
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 908623, 6 pages
http://dx.doi.org/10.1155/2013/908623

Research Article
A Bijection between Lattice-Valued Filters and Lattice-Valued
Congruences in Residuated Lattices

Wei Wei,1 Yan Qiang,2 and Jing Zhang1

1 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
2 College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China

Correspondence should be addressed to Wei Wei; weiwei@xaut.edu.cn

Received 22 January 2013; Accepted 1 July 2013

Academic Editor: Bin Liu

Copyright © 2013 Wei Wei et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We
introduce a new definition of congruences which just depends on the meet ∧ and the residuum → . Then it is shown that each of
these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are
studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued) filters and the set of all
(lattice-valued) congruences.

1. Introduction and Preliminaries

The interest in lattice-valued logic has been rapidly growing
recently. Several algebras playing the role of structures of
true values have been introduced and axiomatized [1–3]. The
most general structure considered in this paper is that of a
residuated lattice [4].

In a narrow sense, a residuated lattice is an algebra
𝐿 = (𝐿, ∧, ∨, ⊗, → , 0, 1) of type (2,2,2,2,0,0) satisfying the
following: (i) (𝐿, ∧, ∨) is a bounded lattice with 0, 1 as the
bottomelement, and the top element respectively; (ii) (𝐿, ⊗, 1)
is a commutative monoid and monotone at both arguments;
(iii) 𝑎 ⊗ 𝑏 ≤ 𝑐 if and only if 𝑎 ≤ 𝑏 → 𝑐 (for all 𝑎, 𝑏, 𝑐 ∈

𝐿). The operations ⊗, → are called the multiplication and
residuum, respectively. A residuated lattice in this paper
is generally called a bounded, integral, and commutative
residuated lattice in [4].

Residuated lattices were first introduced as a generaliza-
tion of ideal lattices of rings in 1939 by Ward and Dilworth
[5]. In their original definition, a residuated lattice was what
we would call an integral commutative one.

For a residuated lattice 𝐿, the negation operation ¬ : 𝐿 →

𝐿 is defined by ¬𝑥 = 𝑥 → 0 (for all 𝑥 ∈ 𝐿).
Residuated lattices are very common in mathematical

science and a lot of lattices and algebras are residuated lattices

firstly. For example, an integral commutative Girard-monoid
[2] is a residuated lattice satisfying the law of double negation:
𝑥 = ¬¬𝑥; a Heyting algebra [6] is a residuated lattice with
⊗ = ∧; anMV-algebra [7] is a residuated lattice where 𝑥∨𝑦 =

(𝑥 → 𝑦) → 𝑦 holds; an MTL-algebra [1] is a residuated
lattice satisfying (𝑥 → 𝑦) ∨ (𝑦 → 𝑥) = 1; a BL-algebra
[8] is an MTL-algebra satisfying 𝑥 ∧ 𝑦 = 𝑥 ⊗ (𝑥 → 𝑦); a
product algebra (or Π-algebra) [8] is a BL-algebra satisfying
¬¬𝑧 ≤ ((𝑥⊗𝑧) → (𝑦⊗𝑧)) → (𝑥 → 𝑦) and 𝑥∧¬𝑥 = 0; a𝐺-
algebra (Gödel algebra) [2] is both a Heyting algebra and an
MTL-algebra; an R

0
-algebra [3] is a residuated lattice where

𝑥 ⊗ 𝑦 = ¬(𝑥 → ¬𝑦); a lattice implication algebra [9] is a
residuated lattice with 𝑎 ⊗ 𝑏 = (𝑎 → 𝑏

󸀠
)
󸀠 (where 󸀠: 𝐿 → 𝐿 is

an order-reversing involution).
Since the class of all residuated lattices is a variety

of algebras (Proposition 2 in [10]), we can study them as
universal algebras. Now, consider a residuated lattice 𝐿 =

(𝐿, ∧, ∨, ⊗, → , 0, 1) as a universal algebra; a congruence ∼ on
𝐿 is an equivalence relation which preserves all operators on
𝐿; that is, (𝑎, 𝑏), (𝑐, 𝑑) ∈ ∼ implies that (𝑎 ∧ 𝑐, 𝑏 ∧ 𝑑), (𝑎 ∨ 𝑐, 𝑏 ∨

𝑑), (𝑎 ⊗ 𝑐, 𝑏 ⊗ 𝑑), (𝑎 → 𝑐, 𝑏 → 𝑑) ∈ ∼.
The aim of this paper is to study the relation between

lattice-valued filters and lattice-valued congruences in resid-
uated lattices. We will introduce a new definition of congru-
ences just depending on the meet ∧ and the residuum → .
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Then it is shown that each of these congruences is automat-
ically a universal-algebra-congruence. Also, lattice-valued
filters and lattice-valued congruences are studied, and it is
shown that there is a one-to-one correspondence between
the set of all (lattice-valued) filters and the set of all (lattice-
valued) congruences.

