior of
the weak solution as time tends to infinity and obtain the
equilibrium weak solution.

Lemma 12. Let 𝑢 be the weak solutions of problem (32)–(34)
with the initial data 𝑓 ∈ 𝐿

∞
(Ω) ∩ 𝐻

1
(Ω), and lim

𝑛→∞
𝑡
𝑛
=

+∞. Then

(i) for all 𝜏 ≥ 0, {𝑢(𝑡
𝑛
+ 𝜏, ⋅)}

∞

𝑛=1
→ 𝑓

Ω
in 𝐿2(Ω),

(ii) there exists a subsequence of {𝑡
𝑛
}
∞

𝑛=1
, denoted also by

itself, such that for all 𝑇 ≥ 0, {𝑢(⋅, 𝑡
𝑛
+ ⋅)}

∞

𝑛=1
converges

to 𝑓
Ω

weakly in 𝐿
2
((0, 𝑇),𝐻

1
(Ω)) and strongly in

𝐿
2
(𝑄

𝑇
), and {(𝜕𝑢(⋅, 𝑡

𝑛
+⋅))/𝜕𝑡}

∞

𝑛=1
converges to 0weakly

in 𝐿2(𝑄
𝑇
).

Proof. For all𝑇 ≥ 0, since {𝑢(𝑡
𝑛
+⋅, ⋅)}

∞

𝑛=1
are uniformbounded

in 𝐿
∞
((0, 𝑇);𝐻1

(Ω)) ∩ 𝐿
∞
(𝑄

𝑇
), and 𝜕𝑢/𝜕𝑡 is bounded in

𝐿
2
(𝑄

𝑇
), and then there exist 𝑔(𝑡, 𝑥) and the subsequence of

{𝑡
𝑛
}
∞

𝑛=1
which is independent on 𝑇, and denoted by {𝑡

𝑛
𝑗

}
∞

𝑗=1
,

such that

𝑢 (𝑡
𝑛
𝑗

+ ⋅, ⋅) ⇀ 𝑔 weakly in

𝐿
∞
((0, 𝑇) ;𝐻

1
(Ω)) ∩ 𝐿

∞
(𝑄

𝑇
) ,

𝑢 (𝑡
𝑛
𝑗

+ ⋅, ⋅) → 𝑔 strongly in 𝐿
2
(𝑄

𝑇
) ,

𝜕𝑢 (𝑡
𝑛
𝑗

+ ⋅, ⋅)

𝜕𝑡

⇀

𝜕𝑔

𝜕𝑡

weakly in 𝐿
2
(𝑄

𝑇
) ,

(78)

where 𝑔 ∈ 𝐿
∞
((0, 𝑇);𝐻

1
(Ω)) ∩ 𝐿

∞
(𝑄

𝑇
). From Theorem 10,

we have

∫

Ω

(𝑢 (𝑡
𝑛
𝑗

+ 𝑡, 𝑥) − 𝑓
Ω
)

2

𝑑𝑥 ≤ 𝑒
−2](𝑡
𝑛𝑗
+𝑡)

∫

Ω

(𝑓 − 𝑓
Ω
)
2
𝑑𝑥.

(79)
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Letting 𝑗 → ∞, we can obtain the first part of Lemma 12.
For (79), integrate over (0, 𝑇) to get

∫

𝑇

0

∫

Ω

(𝑢 (𝑡
𝑛
𝑗

+ 𝑡, 𝑥) − 𝑓
Ω
)

2

𝑑𝑥

≤ 2]𝑒
−2]𝑡
𝑛𝑗
(1 − 𝑒

−2]𝑇
)∫

Ω

(𝑓 − 𝑓
Ω
)
2
𝑑𝑥.

(80)

Letting 𝑗 → ∞, we can obtain that

𝑢 (𝑡
𝑛
𝑗

+ ⋅, ⋅) → 𝑓
Ω

strongly in 𝐿
2
(𝑄

𝑇
) . (81)

Noticing that 𝑢(𝑡
𝑛
𝑗

+⋅, ⋅) → 𝑔 strongly in 𝐿
2
(𝑄

𝑇
), we have

𝑔 (𝑡, 𝑥) = 𝑓
Ω
, a.e. (𝑥, 𝑡) ∈ 𝑄

𝑇
. (82)

Since (𝜕𝑢(𝑡
𝑛
𝑗

+ ⋅, ⋅))/𝜕𝑡 ⇀ 𝜕𝑔/𝜕𝑡 weakly in 𝐿
2
(𝑄

𝑇
), and

therefore, we have

𝜕𝑢 (𝑡
𝑛
𝑗

+ ⋅, ⋅)

𝜕𝑡

⇀ 0 weakly in 𝐿
2
(𝑄

𝑇
) .

