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This paper addresses the problem of 𝐻
∞

control for a class of uncertain stochastic systems with Markovian switching and time-
varying delays.The systemunder consideration is subject to time-varying norm-bounded parameter uncertainties and an unknown
nonlinear function in the state. An integral sliding surface corresponding to every mode is first constructed, and the given sliding
mode controller concerning the transition rates of modes can deal with the effect of Markovian switching. The synthesized sliding
mode control law ensures the reachability of the sliding surface for corresponding subsystems and the global stochastic stability of
the sliding mode dynamics. A simulation example is presented to illustrate the proposed method.

1. Introduction

Many practical dynamics, for example, manufacturing sys-
tems, chemical process systems, computer controlled sys-
tems and communication systems, solar receiver control,
and power systems, experience abrupt random changes in
their structure. These changes are usually caused by random
failure or repairs of the components, changing in subsystems
interconnections, sudden environmental changes, and so
forth. Such systems can be modeled as hybrid systems. One
special class of hybrid systems is named Markovian jump
systems (MJSs), whose systemmode is governed by aMarkov
process. During the past decades, due to their potential
applications in manufacturing systems and communications,
considerable attention has been paid to the problems of
stability and stabilization [1–5],𝐻

∞
control and filtering [6–

8], optimal tracking problem [9], and so on. The robust
stability and stabilization of uncertain stochastic systems
with time-varying delays are investigated by using the linear
matrix inequality approach (LMI) [10]. Some stability criteria
are obtained for a class of bilinear continuous time-delay
uncertain systems with Markovian jump parameter [11]. In
[12], a robust𝐻

∞
controller is designed for uncertain systems

with state delay. Huang and Mao [13] investigated the stabi-
lization of stochastic linear systems by delayed state feedback

controller. In [14], the method of Lyapunov functional is
employed to study𝑝-moment stability of nonlinear stochastic
systems with impulsive and Markovian switching.

The SMC for stochastic systems has received an increas-
ing attention. K. Chang andW. Chang [15] developd an SMC
method to guarantee the robust state covariance assignment
for perturbed stochastic multivariable systems via variable
structure control. In [16], robust observer design for Ito
stochastic time-delay systems has been studied via sliding
mode control and the sufficient conditions for the asymptotic
stability (in probability) of the slidingmotion are derived.Niu
et al. [17] paid some efforts to coping with the connection
among the designed sliding surface corresponding to every
mode for MJSs. However, there are little results reported on
the SMCof stochastic systemswithMarkovian switching.The
existence of uncertainties, time-varying delays, Markovian
switching, and bilinear perturbations will make the problem
more complex and challenging.

This paper studies the robust 𝐻
∞

control problem for
uncertain stochastic systems with time-varying delays and
Markovian switching. The systems under consideration may
contain time-varying parameter uncertainties and bilinear
stochastic perturbations, nonlinearities, and external distur-
bance. An integral-type sliding surface is constructed. Due to
the existence of Markovian switching, in the design of sliding
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surface, a set of specified matrices are given to establish
the connections among sliding surfaces corresponding to
every mode. SMC law is synthesized to guarantee that the
trajectories can be driven onto the specified sliding surfaces
for each mode in finite time and the dynamics along the
sliding surface for each mode is stochastically stable.

2. Preliminaries

Let (Ω, 𝐹, 𝑃) be a probability space with Ω the sample space,
𝐹 the 𝜎-algebra of subsets of the sample space, and 𝑃 the
probability measure. ‖ ⋅ ‖ and ‖ ⋅ ‖

1
denote the Euclidean

norm and 1-norm of a vector or its induced matrix norm,
respectively. If 𝑎 ∈ 𝑅

𝑛, we have that ‖𝑎‖ < ‖𝑎‖
1
. ‖ ⋅ ‖
2
stands

for the usual 𝐿
2
[0,∞] norm. For a real matrix 𝑀, 𝑀 > 0

means that𝑀 is symmetric positive definite. 𝐼 is the identity
matrix with compatible dimension.

The Markov process {𝑟
𝑡
, 𝑡 ≥ 0} represents the switching

between the different modes taking values in a finite state
space 𝑆 = {1, 2, . . . , 𝑁} with generator 𝜋 = (𝜋

𝑖𝑗
)
𝑁×𝑁

given
by

Pr {𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ + o (Δ) , if 𝑖 ̸= 𝑗

1 + 𝜋
𝑖𝑖
Δ + o (Δ) , if 𝑖 = 𝑗,

(1)

where 𝜋
𝑖𝑗
is the transition rate from mode 𝑖 to 𝑗 and satisfies

the following relations:

𝜋
𝑖𝑗
≥ 0, 𝜋

𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝜋
𝑖𝑗
, (2)

and o(Δ) is such that lim
Δ→0

o (Δ)/Δ = 0.
Consider the following stochastic systemwithMarkovian

switching and time-varying delay:

𝑑𝑥 (𝑡) = [(𝐴 (𝑟
𝑡
) + 𝐴 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐴
𝑑
(𝑟
𝑡
) + 𝐴
𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐵 (𝑟
𝑡
) (𝑢 (𝑡)+𝑓 (𝑡, 𝑥 (𝑡) , 𝑟

𝑡
)) +𝐵V (𝑟𝑡) V (𝑡) ] 𝑑𝑡

+ 𝐷 (𝑟
𝑡
) [(𝐶 (𝑟

𝑡
) + 𝐶 (𝑟

𝑡
)) 𝑥 (𝑡)

+ (𝐶
𝑑
(𝑟
𝑡
) + 𝐶
𝑑
(𝑟
𝑡
)) 𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝜔 (𝑡) ,

𝑧 (𝑡) = (𝐸 (𝑟
𝑡
) + 𝐸 (𝑟

𝑡
)) 𝑥 (𝑡) + 𝐹 (𝑟

𝑡
) V (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

(3)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the system state, 𝑢(𝑡) ∈ 𝑅

𝑚 is the
control input, 𝑧(𝑡) ∈ 𝑅

𝑝 is the controlled output, V(𝑡) ∈ 𝑅
𝑞

is the exogenous disturbance input belonging to 𝐿
2
[0,∞] ∩

𝐿
∞
[0,∞], and 𝜔(𝑡) is a one-dimensional Brownian motion

defined on the probability space (Ω, 𝐹, 𝑃).𝐴(𝑟
𝑡
),𝐴
𝑑
(𝑟
𝑡
),𝐵(𝑟
𝑡
),

𝐵V(𝑟𝑡), 𝐶(𝑟𝑡), 𝐶𝑑(𝑟𝑡), 𝐷(𝑟𝑡), 𝐸(𝑟𝑡), and 𝐹(𝑟
𝑡
) are known real

constant matrices with appropriate dimensions. In general,
it is assumed that the pair (𝐴(𝑟

𝑡
), 𝐵(𝑟
𝑡
)) is controllable and

the input matrix 𝐵(𝑟
𝑡
) has full column rank. 𝜏(𝑡) is the time-

varying delay satisfying

0 < 𝜏 (𝑡) ≤ 𝑑 < ∞, ̇𝜏 (𝑡) ≤ ℎ < 1, (4)

where 𝑑 and ℎ are known real constant scalars, and 𝜑(𝑡)

is a continuous vector-valued initial function. 𝐴(𝑟
𝑡
), 𝐴
𝑑
(𝑟
𝑡
),

𝐶(𝑟
𝑡
), 𝐶
𝑑
(𝑟
𝑡
), and 𝐸(𝑟

𝑡
) are parameter uncertainties, and

unknown function 𝑓(𝑡, 𝑥(𝑡), 𝑟
𝑡
) is an unknown nonlinear

uncertainties.
For each 𝑟

𝑡
= 𝑖 ∈ 𝑆, for the sake of convenience, denote

𝐴(𝑟
𝑡
) = 𝐴

𝑖
and 𝐴(𝑟

𝑡
) = 𝐴

𝑖
(𝑡). Other matrices are defined as

above. Then system (3) becomes

𝑑𝑥 (𝑡) = [(𝐴
𝑖
+ 𝐴
𝑖
(𝑡)) 𝑥 (𝑡) + (𝐴

𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐵
𝑖
(𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑖)) , +𝐵V𝑖V (𝑡) ] 𝑑𝑡