2. Filters and Congruences

In pure mathematics, (lattice-valued) filters (or ideals) and
(lattice-valued) congruences are useful tools in investigating
the structure of the corresponding algebras.

The definition of a residuated lattice (in a narrow sense)
has been given in Section 1. In the following discussion, 𝐿
always denotes a residuated lattice.

Proposition 1 (see [3, 8, 10, 11]). Let 𝐿 be a residuated lattice.
Then

(R1) 𝑎 ⊗ 𝑏 ≤ 𝑎 ∧ 𝑏;
(R2) 𝑎 → (𝑏 ∧ 𝑐) = (𝑎 → 𝑏) ∧ (𝑎 → 𝑐);
(R3) (𝑎 ∨ 𝑏) → 𝑐 = (𝑎 → 𝑐) ∧ (𝑏 → 𝑐);
(R4) 𝑎 ⊗ (𝑏 ∨ 𝑐) = (𝑎 ⊗ 𝑏) ∨ (𝑎 ⊗ 𝑐);
(R5) 𝑏 → 𝑐 ≤ (𝑎 → 𝑏) → (𝑎 → 𝑐);
(R6) 𝑎 = 1 → 𝑎;
(R7) 𝑎 ≤ 𝑏 if and only if 𝑎 → 𝑏 = 1;
(R8) 𝑎 ≤ 𝑏 → 𝑐 if and only if 𝑏 ≤ 𝑎 → 𝑐;
(R9) 𝑎 → (𝑏 → 𝑐) = 𝑏 → (𝑎 → 𝑐) = (𝑎 ⊗ 𝑏) → 𝑐;
(R10) 𝑎 → 𝑏 ≤ (𝑎 ⊗ 𝑐) → (𝑏 ⊗ 𝑐);
(R11) 𝑎 → 𝑏 ≥ 𝑏;
(R12) 𝑏 ≥ 𝑎 ⊗ (𝑎 → 𝑏);
(R13) 𝑏 ≤ 𝑎 → (𝑎 ⊗ 𝑏);
(R14) 𝑎 → (𝑎 ⊗ 𝑏) ≤ 𝑎 → 𝑏;
(R15) 𝑎 ≤ (𝑎 → 𝑏) → 𝑏;
(R16) (𝑎 → 𝑏) ⊗ (𝑏 → 𝑐) ≤ 𝑎 → 𝑐.

Definition 2 (see [8]). A nonempty subset 𝐹 of 𝐿 is called a
filter if

(F1) 𝐹 is an upper set; that is, 𝑥 ≤ 𝑦 and 𝑥 ∈ 𝐹 imply
𝑦 ∈ 𝐹 for all 𝑥, 𝑦 ∈ 𝐿;
(F2) 𝐹 is closed under ⊗; that is, 𝑥 ⊗ 𝑦 ∈ 𝐹 holds for
all 𝑥, 𝑦 ∈ 𝐹.

Proposition 3 (see [8]). Let𝐹 be a nonempty subset of 𝐿.Then
the following three are equivalent:

(1) 𝐹 is a filter;
(2) 1 ∈ 𝐹 and 𝑥, 𝑥 → 𝑦 ∈ 𝐹 imply 𝑦 ∈ 𝐹 for all 𝑥, 𝑦 ∈ 𝐹;
(3) 𝐹 is closed under ⊗ and 𝑥 ∨ 𝑦 ∈ 𝐹 for all 𝑥 ∈ 𝐹 and

𝑦 ∈ 𝐿.

Denote 𝐹(𝐿) as the set of all filters of 𝐿. Then 𝐹(𝐿) is a
complete lattice under the partial order of set inclusion with
the largest element 𝐿 and the least element {1}. Furthermore,
the meets in 𝐹(𝐿) are the usual intersection of sets.

For simplification of congruence relation in algebraic
structures, related attempts have been made in [12–14].

Definition 4. A nonempty subset ∼ of 𝐿 × 𝐿 is called a {∧, →
}-congruence on 𝐿 if the following conditions hold:

(ER) ∼ is an equivalence;
for any 𝑥, 𝑦, 𝑧 ∈ 𝐿,

(C1) if (𝑥, 𝑦) ∈∼, then (𝑥 ∧ 𝑧, 𝑦 ∧ 𝑧) ∈∼;
(C2) if (𝑥, 𝑦) ∈∼, then (𝑥 → 𝑧, 𝑦 → 𝑧) ∈∼.

Obviously, a congruence is always a {∧, → }-congruence.
Let Con(𝐿) denote the set of all congruences on 𝐿. It is easy to
verify that Con(𝐿) is a complete lattice, where the meets are
the usual intersection of sets and 𝐿 × 𝐿, {(1, 1)} are the largest
and the least elements, respectively.