(83)

Hence, we obtain the remaining part of the lemma.

Now let us consider the following problem:

div (𝐶 (




∇𝐺

𝜎
∗ 𝑢






2
) ∇𝑢) = 0, in Ω, (84)

𝜕𝑢

𝜕�⃗�

= 0, on 𝜕Ω, (85)

∫

Ω

(𝑢 − 𝑓) = 0. (86)

Theorem 13. Assume 𝑓 ∈ 𝐿
1
(Ω). Then the problem (84)–(86)

admits one and only one weak solution 𝑢 ∈ 𝐻
1
(Ω) such that

∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑢






2
) ∇𝑢∇V = 0, ∀V ∈ 𝐶

∞
(Ω) ,

∫

Ω

(𝑢 − 𝑓) = 0.

(87)

Proof. It is clearly that 𝑢 = 𝑓
Ω
is one solution for the problem

(84)–(86).
Next we we turn to the proof of the uniqueness of the

solution for the problem (84)–(86). Let 𝑢
1
and 𝑢

2
be twoweak

solutions of (84)–(86).Multiplying (84) by 𝑢, integrating over
Ω, and using the Neumann boundary condition, we get

∫

Ω

𝐶 (




∇𝐺

𝜎
∗ 𝑢






2
) |∇𝑢|

2
= 0. (88)

Using the following Poincaré-Wirtinger inequality, we have










𝑢 −

1

|Ω|

∫

Ω

𝑢 𝑑𝑥










2

𝐿
2
(Ω)

=




𝑢 − 𝑓

Ω






2

𝐿
2
(Ω)

≤ 𝜇∫

Ω

|∇𝑢|
2
𝑑𝑥,

(89)

with the constant 𝜇 ≡ 𝜇(Ω). Substituting (86) and (89) to (88)
yields

∫

Ω

(𝑢 − 𝑓
Ω
)
2
𝑑𝑥 = 0. (90)

Then

∫

Ω

(𝑢
1
− 𝑢

2
)
2
𝑑𝑥 ≤ ∫

Ω

(𝑢
1
− 𝑓

Ω
)
2
𝑑𝑥 + ∫

Ω

(𝑢
2
− 𝑓

Ω
)
2
𝑑𝑥 = 0.

(91)

That is, 𝑢
1
= 𝑢

2
.

Theorem 14. let 𝑢 be the weak solution of problem (32)–(34),
Thenwhen 𝑡 → ∞, 𝑢 tends to be steady-state solution𝑓

Ω
, that

is, the solution for Problem (84)–(86).

Proof. Let
𝑢
𝑛
(⋅, ⋅) = 𝑢 (𝑡

𝑛
+ ⋅, ⋅) . (92)

Then 𝑢
𝑛 is the weak solutions of problem (32)–(34) with the

initial data 𝑢(𝑡
𝑛
, ⋅). From Lemma 12, we obtain there exists a

subsequence of {𝑢𝑛}∞
𝑛=1

, denoted also by itself, such that, for
all 𝑇 ≥ 0,

𝑢
𝑛
⇀ 𝑓

Ω
weakly in 𝐿

∞
((0, 𝑇) ;𝐻

1
(Ω)) ∩ 𝐿

∞
(𝑄

𝑇
) ,

𝑢
𝑛
→ 𝑓

Ω
strongly in 𝐿

2
(𝑄

𝑇
) ,

𝜕𝑢
𝑛

𝜕𝑡

⇀ 0 weakly in 𝐿
2
(𝑄

𝑇
) ,

(93)

which implies that as 𝑡 → ∞, 𝑢 tends to be steady-state
solution 𝑓

Ω
, which is the unique solution for problem (84)–

(86).

Remark 15. FromTheorems 10, 11, and 14, we can observe the
following:

(i) inf
𝑥∈Ω

𝑓 ≤ 𝑢 ≤ sup
𝑥∈Ω

𝑓, which means that no new
features are introduced in the image in process.

(ii) 𝑢
Ω
, the mean of 𝑢, is constant 𝑓

Ω
.

