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For nonconforming finite elements, it has been proved that the models whose convergence is controlled only by the weak form
of patch tests will exhibit much better performance in complicated stress states than those which can pass the strict patch tests.
However, just because the former cannot provide the exact solutions for the patch tests of constant stress states with a very coarse
mesh (strict patch test), their usability is doubted by many researchers. In this paper, the non-conforming plane 4-node membrane
element AGQ6-I, which was formulated by the quadrilateral area coordinate method and cannot pass the strict patch tests, was
modified by three different techniques, including the special numerical integration scheme, the constant stress multiplier method,
and the orthogonal condition of energy. Three resulting new elements, denoted by AGQ6M-I, AGQ6M-II, and AGQ6M, can pass
the strict patch test. And among them, element AGQ6M is the best one. The original model AGQ6-I and the new model AGQ6M
can be treated as the replacements of the well-known models Q6 and QM6, respectively.

1. Introduction

In order to overcome the over-stiffness problem existing in
conforming finite elements and improve their performances
in regular and distorted meshes, the appearance of the
nonconforming elements seems to be inevitable, such as the
famous 4-node quadrilateral plane element Q6 proposed by
Wilson et al. [1], the rectangular thin plate bending element
ACM proposed by Melosh [2], and the triangular thin
plate bending element BCIZ proposed by Bazeley et al. [3].
Since the conforming requirements along element edges are
relaxed, the stiffnessmatrices of these elements becomemuch
softer. So, they can exhibit better performance than usual
conforming element models in most cases. Furthermore, the
construction procedures of these formulations are also easier.
But, from the viewpoint of the variational principle, these
elements violate the principle of minimum potential energy,
which leads to that most of them cannot pass the strict patch
tests, that is, their convergence cannot be guaranteed.

The patch test proposed by Irons et al. [3, 4] has been
taken as a standard for examining the convergence of the
nonconforming elements for a long time. In such test,
the nonconforming elements are required to produce exact
solutions for a constant strain/stress patch with a very coarse
mesh. Although it has been adopted very broadly, there are
still some further discussions [5–8] on it. The patch test
usually includes two types: the “strict” form and the “weak”
form [9]. The strict patch test requests that the element
can yield exact solutions under fixed coarse meshes and has
been accepted by most researchers, while the weak form
only requires the element to provide convergent solution
for constant stress/strain problem as the mesh is repeatedly
subdivided. Actually, the thought of the weak form of the
patch test is more consistent with the concept of convergence.

Many efforts have beenmade for developing 4-node non-
conforming plane elements without any problem in conver-
gence, such as the element QM6 proposed by Taylor et al.
[10], QP6 by Wachspress [11], NQ6 by Pian and Wu [12], the
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generalized conforming element GC-Q6 by Long and Huang
[13], the quasiconforming element QC6 by Chen and Tang
[14], the hybrid-stress element P-S by Pian and Sumihara
[15], and the Hamilton hybrid-stress element HH4 by Cen et
al. [16]. All these elements can pass the strict form of patch
test and possess much better performance than usual 4-node
conforming isoparametric element Q4. In 2004, Chen et al.
[17] formulated a 4-node nonconforming quadrilateral plane
element AGQ6-I by using the quadrilateral area coordinates
[18, 19]. This model exhibits excellent performance and is
quite insensitive to mesh distortions in higher order prob-
lems. For example, it can keep the same high precision for
famous MacNeal’s beam bending problem [20] using various
distorted meshes, while other models cannot achieve this.
This distinguished property can also be shown in nonlin-
ear problems [21]. Furthermore, the explicit expressions of
the element stiffness matrix can be obtained according to
the integral formulae of the quadrilateral area coordinates
[22], which can bring better computation efficiency. So, the
element AGQ6-I attracts other researchers to make further
developments and applications [23–25]. On the other hand,
this element failed in strict patch test and can only pass
the weak patch test. So, its convergence also arose some
discussions [26–28].

In this paper, three treatments were tried to improve the
convergence of the element AGQ6-I, including the special
numerical integration scheme, the constant stress multiplier
method, and the orthogonal condition of energy. Three
resulting new elements, denoted by AGQ6M-I, AGQ6M-
II, and AGQ6M, respectively, can pass the strict patch test.
Numerical examples show that, among the three newmodels,
the element AGQ6M is the best one. The original model
AGQ6-I and the new model AGQ6M can be treated as
the replacements of the well-known models Q6 and QM6,
respectively.

2. Brief Reviews on Element AGQ6-I

The 4-node quadrilateral plane membrane element AGQ6-I
was formulated by the quadrilateral area coordinate methods
[17]. Its displacement fields contain two parts: a generalized
conforming low-order displacement part which is interpo-
lated by the nodal displacements, and an additional second-
order nonconforming part.