Let∼ be a congruence on 𝐿 and𝐿/ ∼= {[𝑥]| 𝑥 ∈ 𝐿}, where
[𝑥] is the congruence class of 𝑥with respect to ∼. Define [𝑥]∧
[𝑦] = [𝑥∧𝑦], [𝑥] ∨ [𝑦] = [𝑥∨𝑦], [𝑥] ⊗ [𝑦] = [𝑥⊗𝑦], [𝑥] →

[𝑦] = [𝑥 → 𝑦] (for all 𝑥, 𝑦 ∈ 𝐿). It is easy to verify that
(𝐿/ ∼, ∧, ∨, ⊗, → , [0], [1]) is also a residuated lattice.

Proposition 5 (see [15]). Let 𝐹 be a filter of 𝐿. Then ∼
𝐹

=

{(𝑥, 𝑦) ∈ 𝐿×𝐿 | 𝑥 → 𝑦, 𝑦 → 𝑥 ∈ 𝐹} is a {∧, → }-congruence
on 𝐿.

Proof. (ER) Obviously, ∼
𝐹
is reflexive and symmetric. To

show the transitivity of ∼
𝐹
, suppose that (𝑥, 𝑦), (𝑦, 𝑧) ∈ ∼

𝐹
;

we have 𝑥 → 𝑦, 𝑦 → 𝑥, 𝑦 → 𝑧, 𝑧 → 𝑦 ∈ 𝐹. Then

(𝑥 󳨀→ 𝑦) ⊗ (𝑦 󳨀→ 𝑧) , (𝑧 󳨀→ 𝑦) ⊗ (𝑦 󳨀→ 𝑥) ∈ 𝐹.

(1)

By (R16)

(𝑥 󳨀→ 𝑦) ⊗ (𝑦 󳨀→ 𝑧) ≤ 𝑥 󳨀→ 𝑧,

(𝑧 󳨀→ 𝑦) ⊗ (𝑦 󳨀→ 𝑥) ≤ 𝑧 󳨀→ 𝑥,

(2)

and 𝐹 is an upper set; we have 𝑥 → 𝑧, 𝑧 → 𝑥 ∈ 𝐹.
Suppose that (𝑥, 𝑦) ∈ ∼

𝐹
and 𝑧 ∈ 𝐿. Then 𝑥 → 𝑦, 𝑦 →

𝑥 ∈ 𝐹.
(C1) First,

(𝑥 ∧ 𝑧) 󳨀→ (𝑦 ∧ 𝑧) = ((𝑥 ∧ 𝑧) 󳨀→ 𝑦) ∧ ((𝑥 ∧ 𝑧) 󳨀→ 𝑧)

≥ (𝑥 󳨀→ 𝑦) ∧ 1 = 𝑥 󳨀→ 𝑦.

(3)

Then (𝑥∧𝑧) → (𝑦∧𝑧) ∈ 𝐹 since 𝐹 is an upper set. Similarly,
we have (𝑦 ∧ 𝑧) → (𝑥 ∧ 𝑧) ∈ 𝐹. Hence (𝑥 ∧ 𝑧, 𝑦 ∧ 𝑧) ∈ ∼

𝐹
.

(C2) By (R16), we have

(𝑦 󳨀→ 𝑥) ⊗ (𝑥 󳨀→ 𝑧) ≤ (𝑦 󳨀→ 𝑧) ,

𝑦 󳨀→ 𝑥 ≤ (𝑥 󳨀→ 𝑧) 󳨀→ (𝑦 󳨀→ 𝑧) .

(4)

Thus (𝑥 → 𝑧) → (𝑦 → 𝑧) ∈ 𝐹 since 𝐹 is an upper set.
Similarly, we have (𝑦 → 𝑧) → (𝑥 → 𝑧) ∈ 𝐹. Hence (𝑥 →

𝑧, 𝑦 → 𝑧) ∈ ∼
𝐹
.
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Proposition 6. Let 𝐹 be a filter of 𝐿. If (𝑎, 𝑏), (𝑐, 𝑑) ∈ ∼
𝐹
, then

(𝑎∧𝑐, 𝑏∧𝑑), (𝑎∨𝑐, 𝑏∨𝑑),(𝑎⊗𝑐, 𝑏⊗𝑑), (𝑎 → 𝑐, 𝑏 → 𝑑) ∈ ∼
𝐹
.

Proof. Suppose that (𝑎, 𝑏), (𝑐, 𝑑) ∈ ∼
𝐹
. Then 𝑎 → 𝑏, 𝑏 →

𝑎, 𝑐 → 𝑑, 𝑑 → 𝑐 ∈ 𝐹.
(1) (𝑎 ∧ 𝑐, 𝑏 ∧ 𝑑) ∈ ∼

𝐹
. In fact, by (R1) and (R2),

(𝑎 ∧ 𝑐) 󳨀→ (𝑏 ∧ 𝑑) = ((𝑎 ∧ 𝑐) 󳨀→ 𝑏) ∧ ((𝑎 ∧ 𝑐) 󳨀→ 𝑑)

≥ (𝑎 󳨀→ 𝑏) ∧ (𝑐 󳨀→ 𝑑)

≥ (𝑎 󳨀→ 𝑏) ⊗ (𝑐 󳨀→ 𝑑) ∈ 𝐹.