(iii) ∫
Ω
(𝑢 − 𝑓

Ω
)
2
𝑑𝑥 tends to zero, which means that 𝑢

converges in the 𝐿2(Ω)-strong topology to the average
of the initial data.

6. Convergent Iterative Scheme

A convergent iterative scheme for (32) is given in this section.

Theorem 16. Let 𝑓 ∈ 𝐻
1
(Ω). The sequence {𝑢𝑛}

𝑛=1
defined by

solving the iterative scheme

𝜕𝑢
𝑛+1

𝜕𝑡

= div (𝐶 (




∇𝐺

𝜎
∗ 𝑢

𝑛




2
) ∇𝑢

𝑛+1
) , 𝑖𝑛 (0, 𝑇) × Ω,

𝑢
𝑛+1

(0, 𝑥) = 𝑓, 𝑖𝑛 Ω,

𝜕𝑢
𝑛+1

𝜕�⃗�

= 0, 𝑜𝑛 𝜕 (0, 𝑇) × Ω

(94)



Mathematical Problems in Engineering 13

converges in 𝐶([0, 𝑇], 𝐿
2
(Ω)) to the strong solution of (32)–

(34).

Proof. We denote by 𝛼𝑛 = 𝐶(|∇𝐺
𝜎
∗ 𝑢

𝑛
|
2
). By Proposition 7,

problem (94) has a unique solution 𝑢𝑛+1. It is clear that

𝛼
𝑛
≥ 𝐶 (





∇𝐺

𝜎
∗ 𝑓






2

𝐿
∞
(Ω)

) a.e. in (0, 𝑇) × Ω. (95)

Now we verify that the sequence {𝑢}
∞

𝑛=1
converges in

𝐶([0, 𝑇], 𝐿
2
(Ω)) to 𝑢, the strong solution of (32)–(34).

As in Section 3, from the estimate (60), we have

𝑑

𝑑𝑡

∫

Ω

(𝑢
𝑛+1

(𝑡) − 𝑢 (𝑡))

2

𝑑𝑥

≤

1

]
𝐶
2

4
∫

Ω

(𝑢
𝑛
(𝑡) − 𝑢 (𝑡))

2
𝑑𝑥∫

Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥.

(96)

Moreover, we have

∫

Ω

(𝑓 − 𝑢)
2
𝑑𝑥 ≤ 𝐶

0
∀𝑡 ∈ [0, 𝑇] , (97)

where𝐶
0
is a constantwhich only depends on ‖ 𝑓‖

𝐻
1
(Ω)

.Then
Gronwall’s inequality yields, for any 𝑡 ∈ [0, 𝑇]:

∫

Ω

(𝑢
1
(𝑡) − 𝑢 (𝑡))

2

𝑑𝑥 ≤ 𝐶
0
∫

𝑡

0

𝑎 (𝑠) 𝑑𝑠, (98)

where

𝑎 (𝑠) = 𝐶
2

4
∫

Ω

|∇𝑢 (𝑠)|
2
𝑑𝑥. (99)

By (96) and (98), we can deduce

𝑑

𝑑𝑡

(






𝑢
2
(𝑡) − 𝑢 (𝑡)







2

𝐿
2
(Ω)

) ≤ 𝐶
0
𝑎 (𝑡) ∫

𝑡

0

𝑎 (𝑠) 𝑑𝑠, (100)

and thus,






𝑢
2
(𝑡) − 𝑢 (𝑡)







2

𝐿
2
(Ω)

≤ 𝐶
0

1

2

(∫

𝑡

0

𝑎 (𝑠) 𝑑𝑠)

2

. (101)

Finally, we obtain by iterating






𝑢
𝑛+1

(𝑡) − 𝑢 (𝑡)







2

𝐿
2
(Ω)

≤ 𝐶
0

1

(𝑛 + 1)!

(∫

𝑇

0

𝑎 (𝑠) 𝑑𝑠)

𝑛+1

,

(102)

which implies that the sequence {𝑢}
∞

𝑛=1
converges in

𝐶([0, 𝑇], 𝐿
2
(Ω)) to the strong solution of (32)–(34).

7. Numerical Implementation

Wepresent in this section some numerical examples illustrat-
ing the capability of our model. We also compare it with the
known models (PM and TV). In the next two sections, two
numerical discrete schemes, the PM scheme (PMS) and the
AOS scheme, will be proposed.