+ 𝐷
𝑖
[(𝐶
𝑖
+ 𝐶
𝑖
(𝑡)) 𝑥 (𝑡) ,

+ (𝐶
𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝜔 (𝑡) ,

(5)

𝑧 (𝑡) = (𝐸
𝑖
+ 𝐸
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐹

𝑖
V (𝑡) , (6)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] . (7)

For 𝑟
𝑡
= 𝑖, the admissible uncertainties are assumed to be

norm bounded and can be described as

[𝐴
𝑖
(𝑡) 𝐴

𝑑𝑖
(𝑡) 𝐸

𝑖
(𝑡)] = 𝑁

1𝑖
𝐹
1𝑖
(𝑡) [𝐻

𝑎𝑖
𝐻
𝑎𝑑𝑖

𝐻
𝑒𝑖
] ,

[𝐶
𝑖
(𝑡) 𝐶

𝑑𝑖
(𝑡)] = 𝑁

2𝑖
𝐹
2𝑖
(𝑡) [𝐻

𝑐𝑖
𝐻
𝑐𝑑𝑖
] ,

(8)





𝑓 (𝑡, 𝑥 (𝑡) , 𝑖)





≤ 𝜂
𝑖
‖𝑥 (𝑡)‖ , (9)

where 𝜂
𝑖
> 0 is a constant scalar, 𝐻

𝑎𝑖
, 𝐻
𝑎𝑑𝑖

, 𝐻
𝑐𝑖
, 𝐻
𝑐𝑑𝑖
, 𝐻
𝑒𝑖
,

𝑁
1𝑖
, and𝑁

2𝑖
are known real constant matrices, and 𝐹

1𝑖
(𝑡) and

𝐹
2𝑖
(𝑡) are unknown matrix functions satisfying

𝐹
𝑇

1𝑖
(𝑡) 𝐹
1𝑖
(𝑡) ≤ 𝐼, 𝐹

𝑇

2𝑖
(𝑡) 𝐹
2𝑖
(𝑡) ≤ 𝐼, ∀𝑡. (10)

In the sequel, some concepts and lemmas about the
stability of stochastic systems are used.

Definition 1. System (5)–(7) with 𝑢(𝑡) = 0 is stochastically
stable for V(𝑡) = 0, if there exists a constant matrix 𝐺 > 0

such that the following inequality holds for any pair of initial
conditions (𝑥

0
, 𝑟
0
)

𝐸 [∫

∞

0

𝑥
𝑇

(𝑡) 𝑥 (𝑡) 𝑑𝑡 | 𝑥
0
, 𝜎 (0) = 𝑟

0
] ≤ 𝑥
𝑇

0
𝐺𝑥
0
. (11)

Definition 2. For given scalar 𝛾 > 0, the system (5)–(7) is said
to stochastically stabilizable and satisfy ‖𝑇

𝑧V(𝑠)‖∞ ≤ 𝛾 if the
closed-loop system is stochastically stable for V(𝑡) = 0 and for
all mismatched uncertainties,

‖𝑧 (𝑡)‖
𝐸
2

< 𝛾‖V (𝑡)‖
𝐸
2

, (12)

holds, where ‖𝑧(𝑡)‖
𝐸
2

= (𝐸{∫

𝑡

0

|𝑧(𝑡)|
2

𝑑𝑡})

1/2

.



Mathematical Problems in Engineering 3

Definition 3. Let𝐶2,1(𝑅𝑛×[𝑡
0
−𝑟,∞]×𝑆; 𝑅

+

) denote the family
of all nonnegative functions 𝑉(𝑥, 𝑡, 𝑖) that are continuously
twice differentiable in 𝑥 and once differentiable with respect
to 𝑡. For each𝑉(𝑥, 𝑡, 𝑖) ∈ 𝐶2,1(𝑅𝑛 × [𝑡

0
− 𝑟,∞] × 𝑆; 𝑅

+

), define
an infinitesimal operator 𝐿𝑉 from 𝑅

𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆 to 𝑅+

as follows:

𝐿𝑉 (𝑥, 𝑡, 𝑖) = 𝐿𝑉 (𝑥, 𝑡, 𝑖)

= lim
Δ→0

1

Δ

[𝐸 {𝑉 (𝑥 (𝑡 + Δ) , 𝑟
𝑡+Δ

, 𝑡 + Δ) |

𝑥 (𝑡) = 𝑥, 𝑟
𝑡
= 𝑖, 𝑡} − 𝑉 (𝑥, 𝑖, 𝑡) ] .

(13)

The following matrix inequalities will be essential for the
proofs in Section 3.

Lemma 4 (see [18]). Let 𝑄, 𝐻, 𝐹, and 𝐺 be real matrices of
appropriate dimensions with𝐹𝑇𝐹 ≤ 𝐼, then, for any realmatrix
𝑄 = 𝑄

𝑇, there exists scalar 𝜀 > 0, and one has the following:

𝑄 +𝐻𝐹 (𝑡) 𝐺 + 𝐺
𝑇

𝐹
𝑇

(𝑡)𝐻
𝑇

< 0,

∀𝐹 (𝑡) 𝑠.𝑡. 𝐹
𝑇

(𝑡) 𝐹 (𝑡) ≤ 𝐼,

(14)

if and only if there exists some scalar 𝜀 > 0 such that

𝑄 + 𝜀𝐻𝐻
𝑇

+ 𝜀
−1

𝐺
𝑇

𝐺 < 0. (15)

Lemma5 (see [18]). For any real vectors 𝑎, 𝑏 andmatrix𝑋 > 0

of compatible dimensions

𝑎
𝑇

𝑏 + 𝑏
𝑇

𝑎 ≤ 𝑎
𝑇

𝑋𝑎 + 𝑏
𝑇

𝑋
−1

𝑏. (16)

3. Main Results

This section constructs an SMC law 𝑢(𝑡) for system (5)–(7)
such that the resultant closed-loop system is stochastically
stable despite uncertainties, exogenous disturbance, time
delay, and Markovian switching.

3.1. Integral-Type Sliding Surface. As the first step of SMC
design, the integral-type sliding surface is constructed as
follows:

𝑠 (𝑥 (𝑡) , 𝑖) = 𝐵
𝑇

𝑖
𝑋
𝑖
𝑥 (𝑡)

− ∫

𝑡

0

𝐵
𝑇

𝑖
𝑋
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) 𝑥 (𝜏) 𝑑𝜏,

(17)

for each 𝑟
𝑡
= 𝑖 ∈ 𝑆. In (17), the matrix 𝐾

𝑖
∈ 𝑅
𝑚×𝑛 is

chosen such that thematrix𝐴
𝑖
+𝐵
𝑖
𝐾
𝑖
isHurwitz. In particular,

the matrix 𝑋
𝑖
∈ 𝑅
𝑛×𝑛 is to be designed so that 𝐵𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
is

nonsingular and 𝐵𝑇
𝑖
𝑋
𝑖
𝐷
𝑖
= 0. Under the assumption that 𝐵

𝑖

is full rank, it can be easily shown that the nonsingularity of
𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
can be guaranteed if𝑋

𝑖
is symmetric positive definite,

that is,𝑋
𝑖
> 0. In addition, the condition 𝐵𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
= 0 will be

incorporated inTheorem 6.