(5)

It follows that (𝑎 ∧ 𝑐) → (𝑏 ∧ 𝑑) ∈ 𝐹. Similarly, (𝑏 ∧ 𝑑) →

(𝑎 ∧ 𝑐) ∈ 𝐹. Hence (𝑎 ∧ 𝑐, 𝑏 ∧ 𝑑) ∈ ∼
𝐹
.

(2) (𝑎 ∨ 𝑐, 𝑏 ∨ 𝑑) ∈ ∼
𝐹
. In fact, by (R1) and (R3),

(𝑎 ∨ 𝑐) 󳨀→ (𝑏 ∨ 𝑑) = (𝑎 󳨀→ (𝑏 ∨ 𝑑)) ∧ (𝑐 󳨀→ (𝑏 ∨ 𝑑))

≥ (𝑎 󳨀→ 𝑏) ∧ (𝑐 󳨀→ 𝑑)

≥ (𝑎 󳨀→ 𝑏) ⊗ (𝑐 󳨀→ 𝑑) ∈ 𝐹.

(6)

It follows that (𝑎 ∨ 𝑐) → (𝑏 ∨ 𝑑) ∈ 𝐹. Similarly, (𝑏 ∨ 𝑑) →

(𝑎 ∨ 𝑐) ∈ 𝐹. Hence (𝑎 ∨ 𝑐, 𝑏 ∨ 𝑑) ∈ ∼
𝐹
.

(3) (𝑎⊗𝑐, 𝑏⊗𝑑) ∈ ∼
𝐹
. In fact, by (R10), (𝑎⊗𝑐) → (𝑏⊗𝑐) ≥

𝑎 → 𝑏 ∈ 𝐹, which implies that (𝑎 ⊗ 𝑐) → (𝑏 ⊗ 𝑐) ∈ 𝐹.
Similarly, (𝑏 ⊗ 𝑐) → (𝑎 ⊗ 𝑐) ∈ 𝐹. Thus (𝑎 ⊗ 𝑐, 𝑏 ⊗ 𝑐) ∈ ∼

𝐹
.

Similarly, (𝑐 ⊗ 𝑏, 𝑑 ⊗ 𝑏) ∈ ∼
𝐹
. Hence (𝑎 ⊗ 𝑐, 𝑏 ⊗ 𝑑) ∈ ∼

𝐹
by the

transitivity of ∼
𝐹
.

(4) (𝑎 → 𝑐, 𝑏 → 𝑑) ∈ ∼
𝐹
. In fact, by (R16), we have

(𝑏 󳨀→ 𝑎) ⊗ (𝑎 󳨀→ 𝑐) ⊗ (𝑐 󳨀→ 𝑑) ≤ 𝑏 󳨀→ 𝑑, (7)

which implies that

(𝑏 󳨀→ 𝑎) ⊗ (𝑐 󳨀→ 𝑑) ≤ (𝑎 󳨀→ 𝑐) 󳨀→ (𝑏 󳨀→ 𝑑) . (8)

Thus, (𝑎 → 𝑐) → (𝑏 → 𝑑) ∈ 𝐹. Similarly, (𝑏 → 𝑑) →

(𝑎 → 𝑐) ∈ 𝐹. Hence (𝑎 → 𝑐, 𝑏 → 𝑑)∼
𝐹
.

Proposition 7. Let ∼ be a {∧, → }-congruence on 𝐿. Then
𝐹
∼
= {𝑥 ∈ 𝐿 | (𝑥, 1) ∈∼} is a filter of 𝐿.

Proof. Obviously, 1 ∈ 𝐹
∼
. Suppose that 𝑥, 𝑥 → 𝑦 ∈ 𝐹

∼
; that

is, (𝑥, 1), (𝑥 → 𝑦, 1) ∈ ∼. By (R6) and (C2), we have (𝑥 →

𝑦, 𝑦) = (𝑥 → 𝑦, 1 → 𝑦) ∈ ∼ and by the transitivity of ∼, we
have (𝑦, 1)∈ ∼. Thus 𝑦 ∈ 𝐹

∼
. Hence 𝐹

∼
is a filter of 𝐿.

Lemma 8. Let ∼ be a {∧, → }-congruence on 𝐿. Then (𝑥, 𝑦) ∈

∼ if and only if (𝑥 → 𝑦, 1) ∈ ∼ and (𝑦 → 𝑥, 1) ∈ ∼.