2.1. Low-OrderDisplacement Interpolation Formulae. For a 4-
node quadrilateral plane element, the degrees of freedom can
be expressed by the nodal displacement vector:
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Thus, the shape functions of the low-order displacement
fields can be obtained:
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in which 𝑔
𝑖
(𝑖 = 1, 2, 3, 4) are the shape parameters for a

quadrangle and have been defined in [18].
Then, the corresponding strain matrix can be expressed

by
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in which (𝑥
𝑖
, 𝑦
𝑖
) (𝑖 = 1, 2, 3, 4) are the Cartesian coordinates

of the four corner nodes.

2.2. The Additional Second-Order Displacement Interpolation
Formulae. The additional displacements are assumed to be
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2.3. The Element Stiffness Matrix. Finally, the element stiff-
ness matrix of the element can be expressed by
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where 𝑡 is the thickness of element;D is the elasticity matrix
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where 𝐸 and 𝜇 are Young’s modulus and Poisson’s ratio,
respectively. For plane strain problems, the 𝐸 and 𝜇 in (14)
should be replaced by 𝐸/(1 − 𝜇2) and 𝜇/(1 − 𝜇), respectively.

The resulting element model is the element AGQ6-I.
It can be easily shown that the values of the additional
displacement fields given by (10) are zero at four element
nodes. However, without any other restrictions along element
edges, element AGQ6-I is a nonconforming element. On the
other hand, since the relationship between area andCartesian
coordinates is linear, the displacement fields of AGQ6-I are
actually a second-order complete polynomial in Cartesian
coordinates. This makes the element AGQ6-I insensitive to
mesh distortion in higher-order problems. So, it cannot only
present the exact solution for pure bending problem but also
be free of MacNeal’s trapezoid locking problem.

Unfortunately, as a nonconforming element like Wilson’s
Q6, element AGQ6-I cannot give the exact solutions for strict
patch test either. Although the results can converge to the
exact solutions by subdividing the mesh (weak patch test),
further improvements on its convergence are valuable.

3. Treatments on the Convergence of
Element AGQ6-I

3.1. Special Numerical Integration Scheme from QM6 [10]. In
order to make the element Q6 [1] present exact solution for
constant stress/strain problem with fixed coarse mesh, the
following restriction condition was imposed by Taylor et al.
[10] on its additional strain matrix:
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|J| of Jacobi matrix must be a constant. So, when evaluating
the differentials of 𝑥 and 𝑦 to 𝜉 and 𝜂 in matrix K
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(see

(13)) by numerical integration, the isoparametric coordinates
of element centroid, 𝜉 = 𝜂 = 0, were used to replace
the coordinates of Gauss’s integral points. Then, the value of
|J| would be always a constant, and the resulting element,
denoted by QM6, can pass the strict patch test.

In order to employ the previous technique to modify
element AGQ6-I, the quadrilateral area coordinates can be
rewritten in terms of the isoparametric coordinates:
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Then, after substituting (16) into (11), the additional strain
matrixB

𝜆
of elementAGQ6-I in (11) can be rewritten in terms

of the isoparametric coordinates.
It is obvious that the additional strain matrix B

𝜆
of

element AGQ6-I is different with that of element Q6. For
element Q6, there are only terms of 𝜉, 𝜂, and 𝜉𝜂 available
in B
𝜆
, and the integral interval of (15) is [−1, 1]. So long as
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the |J| is a constant, (15) will be satisfied, and the modified
version of Q6, element QM6, can pass the strict patch test.
ComparedwithQ6, the additional strainmatrixB

𝜆
ofAGQ6-

I contains not only the terms of 𝜉, 𝜂, and 𝜉𝜂 but also some
constant terms which Q6 does not have. This leads to that
the result of (15) is not a zero matrix. Therefore, the special
numerical integration scheme mentioned previously cannot
be directly used by element AGQ6-I. The influence of these
constants must be considered.
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In order to eliminate the influence of these constants, the
modified additional strain matrix B
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Using this modified additional strain matrix and the numer-
ical integral method of QM6, the resulting element will pass
the strict patch test.

The new model is named as AGQ6M-I.

3.2. The Constant Stress Multiplier Method. The second
approach is the constant stress multiplier method proposed
by Pian and Wu [12], and can also make a nonconforming
element pass the strict patch test. After introducing constant
stress multiplier to eliminate the nonconforming energy on
element sides, the final energy functional of the element can
be written as
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The final element stiffness matrix can be derived by

usual static condense procedure. The resulting new element
is denoted by AGQ6M-II and can also pass the strict form of
patch test.