The solution 𝑥(𝑡) of the stochastic system (5)–(7) is
expressed as follows:

𝑥 (𝑡) = 𝜑 (0)

+ ∫

𝑡

0

[(𝐴
𝑖
+𝐴
𝑖
(𝑠)) 𝑥 (𝑠)+(𝐴

𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑠)) 𝑥 (𝑠−𝜏 (𝑠))

+ 𝐵
𝑖
(𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠) , 𝑖)) + 𝐵V𝑖V (𝑠) ] 𝑑𝑠

+ ∫

𝑡

0

𝐷
𝑖
[(𝐶
𝑖
+ 𝐶
𝑖
(𝑠)) 𝑥 (𝑠)

+ (𝐶
𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑠)) 𝑥 (𝑠 − 𝜏 (𝑠))] 𝑑𝜔 (𝑠) .

(18)

Under the condition that𝐵𝑇
𝑖
𝑋
𝑖
𝐷
𝑖
= 0, it can be obtained from

(17) and (18) that

𝑠 (𝑥 (𝑡) , 𝑖)

= 𝐵
𝑇

𝑖
𝑋
𝑖
𝜑 (0)

+ ∫

𝑡

0

𝐵
𝑇

𝑖
𝑋
𝑖
[(𝐴
𝑖
+ 𝐴
𝑖
(𝑠)) 𝑥 (𝑠)

+ (𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑠)) 𝑥 (𝑠 − 𝜏 (𝑠))

+ 𝐵
𝑖
(𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠) , 𝑖)) + 𝐵V𝑖V (𝑠) ] 𝑑𝑠.

(19)

According to the sliding mode theory, we have 𝑠(𝑥(𝑡), 𝑖) = 0

and ̇𝑠(𝑥(𝑡), 𝑖) = 0. The equivalent control law in the sliding
mode can be obtained by solving ̇𝑠(𝑥(𝑡), 𝑖) = 0 as

𝑢eq (𝑡) = 𝐾
𝑖
𝑥 (𝑡) − (𝐵

𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖

× [𝐴
𝑖
(𝑡) 𝑥 (𝑡) + (𝐴

𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐵V𝑖V (𝑡) ] − 𝑓 (𝑡, 𝑥 (𝑡) , 𝑖) .

(20)

Substituting (20) into (5), the sliding mode dynamics in
𝑠(𝑥(𝑡), 𝑖) = 0 can be written as

𝑑𝑥 (𝑡) = {[𝐴
𝑖
+𝐵
𝑖
𝐾
𝑖
+𝐴
𝑖
(𝑡)−𝐵

𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑖
(𝑡)] 𝑥 (𝑡)

+ [𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡) − 𝐵

𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

× 𝐵
𝑇

𝑖
𝑋
𝑖
(𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡))] 𝑥 (𝑡 − 𝜏 (𝑡))

+ [𝐵V𝑖V (𝑡) − 𝐵𝑖(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐵V𝑖V (𝑡)]} 𝑑𝑡

+ 𝐷
𝑖
[(𝐶
𝑖
+ 𝐶
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐶
𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝜔 (𝑡) .

(21)

Now, the stochastic stability of the sliding mode dynamics
described by (21) will be analyzed.
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3.2. Stochastic Stability of Sliding Surface

Theorem 6. Consider the stochastic delay system (5)–(7) with
assumptions (4), (8)–(10), and the sliding mode surface (17).

For a given scalar 𝛾 > 0, if there exist matrices𝑋
𝑖
> 0 and𝑄 >

0, scalars 𝜀
1𝑖
> 0, 𝜀
2𝑖
> 0, 𝜀
3𝑖
> 0, and 𝜀

4𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑁)

satisfy the following LMIs:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Π
1𝑖

∗ ∗ ∗ ∗ ∗ ∗

Π
𝑇

5𝑖
Π
2𝑖

∗ ∗ ∗ ∗ ∗

𝐵
𝑇

V𝑖𝑋𝑖 0 Π
3𝑖

∗ ∗ ∗ ∗

𝑋
𝑖
𝐷
𝑖
𝐶
𝑖

𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖

0 −𝑋
𝑖

∗ ∗ ∗

𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖
𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖

0 0 Π
4𝑖

∗ ∗

𝐸
𝑖

0 𝐹
𝑖

0 0 −𝐼 ∗

0 0 0 0 0 0 −𝑋
𝑖

0 𝑋
𝑖
𝐴
𝑇

𝑑𝑖
0 0 0 0 0

√2𝐵
𝑇

𝑖
𝑋
𝑖

0 0 0 0 0 0

𝐵
𝑇

𝑖
𝑋
𝑖

0 0 0 0 0 0

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0

0 0 0 0 0 𝑁
𝑇

1𝑖
𝑋
𝑖

0

0 0 0 0 0 0 𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−𝑋
𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖

∗ ∗ ∗ ∗ ∗ ∗

0 0 −𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖

∗ ∗ ∗ ∗ ∗

0 0 0 −𝜀
1𝑖
𝐼 ∗ ∗ ∗ ∗

0 0 0 0 −𝜀
2𝑖
𝐼 ∗ ∗ ∗

0 0 0 0 0 −𝜀
4𝑖
𝐼 ∗ ∗

0 0 0 0 0 0 −𝜀
4𝑖
𝐼 ∗

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0 −𝜀
4𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(22)

𝐵
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
= 0, (23)

with

Π
1𝑖
= 𝑋
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

𝑋
𝑖

+ 𝑄 + 𝜀
1𝑖
𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖
+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑖
𝐻
𝑐𝑖
+ 𝜀
4𝑖
𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖

+ 𝜀
4𝑖
𝐻
𝑇

𝑒𝑖
𝐻
𝑒𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑋
𝑗
,

Π
2𝑖
= − (1 − ℎ)𝑄 + 𝜀

2𝑖
𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖

+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑖
𝐻
𝑐𝑖
+ 𝜀
4𝑖
𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖
,

Π
3𝑖
= 𝐵
𝑇

V𝑖𝑋𝑖𝐵V𝑖 − 𝛾
2

𝐼,

Π
4𝑖
= −𝜀
3𝑖
𝐼 + 𝑁

𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
,

Π
5𝑖
= 𝑋
𝑖
𝐴
𝑑𝑖
+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑖
𝐻
𝑐𝑑𝑖
,

(24)

and then the sliding motion (21) is stochastically stable and
satisfies𝐻

∞
performance for all V(𝑡) ∈ 𝐿

2
[0,∞).

Proof. Consider the following Lyapunov function:

𝑉 (𝑥 (𝑡) , 𝑖) = 𝑥
𝑇

(𝑡) 𝑋
𝑖
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠. (25)

By Definition 2, the stochastic stability for systems (21) is
firstly established with V(𝑡) = 0. From Definition 3, the
infinitesimal operator 𝐿𝑉(𝑥(𝑡), 𝑖) for (21) with V(𝑡) = 0 is
obtained for each 𝑖 ∈ 𝑆

𝐿𝑉 (𝑥 (𝑡) , 𝑖)

= 2𝑥
𝑇

(𝑡) 𝑋
𝑖
[𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
+ 𝐴
𝑖
(𝑡)

−𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑖
(𝑡)] 𝑥 (𝑡) + 2𝑥

𝑇

(𝑡) 𝑋
𝑖

× [𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)

−𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
(𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡))] 𝑥 (𝑡 − 𝜏 (𝑡))

+ [(𝐶
𝑖
+ 𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + (𝐶

𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖

× [(𝐶
𝑖
+ 𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + (𝐶

𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))]
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+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑥
𝑇

(𝑡) 𝑋
𝑗
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡)) .