Proof. Suppose that (𝑥, 𝑦) ∈ ∼. Then (𝑥 → 𝑦, 1) = (𝑥 →

𝑦, 𝑦 → 𝑦) ∈ ∼ and similarly (𝑦 → 𝑥, 1) ∈ ∼. Conversely,
suppose that (𝑥 → 𝑦, 1) ∈ ∼ and (𝑦 → 𝑥, 1) ∈ ∼. Then

((𝑥 󳨀→ 𝑦) 󳨀→ 𝑦, 𝑦) = ((𝑥 󳨀→ 𝑦) 󳨀→ 𝑦, 1 󳨀→ 𝑦) ∈∼ .

(9)

By (C1) and (R15),

(𝑥, 𝑥 ∧ 𝑦) = (((𝑥 󳨀→ 𝑦) 󳨀→ 𝑦) ∧ 𝑥, 𝑦 ∧ 𝑥) ∈ ∼ . (10)

Similarly, we have (𝑦, 𝑥 ∧ 𝑦) ∈ ∼. Hence (𝑥, 𝑦) ∈ ∼ by the
transitivity of ∼.

Theorem 9. Let 𝐹, ∼ be a filter of 𝐿 and a {∧, → }-congruence
on 𝐿, respectively. Then ∼

𝐹
∼

=∼ and 𝐹
∼
𝐹

= 𝐹. Thus there is a
bijection between 𝐹(𝐿) and 𝐶𝑜𝑛(𝐿).

Proof. (1) By Lemma 8, (𝑥, 𝑦) ∈ ∼
𝐹
∼

if and only if 𝑥 → 𝑦 ∈

𝐹
∼
and 𝑦 → 𝑥 ∈ 𝐹

∼
if and only if (𝑥 → 𝑦, 1) ∈ ∼ and

(𝑦 → 𝑥, 1) ∈ ∼ if and only if (𝑥, 𝑦) ∈ ∼. Hence ∼
𝐹
∼

=∼.
(2)𝑥 ∈ 𝐹

∼
𝐹

if and only if (𝑥, 1) ∈ ∼
𝐹
if and only if𝑥 → 1 ∈

𝐹 and 1 → 𝑥 ∈ 𝐹 if and only if 𝑥 ∈ 𝐹. Hence 𝐹
∼
𝐹

= 𝐹.

Remark 10. (1) By Proposition 6 and Theorem 9, if ∼ is a
{∧, → }-congruence on 𝐿 and (𝑎, 𝑏), (𝑐, 𝑑) ∈ ∼, then (𝑎∧ 𝑐, 𝑏∧

𝑑), (𝑎 ∨ 𝑐, 𝑏 ∨ 𝑑), (𝑎 ⊗ 𝑐, 𝑏 ⊗ 𝑑), (𝑎 → 𝑐, 𝑏 → 𝑑) ∈ ∼. That
is to say, a {∧, → }-congruence and a (universal) congruence
are equivalent to each other, and so are the symbols 𝐶𝑜𝑛(𝐿).

(2) In [16], Pavelka firstly showed that there is a one-to-
one correspondence between all filters and all congruences
in a residuated lattice. And a binary relation is a universal-
algebra-congruence if and only if it is an equivalence relation
that preserves both ⊗ and → (that is, it just depends
on the operations ⊗, →; the other two operations ∨, ∧ are
automatically preserved).

3. 𝑀-Filters

In the following part of this paper, unless otherwise stated,𝑀
always denotes a lattice with a greatest element 1. In a lattice
𝑀, an element 𝑎 is called prime (resp., coprime) if 𝑏 ∧ 𝑐 ≤ 𝑎

(resp., 𝑎 ≤ 𝑏 ∨ 𝑐) always implies 𝑏 ≤ 𝑎 or 𝑐 ≤ 𝑎 (resp., 𝑎 ≤ 𝑏

or 𝑎 ≤ 𝑐) for all 𝑏, 𝑐 ∈ 𝑀. The set of all prime (resp., coprime)
elements of𝑀 is denoted by 𝐽(𝑀) (resp., 𝑃(𝑀)). A complete
lattice𝑀 is called a spatial frame [6] if 𝑎 = ∧{𝑟 ∈ 𝑃(𝑀) | 𝑎 ≤

𝑟} and𝑀 is called a closed set lattice [17] if 𝑎 = ∨{𝑟 ∈ 𝐽(𝑀) |

𝑟 ≤ 𝑎}.
In this section, we will study 𝑀-filters and their proper-

ties in the residuated lattice 𝐿.

Definition 11. We call a mapping𝐴 : 𝐿 → 𝑀 a lattice-valued
filter of 𝐿 if

(FF1) 𝐴(1) = 1;

(FF2) 𝐴(𝑦) ≥ 𝐴(𝑥) & 𝐴(𝑥 → 𝑦) for all 𝑥, 𝑦 ∈ 𝐿.