3.3. The Orthogonal Condition of Energy. In order to ensure
the element to pass the strict patch test, the strain energy
under constant stress state caused by the nonconforming
strains is required to be zero:
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2𝐴

𝐿
2
+ 𝐶
2
) d𝐴 = 0.

(26)
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Then, 𝐶
1
and 𝐶

2
can be solved:

𝐶
1
= −

1

6𝐴

[𝑏
1
(1 − 𝑔

2
𝑔
3
) + 𝑏
3
(1 − 𝑔

4
𝑔
1
)] ,

𝐶
2
= −

1

6𝐴

[𝑏
2
(1 − 𝑔

3
𝑔
4
) + 𝑏
4
(1 − 𝑔

1
𝑔
2
)] .

(27)

Similarly, from ∫A𝑒 𝜀𝑦d𝐴 = 0, 𝐶
3
and 𝐶

4
can be obtained:

𝐶
3
= −

1

6𝐴

[𝑐
1
(1 − 𝑔

2
𝑔
3
) + 𝑐
3
(1 − 𝑔

4
𝑔
1
)] ,

𝐶
4
= −

1

6𝐴

[𝑐
2
(1 − 𝑔

3
𝑔
4
) + 𝑐
4
(1 − 𝑔

1
𝑔
2
)] .

(28)

And it can be proved that all previous 𝐶
𝑖
(𝑖 = 1, 2, 3, 4) satisfy

∫A𝑒 𝜀𝑥𝑦d𝐴 = 0 automatically.
Substitution of (27) and (28) into (24) yields the addi-

tional strain matrix of a new element by modifying element
AGQ6-I. This new model is denoted by AGQ6M.

4. Numerical Examples

4.1. Strict Patch Test. The constant strain/stress patch test
using irregular mesh is shown in Figure 1. Let Young’s
modulus 𝐸 = 1000, Poisson’s ratio 𝜇 = 0.25, and thickness
of the patch 𝑡 = 1. Element AGQ6-I cannot give the exact
solutions under such coarse meshes, while all three new
elements with full integration scheme (2 × 2) can produce
exact solutions without any problem. It shows that the pro-
posed three methods are all workable for modifying noncon-
forming elements.

2
A

1 1 2 3 3

41122
B

P = 150

P = 150

P = 150

M = 2000

Figure 3: Cantilever beam with five irregular elements.

Table 1: Displacement at point C of Cook’s beam.

Element 𝑉C

2 × 2 4 × 4 8 × 8
Q4 11.80 18.29 22.08
Q6 22.94 23.48 23.80
QM6 21.05 23.02 —
AGQ6-I 23.06 23.68 23.87
AGQ6M-I 20.86 23.00 23.69
AGQ6M-II 11.75 18.28 22.08
AGQ6M 20.74 22.99 23.69
Reference value 23.96

Table 2: The deflections at point A of a cantilever beam.

Element type Load (a) Load (b)
VA 𝜎

𝑥B VA 𝜎
𝑥B

Q4 45.7 −1761 50.7 −2448
Q6 98.4 −2428 100.4 −3354
QM6 96.1 −2497 98.0 −3235
QC6 96.1 −2439 98.1 −3339
NQ6 96.1 −2439 98.0 −3294
AGQ6-I 100.0 −3000 102.0 −4151
AGQ6M-I 91.9 — 94.5 —
AGQ6M-II 44.4 — 49.4 —
AGQ6M 96.0 −3015 97.9 −4135
Exact 100 −3000 102.6 −4050

4.2. Cook’s Skew Beam. This example was proposed by Cook
et al. [9]. As shown in Figure 2, a skew cantilever beam is
subjected to distributed shear load along its free edge. The
results of vertical deflection at point C are listed in Table 1.

Compared with the other elements, the accuracy of
AQ6M-II is even poor as Q4 element, while AGQ6M-I and
AGQ6M are as accurate as QM6.

4.3. Cantilever Beam Divided by Five Quadrilateral Elements.
The cantilever beam, as shown in Figure 3, is divided by
five irregular quadrilateral elements. Two loading cases are
considered: (a) pure bending under moment 𝑀; (b) linear
bending under transverse force 𝑃. The Young’s modulus 𝐸 =

1500, and Poisson’s ratio 𝜇 = 0.25. Numerical results of the
vertical deflection VA at point A and the stress 𝜎

𝑥B at point B
are given in Table 2.

From the results listed inTable 2, AGQ6M-II still exhibits
poor performance as Q4. Although AGQ6M-I has passed
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Figure 4: MacNeal’s thin beam.

Table 3: The normalized deflections at the free end of MacNeal’s
beam.