(26)

Using Lemma 5, one has

2𝑥
𝑇

(𝑡) 𝑋
𝑖
𝐴
𝑖
(𝑡) 𝑥 (𝑡)

≤ 𝜀
−1

1𝑖
𝑥
𝑇

(𝑡) 𝑋
𝑖
𝑁
1𝑖
𝑁
𝑇

1𝑖
𝑋
𝑖
𝑥 (𝑡)

+ 𝜀
1𝑖
𝑥
𝑇

(𝑡)𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖
𝑥 (𝑡) ,

2𝑥
𝑇

(𝑡) 𝑋
𝑖
𝐴
𝑑𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

≤ 𝜀
−1

2𝑖
𝑥
𝑇

(𝑡) 𝑋
𝑖
𝑁
1𝑖
𝑁
𝑇

1𝑖
𝑋
𝑖
𝑥 (𝑡)

+ 𝜀
2𝑖
𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) ,

− 2𝑥
𝑇

(𝑡) 𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑖
(𝑡) 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) 𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝐴
𝑇

𝑖
(𝑡) 𝑋
𝑖
𝐴
𝑖
(𝑡) 𝑥 (𝑡) ,

− 2𝑥
𝑇

(𝑡) 𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
(𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

≤ 𝑥
𝑇

(𝑡) 𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝑥 (𝑡)

+ 𝑥
𝑇(𝑡 − 𝜏 (𝑡) (𝐴

𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡))

𝑇

× 𝑋
𝑖
(𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡)) .

(27)

From (22), we can obtain 𝜀
3𝑖
𝐼−𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
> 0. According

to assumption (8), it has

[𝐷
𝑖
𝐶
𝑖
+ 𝐷
𝑖
𝑁
2𝑖
𝐹
2𝑖
(𝑡)𝐻
𝑐𝑖
]

𝑇

𝑋
𝑖
[𝐷
𝑖
𝐶
𝑖
+ 𝐷
𝑖
𝑁
2𝑖
𝐹
2𝑖
(𝑡)𝐻
𝑐𝑖
]

≤ 𝐶

𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖
+ 𝐶

𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖

× (𝜀
3𝑖
𝐼 − 𝑁

𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
)

−1

𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖

+ 𝜀
3𝑖
𝐻

𝑇

𝑐𝑖
𝐻
𝑐𝑖
,

(28)

where 𝐶
𝑖
= [𝐶

𝑖
𝐶
𝑑𝑖
], 𝐻
𝑐𝑖

= [𝐻
𝑐𝑖

𝐻
𝑐𝑑𝑖
]. Define Φ =

[𝑥
𝑇

(𝑡), 𝑥
𝑇

(𝑡 − 𝜏(𝑡))]

𝑇. Then it follows from (26)–(28) that

𝐿𝑉 (𝑥 (𝑡) , 𝑖) ≤ Φ
𝑇

Γ
𝑖
Φ, (29)

in which

Γ
𝑖
= [

Ξ
1𝑖

𝑋
𝑖
𝐴
𝑑𝑖

𝐴
𝑇

𝑑𝑖
𝑋
𝑖

Ξ
2𝑖

] + 𝐶

𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖

+ 𝐶

𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
(𝜀
3𝑖
𝐼 − 𝑁

𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
)

−1

× 𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖
+ 𝜀
3𝑖
𝐻

𝑇

𝑐𝑖
𝐻
𝑐𝑖
,

(30)

with

Ξ
1𝑖
= 𝑋
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

𝑋
𝑖
+ 𝑄 + 𝜀

1𝑖
𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖

+ 𝜀
−1

1𝑖
𝑋
𝑖
𝑁
1𝑖
𝑁
𝑇

1𝑖
𝑋
𝑖
+ 𝜀
−1

2𝑖
𝑋
𝑖
𝑁
1𝑖
𝑁
𝑇

1𝑖
𝑋
𝑖
+ 𝐴
𝑇

𝑖
(𝑡) 𝑋
𝑖
𝐴
𝑖
(𝑡)

+ 2𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
,

Ξ
2𝑖
= − (1 − ℎ)𝑄 + 𝜀

2𝑖
𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖

+ (𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡))

𝑇

𝑋
𝑖
(𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)) .

(31)

So, if Γ
𝑖
< 0, for anyΦ ̸= 0, we have

𝐿𝑉 (𝑥 (𝑡) , 𝑖) < 0. (32)

According to Definition 1, the sliding mode dynamics (21) is
stochastically stable.

By Schur’s complement, Γ
𝑖
< 0 is equivalent to the

following LMI:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
∗

1𝑖
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Π
𝑇

5𝑖
Ξ
∗

2𝑖
∗ ∗ ∗ ∗ ∗ ∗ ∗

𝑋
𝑖
𝐷
𝑖
𝐶
𝑖

𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖

−𝑋
𝑖

∗ ∗ ∗ ∗ ∗ ∗

𝐸
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖
𝐸
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖

0 Π
3𝑖

∗ ∗ ∗ ∗ ∗

0 0 0 0 −𝑋
𝑖

∗ ∗ ∗ ∗

0 𝑋
𝑖
𝐴
𝑑𝑖

0 0 0 −𝑋
𝑖

∗ ∗ ∗

√2𝐵
𝑇

𝑖
𝑋
𝑖

0 0 0 0 0 −𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖

∗ ∗

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0 −𝜀
1𝑖
𝐼 ∗

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0 0 −𝜀
2𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+ 𝐺𝐹 (𝑡)𝐻 + 𝐻
𝑇

𝐹
𝑇

(𝑡) 𝐺
𝑇

< 0, (33)
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where

Ξ
∗

1𝑖
= 𝑋
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

𝑋
𝑖

+ 𝑄 + 𝜀
1𝑖
𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖
+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑖
𝐻
𝑐𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑋
𝑗
,

Ξ
∗

2𝑖
= − (1 − ℎ)𝑄 + 𝜀

2𝑖
𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖

+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑑𝑖
𝐻
𝑐𝑑𝑖
,

𝐺 = [

𝐻
𝑎𝑖

0 0 0 0 0 0 0 0

0 𝐻
𝑎𝑑𝑖

0 0 0 0 0 0 0
]

𝑇

,

𝐹 (𝑡) = [

𝐹
𝑇

1𝑖
(𝑡) 0

0 𝐹
𝑇

2𝑖
(𝑡)

] ,

𝐻 = [

0 0 0 0 𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0

0 0 0 0 0 𝑁
𝑇

1𝑖
𝑋
𝑖
0 0 0

] .

(34)

According to Lemma 4, there exists positive scalar 𝜀
4𝑖
such

that the following LMI holds:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
3𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Π
𝑇

5𝑖
Ξ
4𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

𝑋
𝑖
𝐷
𝑖
𝐶
𝑖

𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖

−𝑋
𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐸
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖
𝐸
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖

0 Π
3𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 −𝑋
𝑖

∗ ∗ ∗ ∗ ∗ ∗

0 𝑋
𝑖
𝐴
𝑑𝑖

0 0 0 −𝑋
𝑖

∗ ∗ ∗ ∗ ∗

√2𝐵
𝑇

𝑖
𝑋
𝑖

0 0 0 0 0 −𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖

∗ ∗ ∗ ∗

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0 −𝜀
1𝑖
𝐼 ∗ ∗ ∗

𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 0 0 0 −𝜀
2𝑖
𝐼 ∗ ∗

0 0 0 0 𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 −𝜀
4𝑖
𝐼 ∗

0 0 0 0 0 𝑁
𝑇

1𝑖
𝑋
𝑖

0 0 0 0 −𝜀
4𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (35)

with

Ξ
3𝑖
= 𝑋
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

𝑋
𝑖
+ 𝑄 + 𝜀

1𝑖
𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖

+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑖
𝐻
𝑐𝑖
+ 𝜀
4𝑖
𝐻
𝑇

𝑎𝑖
𝐻
𝑎𝑖
+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑋
𝑗
,

Ξ
4𝑖
= − (1 − ℎ)𝑄 + 𝜀

2𝑖
𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖

+ 𝜀
3𝑖
𝐻
𝑇

𝑐𝑑𝑖
𝐻
𝑐𝑑𝑖

+ 𝜀
4𝑖
𝐻
𝑇

𝑎𝑑𝑖
𝐻
𝑎𝑑𝑖
.