Remark 12. The definition of a lattice-valued filter [13] is a
lattice-valued set 𝐴 of 𝐿 satisfying (FF2) and

(FF1󸀠) for all 𝑥 ∈ 𝐿, 𝐴(1) ≥ 𝐴(𝑥),

which is different from Definition 11. It is easy to see that
a lattice-valued filter in this paper is always a lattice-valued
filter in [13]. In a common sense, a lattice-valued filter should
be equivalent to a crisp one if we replaced𝑀 by {0, 1}. Thus,
the lattice-valued filter in [13] is not a direct generalization of
a crisp one since 0

𝐿
(the constant map valued at 0) is a lattice-

valued filter of 𝐿 while 0 (the crisp counterpart) is not a crisp
one.

Denote 𝐹𝐹(𝐿) as the set of all lattice-valued filters of 𝐿.
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Proposition 13. Let𝐴 : 𝐿 → 𝑀 be amapping with𝐴(1) = 1.
The following two are equivalent:

(1) 𝐴 ∈ 𝐹𝐹(𝐿);
(2) 𝐴 ismonotonewith respect to the order on𝐿 and𝐴(𝑥) ∧

𝐴(𝑦) ≥ 𝐴(𝑥 ⊗ 𝑦) ≥ 𝐴(𝑥) & 𝐴(𝑦) for all 𝑥, 𝑦 ∈ 𝐿.

Proof. (1) ⇒ (2): for any 𝑥, 𝑦 ∈ 𝐿 with 𝑥 ≤ 𝑦, we have 𝑥 →

𝑦 = 1 and

𝐴 (𝑦) ≥ 𝐴 (𝑥 󳨀→ 𝑦) & 𝐴 (𝑥)

= 𝐴 (1) & 𝐴 (𝑥) = 1 & 𝐴 (𝑥) = 𝐴 (𝑥) .

(11)

Thus 𝐴 is monotone. By (FF2) and (R13),

𝐴 (𝑥 ⊗ 𝑦) ≥ 𝐴 (𝑥) & 𝐴 (𝑥 󳨀→ (𝑥 ⊗ 𝑦)) ≥ 𝐴 (𝑥) & 𝐴 (𝑦)

(12)

since 𝐴 is monotone. Also, 𝐴(𝑥 ⊗ 𝑦) ≤ 𝐴(𝑥) ∧ 𝐴(𝑦) since
𝐴 is monotone. Therefore, 𝐴(𝑥) ∧ 𝐴(𝑦) ≥ 𝐴(𝑥 ⊗ 𝑦) ≥

𝐴(𝑥) & 𝐴(𝑦).
(2) ⇒ (1): by (R12), for all 𝑥, 𝑦 ∈ 𝐿, 𝐴(𝑦) ≥ 𝐴(𝑥 ⊗ (𝑥 →

𝑦)) = 𝐴(𝑥) & 𝐴(𝑥 → 𝑦).

Corollary 14. If & = ∧ in𝑀, then for each 𝐴 ∈ 𝐹𝐹(𝐿), 𝐴(𝑥 ∧

𝑦) = 𝐴(𝑥 ⊗ 𝑦) = 𝐴(𝑥) ∧ 𝐴(𝑦).

Proof. By Proposition 13 and (R1), 𝐴(𝑥 ∧ 𝑦) ≤ 𝐴(𝑥) ∧ 𝐴(𝑦) =

𝐴(𝑥 ⊗ 𝑦) ≤ 𝐴(𝑥 ∧ 𝑦). Then 𝐴(𝑥 ∧ 𝑦) = 𝐴(𝑥 ⊗ 𝑦) = 𝐴(𝑥) ∧

𝐴(𝑦).

Let 𝐴 : 𝐿 → 𝑀 be a mapping. For any 𝑟 ∈ 𝑀, define

𝐴
[𝑟]

= {𝑥 ∈ 𝐿 | 𝐴 (𝑥) ≥ 𝑟} ,

𝐴
(𝑟)

= {𝑥 ∈ 𝐿 | 𝐴 (𝑥) ≰ 𝑟} .

(13)

Proposition 15. 𝐴 ∈ 𝐹𝐹(𝐿) if and only if 𝐴
[𝑟]

∈ 𝐹(𝐿) for any
𝑟 ∈ 𝑀.

Proof. (1) ⇒ (2): clearly, for any 𝑟 ∈ 𝑀, 1 ∈ 𝐴
[𝑟]
. If 𝑥, 𝑥 →

𝑦 ∈ 𝐴
[𝑟]
, then 𝐴(𝑥), 𝐴(𝑥 → 𝑦) ≥ 𝑟. Then 𝐴(𝑦) ≥ 𝐴(𝑥) ∧

𝐴(𝑥 → 𝑦) ≥ 𝑟. Thus, 𝑦 ∈ 𝐴
[𝑟]
. Hence 𝐴

[𝑟]
∈ 𝐹(𝐿).