Element
type

Load 𝑃 Load𝑀
Mesh
(a)

Mesh
(b)

Mesh
(c)

Mesh
(a)

Mesh
(b)

Mesh
(c)

Q4 0.093 0.035 0.003 0.093 0.031 0.022
Q6 0.993 0.677 0.106 1.000 0.759 0.093
QM6 0.993 0.623 0.044 1.000 0.722 0.037
AGQ6-I 0.993 0.994 0.994 1.000 1.000 1.000
AGQ6M-I 0.993 0.631 0.050 1.000 0.722 0.044
AGQ6M-II 0.093 0.034 0.027 0.093 0.031 0.022
AGQ6M 0.993 0.632 0.051 1.000 0.726 0.046
Exact −0.1081 −0.0054

the patch test, it suffers from the mesh distortion now; only
AGQ6M can keep the same accuracy as other elements.

4.4. MacNeal’s Thin Cantilever Beam with Distorted Meshes.
Consider the thin beams presented in Figure 4. Three differ-
ent mesh shapes, rectangular, parallelogram and trapezoidal,
are adopted.This example, proposed byMacNeal and Harder
[20], is a famous benchmark for testing the sensitivity tomesh
distortion of quadrilateral membrane elements. In the three
kinds of mesh, the trapezoidal shapes will cause the element
locking easily.

There are two loading cases under consideration: pure
bending and transverse linear bending.The Young’s modulus
of the beam 𝐸 = 10

7; the Poisson’s ratio 𝜇 = 0.3; and the
thickness of the beam 𝑡 = 0.1.

The results of the tip deflection are shown inTable 3. From
the results listed in Table 3,

(1) bothAGQ6M-II andQ4 suffer from locking problems
for the three kinds ofmesh distortions ((a) length-width ratio
distortion, (b) parallelogram distortion, and (c) trapezoidal
distortion) of three different meshes.

(2) As a nonconforming element, Q6 still cannot over-
come the locking problem for the trapezoidalmesh. Benefited
from the area coordinate methods, AGQ6-I is locking free
from each kind of mesh.

5 5

A
2

E = 1500, 𝜇 = 0.25, t = 1

e

M = 2000

Figure 5: Cantilever beam divided by two elements with distorted
parameter 𝑒.

Table 4: Results of the tip deflection of a cantilever beam subjected
to a pure bending𝑀.

𝑒 0 0.5 1 2 3 4 4.9
Q4 28.0 21.0 14.1 9.7 8.3 7.2 6.2
Q6 100 78.0 56.1 42.5 41.5 44.2 47.4
QM6 100 80.9 62.7 54.4 53.6 51.2 46.8
AGQ6-I 100 100 100 100 100 100 100
AGQ6M-I 100 80.8 55.4 24.1 12.9 9.4 7.6
AGQ6M-II 28.0 21.2 14.1 9.2 7.3 5.9 4.9
AGQ6M 100 83.8 66.5 60.1 61.4 60.3 56.0
Exact 100 100 100 100 100 100 100

(3) All those elements which can pass the strict patch test
are locked in the trapezoidalmesh distortion.This verified the
theory proposed in [30] again; that is, the trapezoidal locking
is unavoidable for an element passed the strict patch test.

4.5. Mesh Distortion. The cantilever beam shown in Figure 5
is divided by two elements. The shape of the two elements
varies with the variety of the distorted parameter 𝑒. When 𝑒 =
0, both elements are rectangular. But with the increase of 𝑒,
the mesh will be distorted more and more seriously. This is
another famous benchmark for testing the sensitivity to the
mesh distortion. Pure bending𝑀 = 2000 is considered. The
results of the tip deflection at point A are listed in Table 4.

The accuracy of element Q4 and AGQ6M-II is the
poorest. Their relative error reaches 72% when 𝑒 = 0. Except
Q4, AGQ6M-I is much more sensitive to mesh distortion
than any other element although it can present exact solution
while 𝑒 = 0. Compared with other elements which can pass
the strict patch test, AGQ6M is the most robust element
against mesh distortion.

5. Conclusions

In order to make the nonconforming element AGQ6-I pass
the strict patch test, three treatments are used and tested.
Thesemethods are special numerical integration schemeused
in QM6, constant stress multiplier method, and the orthog-
onal condition of energy. Numerical results of numerical
examples show that eachmethod can achieve the goal, but the
performance for complicated stress problem of new elements
will degenerate inevitably. Among the three treatments, the
constant stress multiplier method made the element so rigid
that the accuracy will deteriorate even in rectangular meshes.
The special numerical integration scheme can make element
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QM6 exhibit good performance, but it is not always suitable
for all other elements. The orthogonal condition of energy
can effectively improve the compatibility of element AGQ6-I
without losing too much accuracy.
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