(36)

Moreover, by Schur’s complement lemma, the above inequal-
ity is implied by (22).

Then, we will prove that the stochastic system (21) with
(6) satisfies

‖𝑧 (𝑡)‖
𝐸
2

< 𝛾‖V (𝑡)‖
2
, (37)

for all nonzero V(𝑡) ∈ 𝐿
2
[0,∞).

Choose the same Lyapunov function as (25). And the gen-
erator 𝐿𝑉(𝑥(𝑡), 𝑖) with V(𝑡) ̸= 0 can be calculated as follows:

𝐿𝑉 (𝑥 (𝑡) , 𝑖)

= 2𝑥
𝑇

(𝑡) 𝑋
𝑖
[𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
+ 𝐴
𝑖
(𝑡)

−𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑖
(𝑡)] 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑋
𝑖
[𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡)

−𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
(𝐴
𝑑𝑖
+ 𝐴
𝑑𝑖
(𝑡))]

× 𝑥 (𝑡 − 𝜏 (𝑡)) + 2𝑥
𝑇

(𝑡) 𝑋
𝑖

× [𝐼 − 𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
] 𝐵V𝑖V (𝑡)

+ [(𝐶
𝑖
+ 𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + (𝐶

𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖

× [(𝐶
𝑖
+ 𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + (𝐶

𝑑𝑖
+ 𝐶
𝑑𝑖
(𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))]

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑥
𝑇

(𝑡) 𝑋
𝑗
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡)) .

(38)

Let

𝐽 (𝑡) ≜ 𝐸{∫

𝑡

𝑡
0

[𝑧
𝑇

(𝑠) 𝑧 (𝑠) − 𝛾
2

V
𝑇

(𝑠) V (𝑠)] 𝑑𝑠} . (39)
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So, under zero initial condition, we have 𝑉(𝑥(𝑡
0
), 𝑖) = 0 for

𝑥(𝑡
0
) = 0. From Dynkin’s formula, one has

𝐸 {𝑉 (𝑥 (𝑡) , 𝑡)} = 𝐸{∫

𝑡

𝑡
0

𝐿𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠} . (40)

Then, similar to the (26)–(29), we can obtain

𝐽 (𝑡) = 𝐸{∫

𝑡

𝑡
0

[𝑧
𝑇

(𝑠) 𝑧 (𝑠) − 𝛾
2

V
𝑇

(𝑠) V (𝑠) + 𝐿𝑉 (𝑥 (𝑠) , 𝑠)] 𝑑𝑠}

− 𝐸 {𝑉 (𝑥 (𝑡) , 𝑡)}

≤ 𝐸{∫

𝑡

0

[𝑧
𝑇

(𝑠) 𝑧 (𝑠) − 𝛾
2

V
𝑇

(𝑠) V (𝑠) + 𝐿𝑉 (𝑥 (𝑠) , 𝑠)] 𝑑𝑠}

= 𝐸{∫

𝑡

0

[𝑥
𝑇

(𝑠) 𝑥
𝑇

(𝑠 − 𝜏 (𝑠)) V𝑇 (𝑠)]

× Ω
𝑖
[𝑥
𝑇

(𝑠) 𝑥
𝑇

(𝑠 − 𝜏 (𝑠)) V𝑇 (𝑠)]
𝑇

𝑑𝑠} ,

(41)

where

Ω
𝑖
=

[

[

[

[

[

[

[

Θ
1𝑖

Θ
3𝑖

𝑋
𝑖
𝐵V𝑖 + (𝐸𝑖 + 𝐸𝑖)

𝑇

𝐹
𝑖

Θ
𝑇

3𝑖
Θ
2𝑖

0

𝐵
𝑇

V𝑖𝑋𝑖 + 𝐹
𝑇

𝑖
(𝐸
𝑖
+ 𝐸
𝑖
) 0 𝐵

𝑇

V𝑖𝑋𝑖𝐵V𝑖 + 𝐹
𝑇

𝑖
𝐹
𝑖
− 𝛾
2

𝐼

]

]

]

]

]

]

]

,

(42)

with

Θ
1𝑖
= Ξ
1𝑖
+ 𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖

+ (𝐸
𝑖
+ 𝐸
𝑖
)

𝑇

(𝐸
𝑖
+ 𝐸
𝑖
) + 𝐶
𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖

+ 𝐶
𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖

× (𝜀
3𝑖
𝐼 − 𝑁

𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
)

−1

𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑖
,

Θ
2𝑖
= Ξ
2𝑖
+ 𝐶
𝑇

𝑑𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖
+ 𝐶
𝑇

𝑑𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖

× (𝜀
3𝑖
𝐼 − 𝑁

𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
)

−1

𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖
,

Θ
3𝑖
= 𝑋
𝑖
𝐴
𝑑𝑖
+ 𝐶
𝑇

𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖

× (𝜀
3𝑖
𝐼 − 𝑁

𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝑁
2𝑖
)

−1

× 𝑁
𝑇

2𝑖
𝐷
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
𝐶
𝑑𝑖
,

(43)

and Ξ
1𝑖
and Ξ

2𝑖
are defined as in (30).

It is observed that Ω
𝑖
< 0 from (22) and Schur’s comple-

ment. Hence, by (39), inequality ‖𝑧(𝑡)‖
𝐸
2

< 𝛾‖V(𝑡)‖
2
holds for

all nonzero V(𝑡) ∈ 𝐿
2
[0,∞). The proof is complete.

Remark 7. Notice that the condition in Theorem 6 is not
a convex set due to the matrix equality constraints in
(23). A simple algorithm is given to solve the feasibility

problem. The equality condition 𝐵
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖

= 0 with 𝑋
𝑖

satisfying inequality (22) can be equivalently converted to
tr[(𝐵𝑇
𝑖
𝑋
𝑖
𝐷
𝑖
)
𝑇

𝐵
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
] = 0.

Consider the following matrix inequality for 𝛼 > 0:

(𝐵
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
)

𝑇

𝐵
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖
≤ 𝛼𝐼, for 𝑖 ∈ 𝑆. (44)

By Schur’s complement, one has

[

−𝛼𝐼 𝐵
𝑇

𝑖
𝑋
𝑖
𝐷
𝑖

𝐷
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖

−𝐼

] ≤ 0, for 𝑖 ∈ 𝑆. (45)

Now, the problem is changed to a problem of finding a global
solution of the following minimization problem:

min𝛼, subject to (22) and (45) . (46)

It can be seen that if the global infimum 𝛼 of (46) equals to
zero, the corresponding solutions will satisfy the LMIs (22)
and (23). So, the sliding control problem is solvable.

3.3. SMC Law Synthesis. Now, we will synthesize a SMC law
to ensure that the trajectories of system (5)–(7) can be driven
to reach and keep the predefined surface 𝑠(𝑥(𝑡), 𝑖) = 0 from
the initial time.