7.1. The PM Scheme. To discretize (12), the finite difference
scheme in [2] is used. Denote the space step by ℎ = 1 and the
time step by 𝜏. Thus, we have

∇
𝑁
(𝑢

𝑖,𝑗
) = 𝑢

𝑖−1,𝑗
− 𝑢

𝑖,𝑗
, ∇

𝑆
(𝑢

𝑖,𝑗
) = 𝑢

𝑖+1,𝑗
− 𝑢

𝑖,𝑗
,

∇
𝐸
(𝑢

𝑖,𝑗
) = 𝑢

𝑖,𝑗+1
− 𝑢

𝑖,𝑗
, ∇

𝑊
(𝑢

𝑖,𝑗
) = 𝑢

𝑖,𝑗−1
− 𝑢

𝑖,𝑗
.

(103)

The numerical algorithms for problems (12)–(14) are given in
the following:

𝑢
𝑛+1

𝑖,𝑗
= 𝑢

𝑛

𝑖,𝑗
+ 𝜏 (𝐶 (






∇
𝑁
(𝑢

𝑛

𝑖,𝑗
)







2

) ⋅ ∇
𝑁
(𝑢

𝑛

𝑖,𝑗
)

+ 𝐶 (






∇
𝑆
(𝑢

𝑛

𝑖,𝑗
)







2

) ⋅ ∇
𝑆
(𝑢

𝑛

𝑖,𝑗
)

+ 𝐶 (






∇
𝐸
(𝑢

𝑛

𝑖,𝑗
)







2

) ⋅ ∇
𝐸
(𝑢

𝑛

𝑖,𝑗
)

+ 𝐶 (






∇
𝑊
(𝑢

𝑛

𝑖,𝑗
)







2

) ⋅ ∇
𝑊
(𝑢

𝑛

𝑖,𝑗
)) ,

(104)

where 0 ≤ 𝜏 ≤ 1/4 for the numerical scheme to be stable.

7.2. The AOS Scheme. Using the scheme in [47], (12) can be
discretized as

𝑢
𝑛+1

=

1

𝑚

𝑚

∑

𝑙=1

[𝐼 − 𝑚𝜏𝐴
𝑙
(𝑢

𝑘
)]

−1

𝑢
𝑛, (105)

where 𝐴(𝑢𝑛) = [𝑎
𝑖𝑗
(𝑢
𝑛
)],

𝑎
𝑖𝑗
(𝑢

𝑛
) :=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝐶
𝑛

𝑖
+ 𝐶

𝑛

𝑗

2ℎ
2

[𝑗 ∈ N (𝑖)]

− ∑

𝑛∈N(𝑖)

𝐶
𝑛

𝑖
+ 𝐶

𝑛

𝑁

2ℎ
2

(𝑗 = 𝑖) ,

0 (else) ,

𝐶
𝑛

𝑖
:= 𝐶

[

[

1

2

∑

𝑝,𝑞∈N(𝑖)

(

𝑢
𝑛

𝑝
− 𝑢

𝑛

𝑞

2ℎ

)
]

]

,

(106)

whereN(𝑖) is the set of the two neighbors of pixel 𝑖 (boundary
pixels have only one neighbor).

AOS schemes with large time steps still reveal average
grey value invariance, stability based on extremum principle,
Lyapunov functionals, and convergence to a constant steady-
state.

7.3. Comparison with Other Methods. For comparison pur-
poses, some very classical noise removal algorithms from the
literature are considered, such as the PM Algorithm [2] (see
(1)–(3)) and the TV algorithm [28] (see (9)).

The denoising algorithms were tested on three images: a
synthetic image (128 × 128 pixels), a Lena image (300 × 300

pixels), and a boat image (512 × 512 pixels). For each image,
a noisy observation is generated by adding the original image
by Gaussian noise, standard deviation 𝜎 ∈ {20, 35, 50}.
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(a) Noisy: 𝜎 = 20, PSNR = 22.09 (b) Original

(c) AOS: PSNR = 29.72, MAE = 6.08 (d) PMS: PSNR = 29.58, MAE = 6.15

(e) PM: PSNR = 28.81, MAE = 6.46 (f) TV: PSNR = 29.15, MAE = 6.38

Figure 6: Lenna image (300 × 300). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 20. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 1, 𝜏 = 2 (4 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (47 steps). (e) PM algorithm,𝐾 = 5, 𝜏 = 0.25 (55 steps). (f) TV algorithm, 𝜏 = 0.1

(182 steps).
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(a) Noisy: 𝜎 = 35, PSNR = 17.21 (b) Original