(2) ⇒ (1): clearly, 𝐴(1) = 1 since 𝐴
[1]

∈ 𝐹(𝐿). For any
𝑥, 𝑦 ∈ 𝐿, suppose that 𝐴(𝑥) ∧ 𝐴(𝑥 → 𝑦) = 𝑟. Then 𝑥, 𝑥 →

𝑦 ∈ 𝐴
[𝑟]
. Thus 𝑦 ∈ 𝐴

[𝑟]
and 𝐴(𝑦) ≥ 𝑟 = 𝐴(𝑥) ∧ 𝐴(𝑥 → 𝑦).

Hence 𝐴 ∈ 𝐹𝐹(𝐿).

Proposition 16. (1) If𝑀 is a closed set lattice, then𝐴 ∈ 𝐹𝐹(𝐿)

if and only if 𝐴
[𝑟]

∈ 𝐹(𝐿) for any 𝑟 ∈ 𝐽(𝑀).
(2) If 𝑀 is a spatial frame, then 𝐴 ∈ 𝐹𝐹(𝐿) if and only if

𝐴
(𝑟)

∈ 𝐹(𝐿) for any 𝑟 ∈ 𝑃(𝑀).

Proof. (1) The necessity is from Proposition 15. Sufficiency:
clearly, 𝐴(1) = 1 since 𝐴

[𝑟]
∈ 𝐹(𝐿) for any 𝑟 ∈ 𝐽(𝐿). For any

𝑥, 𝑦 ∈ 𝐿, suppose that 𝑟 ∈ 𝐽(𝐿) and 𝑟 ≤ 𝐴(𝑥) ∧ 𝐴(𝑥 → 𝑦).
Then 𝑥, 𝑥 → 𝑦 ∈ 𝐴

[𝑟]
. Thus 𝑦 ∈ 𝐴

[𝑟]
and 𝐴(𝑦) ≥ 𝑟, By the

arbitrariness of 𝑟 ∈ 𝐽(𝑀) and 𝐴 ∈ 𝐹𝐹(𝐿).
(2) Necessity: clearly, for any 𝑟 ∈ 𝑃(𝑀), 1 ∈ 𝐴

(𝑟)
since

1 ∉ 𝑃(𝐿). If 𝑥, 𝑥 → 𝑦 ∈ 𝐴
(𝑟)
, then 𝐴(𝑥), 𝐴(𝑥 → 𝑦) ≰ 𝑟

and 𝐴(𝑦) ≥ 𝐴(𝑥) ∧ 𝐴(𝑥 → 𝑦). Then 𝐴(𝑦) ≰ 𝑟 and 𝑦 ∈

𝐴
(𝑟)
. Hence 𝐴

(𝑟)
∈ 𝐹(𝐿). Sufficiency: if 𝐴(1) ̸= 1, then there

exists 𝑟 ∈ 𝑃(𝑀) such that 𝐴(1) ≤ 𝑟. Then 1 ∉ 𝐴
(𝑟)
, which

contradicts 𝐴
(𝑟)

∈ 𝐹(𝐿). Thus 𝐴(1) = 1. For any 𝑥, 𝑦 ∈ 𝐿,
for any 𝑟 ∈ 𝑃(𝑀) such that 𝐴(𝑥) ∧ 𝐴(𝑥 → 𝑦) ≰ 𝑟, we have
𝐴(𝑥) ≰ 𝑟 and 𝐴(𝑥 → 𝑦) ≰ 𝑟 and then 𝑥, 𝑥 → 𝑦 ∈ 𝐴

(𝑟)
,

which implies that𝑦 ∈ 𝐴
(𝑟)

and𝐴(𝑦) ≰ 𝑟. By the arbitrariness
of 𝑟, we have 𝐴(𝑦) ≥ 𝐴(𝑥) ∧ 𝐴(𝑥 → 𝑦). Hence 𝐴 ∈ 𝐹𝐹(𝐿).

4. Lattice-Valued Congruences

In this section, we will study lattice-valued congruences and
the relations among filters, congruences, lattice-valued filters,
and lattice-valued congruences in residuated lattices.

Definition 17. A mapping 𝜃 : 𝐿 × 𝐿 → 𝑀 is called a lattice-
valued congruence on 𝐿 if it satisfies the following, for any
𝑥, 𝑦, 𝑧 ∈ 𝐿:

(FC1) 𝜃(𝑥, 𝑥) = 1;

(FC2) 𝜃(𝑥, 𝑦) = 𝜃(𝑦, 𝑥);

(FC3) 𝜃(𝑥, 𝑧) ≥ 𝜃(𝑥, 𝑦) & 𝜃(𝑦, 𝑧);

(FC4) 𝜃(𝑥 ∧ 𝑧, 𝑦 ∧ 𝑧) ≥ 𝜃(𝑥, 𝑦);

(FC5) 𝜃(𝑥 → 𝑧, 𝑦 → 𝑧) ≥ 𝜃(𝑥, 𝑦).