Theorem 8. For the uncertain stochastic delay system (5)–(7)
with Markovian jumping and assumptions (4) and (8)–(10),
the sliding surface is designed as (17) where 𝑋

𝑖
, (𝑖 ∈ 𝑆) are the

solutions of LMI (22)-(23). Then the trajectories of system can
be driven to the sliding surface 𝑠(𝑥(𝑡), 𝑖) = 0 in finite time (with
probability one) by employing the following SMC law:

𝑢
𝑖
(𝑡) = 𝐾

𝑖
𝑥 (𝑡) − 𝜇

𝑖
𝑠 (𝑥 (𝑡) , 𝑖)

− (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

−

1

2

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝐵
𝑇

𝑗
𝑋
𝑗
𝐵
𝑗
)

−1

𝑠 (𝑥 (𝑡) , 𝑖)

− 𝜌
𝑖
(𝑡) sgn (𝑠 (𝑥 (𝑡) , 𝑖)) ,

(47)

where

𝜌
𝑖
(𝑡) = 𝜂

𝑖
‖𝑥 (𝑡)‖ +








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝑁
1𝑖








× (




𝐻
𝑎𝑖
𝑥 (𝑡)





+




𝐻
𝑎𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))





)

+








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐵V𝑖








‖V (𝑡)‖ ,

(48)

with 𝜇
𝑖
are a small positive constant for each 𝑖 ∈ 𝑆.
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Proof. By (19) and (47), and by observing that 𝐵𝑇
𝑖
𝑋
𝑖
𝐷
𝑖
= 0, it

follows that

̇𝑠 (𝑥 (𝑡) , 𝑖) = 𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑖
(𝑡) 𝑥 (𝑡) + 𝐵

𝑇

𝑖
𝑋
𝑖
𝐴
𝑑𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

− 𝜇
𝑖
𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
𝑠 (𝑥 (𝑡) , 𝑖) + 𝐵

𝑇

𝑖
𝑋
𝑖
𝐵V𝑖V (𝑡)

−

1

2

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
(𝐵
𝑇

𝑗
𝑋
𝑗
𝐵
𝑗
)

−1

𝑠 (𝑥 (𝑡) , 𝑖)

− 𝜌
𝑖
(𝑡) 𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
sgn (𝑠 (𝑥 (𝑡) , 𝑖))

+ 𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
𝑓 (𝑡, 𝑥 (𝑡) , 𝑖) .

(49)

Choose the following Lyapunov function candidate:

𝑉 (𝑡) =

1

2

𝑠
𝑇

(𝑡) (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝑠 (𝑡) . (50)

Utilizing expression (49) yields

�̇� (𝑡) = 𝑠
𝑇

(𝑥 (𝑡) , 𝑖) (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

̇𝑠 (𝑥 (𝑡) , 𝑖)

+

1

2

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑠
𝑇

(𝑥 (𝑡) , 𝑖) (𝐵
𝑇

𝑗
𝑋
𝑗
𝐵
𝑗
)

−1

𝑠 (𝑥 (𝑡) , 𝑖)

= 𝑠
𝑇

(𝑥 (𝑡) , 𝑖) (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑖
(𝑡) 𝑥 (𝑡)

+ 𝑠
𝑇

(𝑥 (𝑡) , 𝑖) (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑑𝑖
(𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

− 𝜇
𝑖
𝑠
𝑇

(𝑥 (𝑡) , 𝑖) 𝑠 (𝑥 (𝑡) , 𝑖)

− 𝜌
𝑖
(𝑡) 𝑠
𝑇

(𝑥 (𝑡) , 𝑖) sgn (𝑠 (𝑥 (𝑡) , 𝑖))

+ 𝑠
𝑇

(𝑥 (𝑡) , 𝑖) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑖)

+ 𝑠
𝑇

(𝑥 (𝑡) , 𝑖) (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐵V𝑖V (𝑡)

≤ ‖𝑠 (𝑥 (𝑡) , 𝑖)‖








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝑁
1𝑖








× (




𝐻
𝑎𝑖
𝑥 (𝑡)





+




𝐻
𝑎𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))





)

− 𝜌
𝑖
(𝑡) ‖𝑠 (𝑥 (𝑡) , 𝑖)‖

1
+ ‖𝑠 (𝑥 (𝑡) , 𝑖)‖

×








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐵V𝑖








‖V (𝑡)‖ − 𝜇
𝑖
‖𝑠 (𝑥 (𝑡) , 𝑖)‖

2

+ 𝜂
𝑖
‖𝑠 (𝑥 (𝑡) , 𝑖)‖ ‖𝑥 (𝑡)‖ .

(51)

Noting that ‖𝑠(𝑥(𝑡), 𝑖)‖
1
≥ ‖𝑠(𝑥(𝑡), 𝑖)‖ and substituting (48)

into (51), one has

�̇� (𝑡) ≤ −𝜇
𝑖
‖𝑠 (𝑥 (𝑡) , 𝑖)‖

2

< 0, for ‖𝑠 (𝑥 (𝑡) , 𝑖)‖ ̸= 0. (52)

This means that the trajectories of system (5)–(7) can be
driven to remain in the sliding surface from the initial
time.

Remark 9. The use of sign function sgn(𝑠(𝑥(𝑡), 𝑖)) may
cause chattering behavior, which is undesired in practical
engineering background [19]. To avoid the shortcomings,
the function tanh(𝑠(𝑥(𝑡), 𝑖)) is introduced to approximate
function sgn(𝑠(𝑥(𝑡), 𝑖)) [20].

From SMC (47)-(48), it is seen that the bound 𝜂
𝑖
of

𝑓(𝑡, 𝑥(𝑡), 𝑖) is needed to synthesize the SMC law. It is well
known that a practical engineering systemmay lose the exact
knowledge of the bound due to the noise pollution and
measurement error. Then, an adaptive SMC law is further
presented for the case when the bound 𝜂

𝑖
is unknown.

Theorem 10. For the uncertain stochastic delay systems (5)–
(7) with Markovian jumping and assumptions (4) and (8)–
(10), the sliding surface is designed as (17) where𝑋

𝑖
, (𝑖 ∈ 𝑆) are

the solutions of LMI (22)-(23). Then the trajectories of system
can be driven to the sliding surface 𝑠(𝑥(𝑡), 𝑖) = 0 in finite time
(with probability one) by employing the following SMC law:

𝑢
𝑖
(𝑡) = 𝐾

𝑖
𝑥 (𝑡) − 𝜇

𝑖
𝑠 (𝑥 (𝑡) , 𝑖)

− (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

−

1

2

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
(𝐵
𝑇

𝑗
𝑋
𝑗
𝐵
𝑗
)

−1

𝑠 (𝑥 (𝑡) , 𝑖)

− 𝜌
𝑖
(𝑡) sgn (𝑠 (𝑥 (𝑡) , 𝑖)) ,

(53)

where

𝜌
𝑖
(𝑡) = 𝜂

𝑖
‖𝑥 (𝑡)‖ +








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝑁
1𝑖








× (




𝐻
𝑎𝑖
𝑥 (𝑡)





+




𝐻
𝑎𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))





)

+








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐵V𝑖







‖V (𝑡)‖ ,

(54)

and adaptive law as
̇
�̂�
𝑖
= 𝛽
𝑖
‖𝑠 (𝑡)‖ ‖𝑥 (𝑡)‖ , (55)

with 𝜇
𝑖
, 𝛽
𝑖
as small positive constants for each 𝑖 ∈ 𝑆.