(c) AOS: PSNR = 27.45, MAE = 7.77 (d) PMS: PSNR = 27.03, MAE = 8.08

(e) PM: PSNR = 25.55, MAE = 8.98 (f) TV: PSNR = 26.87, MAE = 8.23

Figure 7: Lenna image (300 × 300). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 35. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 0.02, 𝜏 = 2 (8 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (96 steps). (e) PM algorithm, 𝐾 = 7, 𝜏 = 0.25 (84 steps). (f) TV algorithm,
𝜏 = 0.1 (400 steps).
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(a) Noisy: 𝜎 = 50, PSNR = 14.12 (b) Original

(c) AOS: PSNR = 26.03, MAE = 9.11 (d) PMS: PSNR = 25.60, MAE = 9.46

(e) PM: PSNR = 23.81, MAE = 10.77 (f) TV: PSNR = 24.43, MAE = 9.93

Figure 8: Lenna image (300 × 300). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 50. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 0.02, 𝜏 = 2 (12 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (154 steps). (e) PM algorithm, 𝐾 = 9, 𝜏 = 0.25 (108 steps). (f) TV algorithm,
𝜏 = 0.1 (650 steps).
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(a) Noisy: 𝜎 = 20, PSNR = 22.11 (b) Original

(c) AOS: PSNR = 29.93, MAE = 5.73 (d) PMS: PSNR = 29.75, MAE = 5.76

(e) PM: PSNR = 28.64, MAE = 6.22 (f) TV: PSNR = 29.13, MAE = 5.97

Figure 9: Boat image (512 × 512). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 20. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 0.2, 𝜏 = 2 (4 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (47 steps). (e) PM algorithm, 𝐾 = 5, 𝜏 = 0.25 (55 steps). (f) TV algorithm,
𝜏 = 0.1 (194 steps).



18 Mathematical Problems in Engineering

(a) Noisy: 𝜎 = 35, PSNR = 17.23 (b) Original

(c) AOS: PSNR = 27.59, MAE = 7.41 (d) PMS: PSNR = 27.38, MAE = 7.45

(e) PM: PSNR = 25.85, MAE = 8.22 (f) TV: PSNR = 26.50, MAE = 7.98

Figure 10: Boat image (512 × 512). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 35. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 0.2, 𝜏 = 2 (9 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (110 steps). (e) PM algorithm, 𝐾 = 7, 𝜏 = 0.25 (90 steps). (f) TV algorithm,
𝜏 = 0.1 (450 steps).
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(a) Noisy: 𝜎 = 50, PSNR = 14.14 (b) Original

(c) AOS: PSNR = 26.22, MAE = 8.59 (d) PMS: PSNR = 26.02, MAE = 8.68

(e) PM: PSNR = 24.17, MAE = 9.93 (f) TV: PSNR = 25.63, MAE = 8.98

Figure 11: Boat image (512 × 512). (a) Noisy image corrupted by Gaussian noise for 𝜎 = 50. (b) Original image. (c) Our algorithm by AOS,
𝑘 = 0.2, 𝜏 = 2 (15 steps). (d) Our algorithm by PMS, 𝜏 = 0.25 (170 steps). (e) PM algorithm, 𝐾 = 9, 𝜏 = 0.25 (115 steps). (f) TV algorithm,
𝜏 = 0.1 (710 steps).
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Table 1: PSNR, MAE, and CPU time (seconds) of all methods.

PSNR MAE CPU time(s)
The synthetic image (128 × 128)

𝜎 20 35 50 𝜎 20 35 55 𝜎 20 35 55
AOS 39.00 35.43 32.94 AOS 1.86 2.75 3.48 AOS 0.43 0.41 0.54
PMS 40.70 36.61 33.72 PMS 1.65 2.43 3.30 PMS 1.33 2.65 3.91
PM 39.74 34.81 31.90 PM 1.78 2.76 3.66 PM 0.70 1.04 1.82
TV 37.08 34.05 31.36 TV 2.52 3.65 4.88 TV 4.41 7.57 11.15

The Lena image (300 × 300)
𝜎 20 35 50 𝜎 20 35 50 𝜎 20 35 50
AOS 29.72 27.44 26.03 AOS 6.08 7.77 9.11 AOS 0.96 1.94 2.13
PMS 29.58 27.03 25.60 PMS 6.15 8.08 9.46 PMS 5.05 14.80 18.77
PM 28.81 25.55 23.81 PM 6.46 8.98 10.77 PM 2.30 4.78 12.24
TV 29.15 26.87 24.43 TV 6.38 8.23 9.93 TV 14.32 32.68 49.26