Proof. Choose the following Lyapunov function:

𝑉 (𝑡) =

1

2

𝑠
𝑇

(𝑡) (𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝑠 (𝑡) +

1

2

𝛽
−1

𝑖
𝜂
2

𝑖
(𝑡) , (56)

where 𝜂
𝑖
(𝑡) = 𝜂

𝑖
(𝑡) − 𝜂

𝑖
. In line with the proof of Theorem 8,

it can easily obtained that

�̇� (𝑡) ≤ ‖𝑠 (𝑥 (𝑡) , 𝑖)‖








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝑁
1𝑖








× (




𝐻
𝑎𝑖
𝑥 (𝑡)





+




𝐻
𝑎𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))





)

− 𝜌
𝑖
(𝑡) ‖𝑠 (𝑥 (𝑡) , 𝑖)‖

1

+ ‖𝑠 (𝑥 (𝑡) , 𝑖)‖








(𝐵
𝑇

𝑖
𝑋
𝑖
𝐵
𝑖
)

−1

𝐵
𝑇

𝑖
𝑋
𝑖
𝐵V𝑖







‖V (𝑡)‖

− 𝜇
𝑖
‖𝑠 (𝑥 (𝑡) , 𝑖)‖

2

+ 𝜂
𝑖
‖𝑠 (𝑥 (𝑡) , 𝑖)‖ ‖𝑥 (𝑡)‖

+ 𝜂
𝑖
(𝑡) ‖𝑠 (𝑥 (𝑡) , 𝑖)‖ ‖𝑥 (𝑡)‖ .

(57)



Mathematical Problems in Engineering 9

Noting that ‖𝑠(𝑥(𝑡), 𝑖)‖
1
≥ ‖𝑠(𝑥(𝑡), 𝑖)‖ and substituting (54)

into (57), one has

�̇� (𝑡) ≤ −𝜇
𝑖
‖𝑠 (𝑥 (𝑡) , 𝑖)‖

2

< 0, for ‖𝑠 (𝑥 (𝑡) , 𝑖)‖ ̸= 0. (58)

This means that the trajectories of system (5)–(7) can be
driven to remain in the sliding surface from the initial time.
This completes the proof.

4. Simulation Example

Consider the uncertain stochastic delay system (3) with𝑁 =

2 and the following parameters.

Mode 1.We have the following:

𝐴
1
=
[

[

−1 0.6 −2.4

2 0.1 −0.5

0.1 2.2 0.5

]

]

, 𝐴
𝑑1
=
[

[

0.2 0.1 0.1

−0.1 0.1 0

0 0.1 −0.5

]

]

,

𝐵
1
=
[

[

1 −2

4 3.5

2.4 5.5

]

]

, 𝐵V1 =
[

[

0.2

0.1

0.3

]

]

, 𝐷
1
= [

0.2

0.3
] ,

𝐶
1
=
[

[

−0.2 0.1

0 1

0.1 0.04

]

]

𝑇

, 𝐸
1
=
[

[

0.4 0.4 0

0.5 0.1 0.2

0.1 0.2 0.3

]

]

,

𝐹
1
=
[

[

0.2

0.3

0.1

]

]

, 𝑁
11
=
[

[

0

0.1

0.1

]

]

,

𝑁
21
= [

0.1

0.1
] , 𝐻

𝑎1
=
[

[

0.1

0.2

0

]

]

,

𝐻
𝑎𝑑1

=
[

[

0

0.1

0.2

]

]

, 𝐻
𝑒1
=
[

[

0.01

0.1

0.1

]

]

,

𝐻
𝑐1
=
[

[

0.1 0.2 0.1

1 −0.1 0.3

−0.2 0.3 0

]

]

, 𝐻
𝑐𝑑1

=
[

[

−0.2 0 0.2

0.1 0.1 0.1

0.2 −0.1 0

]

]

,

𝐶
𝑑1
=
[

[

0 0.3

0.2 0.2

0.01 0.1

]

]

𝑇

,

𝑓 (𝑥 (𝑡) , 𝑡, 1) = [0.6 sin√𝑥2
1
(𝑡) + 𝑥

2

2
(𝑡) 0.6𝑥

2
(𝑡)]

𝑇

,

V (𝑡) =
3

1 + 𝑡
2
, 𝐹

11
(𝑡) = 0.5 sin 𝑡,

𝐹
21
(𝑡) = [0.2 sin 𝑡 0.2 cos 𝑡 0] .

(59)

Mode 2.We have the following:

𝐴
2
=
[

[

1 0.8 1

0 0.5 −0.6

0.3 0.4 −0.5

]

]

, 𝐴
𝑑2
=
[

[

−0.2 0.2 0.3

0 0.5 0.1

0.1 0.4 0.5

]

]

,

𝐵
2
=
[

[

1.2 3

4 0

0.4 2

]

]

, 𝐵V2 =
[

[

0.1

0.2

0.2

]

]

,

𝐷
2
= [

0.1

0.4
] , 𝐶

2
=
[

[

0.2 −0.1

0 1

−0.1 0.02

]

]

𝑇

,

𝐸
2
=
[

[

0.3 0.5 0.2

0 0.8 0.3

0.2 0 0.3

]

]

, 𝐹
2
=
[

[

0.3

0.4

0.2

]

]

,

𝑁
21
=
[

[

0

0.2

−0.1

]

]

, 𝑁
22
= [

0.2

0.1
] ,

𝐻
𝑎2
=
[

[

0.2

0.4

0

]

]

,

𝐻
𝑎𝑑2

=
[

[

0.1

0

0.1

]

]

, 𝐻
𝑒2
=
[

[

0.1

0.2

0

]

]

,

𝐻
𝑐2
=
[

[

0.2 0.1 0.2

0.1 −0.1 0.2

−0.1 0.2 0

]

]

, 𝐻
𝑐𝑑2

=
[

[

−0.1 0 0.1

0.2 0.1 0.2

0.1 −0.1 0

]

]

,

𝐶
𝑑2
=
[

[

0.1 0.2

−0.2 0.1

0.01 −0.1

]

]

𝑇

,

𝑓 (𝑥 (𝑡) , 𝑡, 2) = [sin𝑥
1
(𝑡) √2





𝑥
2
(𝑡) 𝑥
3
(𝑡)




]

𝑇

,

𝐹
12
(𝑡) = 0.5 cos 𝑡, 𝐹

22
(𝑡) = [0.2 cos 𝑡 0.2 sin 𝑡 0] .

(60)

Moreover, the time-varying delay 𝜏(𝑡) = 0.5 sin 𝑡 + 0.5 with
𝑑 = 1, ℎ = 0.5, and the transition rate matrix 𝜋 of Markov
chain {𝑟

𝑡
} is defined as 𝜋 = [

−1 1

1.5 −1.5
]. Choose 𝛾 = 1. Now, for

the bounds 𝜂
1
= 0.6 and 𝜂

2
= 1, solving LMIs (22)-(23) yields

𝑋
1
=
[

[

1.7215 −1.0069 1.1293

−1.0069 0.9575 −0.8057

1.1293 −0.8057 1.1127

]

]

,

𝑋
2
=
[

[

1.9635 −0.6287 −1.3014

0.6287 0.7440 −0.0362

−1.3014 −0.0362 4.0151

]

]

,
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𝜀
11
= 1.0867, 𝜀

12
= 1.2007,

𝜀
21
= 4.2260, 𝜀

22
= 2.2260, 𝜀

31
= 1.2260,

𝜀
32
= 1.5600, 𝜀

41
= 3.2260, 𝜀

42
= 2.1200,

𝛽 ≈ 1.4797 × 10
−11

,

𝑄 =
[

[

6.7459 −1.5885 3.5946

−1.5885 3.3264 −0.1067

3.5946 −0.1067 4.4201

]

]

.