The boat image (512 × 512)
𝜎 20 35 50 𝜎 20 35 50 𝜎 20 35 50
AOS 29.93 27.59 26.22 AOS 5.73 7.41 8.59 AOS 4.02 6.19 9.58
PMS 29.75 27.38 26.02 PMS 5.76 7.45 8.68 PMS 19.76 39.00 60.44
PM 28.64 25.85 24.17 PM 6.22 8.22 9.93 PM 9.24 14.90 18.90
TV 29.13 26.50 25.63 TV 5.97 7.98 8.98 TV 49.51 109.15 172.17

Peak-signal-to-noise-ratio (PSNR) and the mean abso-
lute-deviation error (MAE) are used to measure the quality
of the restoration results. They are defined as

PSNR = 10 log
10
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where 𝑢
𝑂
and 𝑢 are the original image and the restored image,

respectively. The stopping criterion of all methods is set to
achieve the maximal PSNR or the best MAE.

For fair comparison, the parameters of PM and TV were
tweaked manually to reach their best performance level. In
the PM scheme, there are two parameters: the influencing
factor 𝑘 and the time step 𝜏 = 0.25. In the AOS scheme,
besides the same influencing factor 𝑘 with PM scheme, the
time step 𝜏 can be very large (in general, 𝜏 = 2 for themaximal
PSNR). Notice that the parameters of our method are very
stable with respect to the image. From these experiments, we
also observe that the PSNR reaches a maximum rapidly and
decreases rapidly. So the steady-state solution is arrived when
𝑡 → ∞, but the time evolution may be stopped earlier to
achieve an optimal tradeoff between noise removal and edge
preservation (the time when the largest PSNR achieves).

The results are depicted in Figures 3–5 for the synthetic
image, Figures 6–8 for the Lena image, and Figures 9–11 for
the boat image. Our methods do a good job at restoring faint
geometrical structures of the images even for high values of𝜎;
see for instance the results on the boat image for 𝜎 = 50. Our
algorithm performs among the best and even outperforms its
competitors most of the time both visually and quantitatively
as revealed by the PSNR and MAE values. For TV method,

the number of iterations necessary to satisfy the stopping
rule rapidly increases when 𝜎 increases. For PMmethod, the
appropriate parameter𝐾 is necessary.

Figures 3, 4, and 5 illustrate the proposed model is able
to reconstruct sharp edges and nonuniform regions while
avoiding staircasing. TV-based diffusion reconstructs sharp
edges, but the staircasing effect is clear evidence. PM-based
diffusion also reconstructs sharp edges but creates isolated
black and white speckles in the denoise image. The proposed
model reconstructs sharp edges as effectively as PM-based
diffusion and recovers smooth regions as effectively as pure
isotropic diffusion (in particular, without staircasing). The
denoising performance results are tabulated in Table 1 where
the best PSNR and MAE value is shown in boldface. The
PSNR improvement brought by our approach can be quite
high particularly for 𝜎 = 50 (see, e.g., Figures 5, 8, and 11) and
the visual resolution is quite respectable. But even for 𝜎 = 20,
the PSNR of our algorithm can be higher than that of PM and
TV methods.

Table 1 summarizes the computational times for all algo-
rithms. From [47], we know the AOS is a high efficient
algorithm. It is less than twice the typical effort needed for
an explicit scheme, a rather low price for gaining absolute
stability. Moreover, the new algorithm by AOS scheme
performs high PSNRs on real images (Figures 6, 7, 8, 9, 10
and 11).

8. Conclusions

This work proposes quite an original, efficient method for
noise removal. Noise removal is a difficult problem that arises
in various applications relevant to active imaging system.

The main ingredients of our method are as follows. (1)
Dependent on the diffusivity function 𝐶(𝑠), the new model
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is hybrid diffusion which is combination of mean curvature
smoothing andGaussian heat diffusion. (2)Thenewdiffusion
is forward-backward diffusion, but the backward diffusion is
under control and the restored image does not create new
features. (3) There are less parameters in the new model and
the resultant algorithm is insensitive to these parameters. (4)
The new model can be performed by AOS scheme, which is
very efficient.

Our experimental results demonstrate that the new algo-
rithm is very efficient and the quality of restored images by
our method is quite well.
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