(61)

Furthermore, controller gain 𝐾
1
and𝐾

2
are chosen as

𝐾
1
= [

−1.5 −4.5 −4

3 3.5 −1.2
] , 𝐾

2
= [

1 −3 2

−3.5 0.2 −0.8
] .

(62)

Then, the desired SMC law can be obtained as follows.

Mode 1.We have the following:

𝑢 (𝑡) = [

−1.5 −4.5 −4

3 3.5 −1.2
] 𝑥 (𝑡) − [

0.3642 0.1127

0.1127 0.4264
]

× 𝑠 (𝑥 (𝑡) , 1)

− [

0.0479 0.0496 0.0252

−0.0483 −0.0143 −0.0699
] 𝑥 (𝑡 − 𝜏 (𝑡))

− [0.6 ‖𝑥 (𝑡)‖ + 0.02 (




[0.1 0.2 0] 𝑥 (𝑡)






+




[0 0.1 0.2] 𝑥 (𝑡 − 𝜏 (𝑡))





)

+0.0867]

× sgn (𝑠 (𝑥 (𝑡) , 1)) .
(63)

Mode 2.We have the following:

𝑢 (𝑡) = [

1 −3 2

−3.5 0.2 −0.8
] 𝑥 (𝑡)

− [

0.7037 −0.1691

−0.1691 0.6103
] 𝑠 (𝑥 (𝑡) , 2)

− [

0.0124 0.1419 0.0416

−0.0120 0.0909 0.1627
] 𝑥 (𝑡 − 𝜏 (𝑡))

− [‖𝑥 (𝑡)‖ + 0.0599 (




[0.2 0.4 0] 𝑥 (𝑡)






+




[0.1 0 0.1] 𝑥 (𝑡 − 𝜏 (𝑡))





)

+0.0763] sgn (𝑠 (𝑥 (𝑡) , 2)) ,
(64)

where 𝜇
1
= 𝜇
2
= 0.5.

Using the discretization approach similar to that in [21],
the simulation results are given in Figures 1, 2, 3, 4, 5, and 6
which show the effective of the proposed methods. Figures
1–6 demonstrated the simulation results for every mode,
respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

Time (s)

−1

𝑥1

𝑥2

𝑥3

Figure 1: Mode 1: state vector 𝑥(𝑡).
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−5

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

𝑠1

𝑠2

Figure 2: Mode 1: sliding mode 𝑠(𝑡).

5. Conclusions

This work has investigated the problem of SMC problem
for stochastic systems with Markovian switching and time-
varying delays. A sufficient condition for the stochastic
stability of sliding motion has been proposed in terms of
LMIs. An SMC law has been synthesized such that the state
trajectories of the closed-lop systems are globally driven
onto the specified switching surface corresponding to every
mode and reduces the effect of the disturbance input on the
controlled output to a prescribed level irrespective of all the
admissible uncertainties. It is observed that the effects of
Markovian switching and time delay have been considered
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Figure 3: Mode 1: control signal 𝑢(𝑡).
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Figure 4: Mode 2: state vector 𝑥(𝑡).

in the design of both sliding surface and SMC law. Future
works will consider the problem of SMCproblem for singular
systems with Markovian switching and time-varying delays.
In that case, due to the existence of singularmatrix, the sliding
mode control law design is much more complicated.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China 61273091 and 61104007, the Young and
Middle-Aged Scientists Research Foundation of Shandong

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

𝑠1

𝑠2

−1

Figure 5: Mode 2: sliding mode 𝑠(𝑡).

𝑢1

𝑢2

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2

4

−8

−6

−4

−2

Figure 6: Mode 2: control signal 𝑢(𝑡).

Province under Grant BS2011DX013 and BS2012SF008, Tais-
han Scholar Project of Shandong Province, and the Natural
Science Foundation of Shandong province ZR2011FM033.

References

[1] M.Mariton, Jump Linear Systems in Automatica Control, Marcel
Dekker, New York, NY, USA, 1990.

[2] Y. Ji and H. J. Chizeck, “Controllability, stabilizability, and
continuous-time Markovian jump linear quadratic control,”
IEEE Transactions on Automatic Control, vol. 35, no. 7, pp. 777–
788, 1990.



12 Mathematical Problems in Engineering

[3] H. Gao, Z. Fei, J. Lam, and B. Du, “Further results on
exponential estimates of Markovian jump systems with mode-
dependent time-varying delays,” IEEE Transactions on Auto-
matic Control, vol. 56, no. 1, pp. 223–229, 2011.

[4] Z. Wu, P. Shi, H. Su, and J. Chu, “Passivity analysis for discrete-
time stochastic Markovian jump neural networks with mixed
time-delays,” IEEE Transactions on Neural Networks, vol. 22, no.
10, pp. 1566–1575, 2011.

[5] L. Zhang and J. Lam, “Necessary and sufficient conditions
for analysis and synthesis of Markov jump linear systems
with incomplete transition descriptions,” IEEE Transactions on
Automatic Control, vol. 55, no. 7, pp. 1695–1701, 2010.

[6] S. Xu, T. Chen, and J. Lam, “Robust 𝐻
∞

filtering for uncertain
Markovian jump systems with mode-dependent time delays,”
IEEE Transactions on Automatic Control, vol. 48, no. 5, pp. 900–
907, 2003.

[7] J. Liu, Z. Gu, and S. Hu, “𝐻
∞

filtering for Markovian jump
systems with time-varying delays,” International Journal of
Innovative Computing, Information and Control, vol. 7, no. 3, pp.
1299–1310, 2011.

[8] X. Zhao and Q. Zeng, “Delay-dependent 𝐻
∞

performance
analysis and filtering for Markovian jump systems with interval
time-varying delays,” International Journal of Adaptive Control
and Signal Processing, vol. 24, no. 8, pp. 633–642, 2010.

[9] M. S.Mahmoud andP. Shi, “Robust control forMarkovian jump
linear discrete-time systems with unknown nonlinearities,”
IEEE Transactions on Circuits and Systems I, vol. 49, no. 4, pp.
538–542, 2002.

[10] C. Y. Lu, J. S. H. Tsai, G. J. Jong, and T. J. Su, “An LMI-based
approach for robust stabilization of uncertain stochastic sys-
temswith time-varying delays,” IEEETransactions onAutomatic
Control, vol. 48, no. 2, pp. 286–289, 2003.

[11] Z.Wang, H. Qiao, and K. J. Burnham, “On stabilization of bilin-
ear uncertain time-delay stochastic systems with Markovian
jumping parameters,” IEEE Transactions on Automatic Control,
vol. 47, no. 4, pp. 640–646, 2002.

[12] S. Xu and T. Chen, “Robust𝐻
∞
control for uncertain stochastic

systems with state delay,” IEEE Transactions on Automatic
Control, vol. 47, no. 12, pp. 2089–2094, 2002.

[13] L. Huang andX.Mao, “Robust delayed-state-feedback stabiliza-
tion of uncertain stochastic systems,” Automatica, vol. 45, no. 5,
pp. 1332–1339, 2009.

[14] Z. Liu and J. Peng, “𝑝-moment stability of stochastic nonlinear
delay systems with impulsive jump and Markovian switching,”
Stochastic Analysis and Applications, vol. 27, no. 5, pp. 911–923,
2009.

[15] K. Chang andW. Chang, “Covariance assignment for stochastic
model reference systems via sliding mode control concept,” in
Proceedings of the American Control Conference, pp. 289–292,
Philadelphia, Pa, USA, 1998.

[16] Y. Niu and D. W. C. Ho, “Robust observer design for Itô
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