Denote 𝐹Con(𝐿) as the set of all lattice-valued congru-
ences on 𝐿.

Definition 18. Let 𝜃 be a lattice-valued congruence on 𝐿.
Define 𝜃𝑥 : 𝐿 → 𝑀 by 𝜃𝑥(𝑦) = 𝜃(𝑥, 𝑦) (for all 𝑦 ∈ 𝐿). 𝜃𝑥 is
called the lattice-valued congruence class of 𝑥with respect to
𝜃 on 𝐿.

Proposition 19. Let 𝜃 be a lattice-valued congruence on 𝐿.
Then 𝜃

1 is a lattice-valued filter on 𝐿, called the lattice-valued
filter induced by 𝜃, denoted by 𝐴

𝜃
.

Proof. (FF1) Clearly, 𝜃1(1) = 𝜃(1, 1) = 1. (FF2) for all 𝑥, 𝑦 ∈

𝐿, by (FC3),

𝜃
1
(𝑦) = 𝜃 (1, 𝑦) ≥ 𝜃 (1, 𝑥 󳨀→ 𝑦) & 𝜃 (𝑥 󳨀→ 𝑦, 𝑦) , (14)

and by (FC5),

𝜃 (𝑥 󳨀→ 𝑦, 𝑦) = 𝜃 (𝑥 󳨀→ 𝑦, 1 󳨀→ 𝑦) ≥ 𝜃 (𝑥, 1) = 𝜃
1
(𝑥) .

(15)

Thus 𝜃1(𝑦) ≥ 𝜃
1
(𝑥 → 𝑦) & 𝜃

1
(𝑥). Hence 𝜃1 ∈ 𝐹𝐹(𝐿).

Proposition 20. Let 𝐴 be a lattice-valued filter on 𝐿 and
𝜃
𝐴
(𝑥, 𝑦) = 𝐴(𝑥 → 𝑦) & 𝐴(𝑦 → 𝑥) (for all 𝑥, 𝑦 ∈ 𝐿). Then

𝜃
𝐴
is a lattice-valued congruence on 𝐿, called the lattice-valued

congruence induced by 𝐴.
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Proof. (FC1) and (FC2) are obvious and omitted. For any
𝑥, 𝑦, 𝑧 ∈ 𝐿, (FC3) by Proposition 13 and (R16),

𝜃
𝐴
(𝑥, 𝑦) & 𝜃

𝐴
(𝑦, 𝑧)

= 𝐴 (𝑥󳨀→𝑦) &𝐴 (𝑦󳨀→𝑥) &𝐴 (𝑧󳨀→𝑦) &𝐴 (𝑦󳨀→𝑧)

≤ 𝐴 ((𝑥󳨀→𝑦) ⊗ (𝑦󳨀→𝑧)) &𝐴 ((𝑧󳨀→𝑦) ⊗ (𝑦󳨀→𝑥))

≤ 𝐴 (𝑥󳨀→𝑧) & 𝐴 (𝑧󳨀→𝑥)

= 𝜃
𝐴
(𝑥, 𝑧) ;

(16)

(FC4) by Proposition 13, (R2), and (R7),

𝜃
𝐴
(𝑥 ∧ 𝑧, 𝑦 ∧ 𝑧)

= 𝐴 ((𝑥 ∧ 𝑧) 󳨀→ (𝑦 ∧ 𝑧)) & 𝐴 ((𝑦 ∧ 𝑧) 󳨀→ (𝑥 ∧ 𝑧))

= 𝐴 (((𝑥 ∧ 𝑧) 󳨀→ 𝑦)

∧ ((𝑥 ∧ 𝑧) 󳨀→ 𝑧)) & 𝐴 (((𝑦 ∧ 𝑧) 󳨀→ 𝑥)

∧ ((𝑦 ∧ 𝑧) 󳨀→ 𝑧))

= 𝐴 ((𝑥 ∧ 𝑧) 󳨀→ 𝑦) & 𝐴 ((𝑦 ∧ 𝑧) 󳨀→ 𝑥)

≥ 𝐴 (𝑥 󳨀→ 𝑦) & 𝐴 (𝑦 󳨀→ 𝑥)

= 𝜃
𝐴
(𝑥, 𝑦) ;

(17)

(FC5) by Proposition 13, (R9), and (R15),

𝜃
𝐴
(𝑥󳨀→𝑧, 𝑦󳨀→𝑧)

=𝐴 ((𝑥󳨀→𝑧)󳨀→(𝑦󳨀→𝑧)) &𝐴 ((𝑦󳨀→𝑧)󳨀→(𝑥󳨀→𝑧))

=𝐴 (𝑦󳨀→((𝑥󳨀→𝑧)󳨀→𝑧)) &𝐴 (𝑥󳨀→((𝑦󳨀→𝑧)󳨀→𝑧))

≥𝐴 (𝑦󳨀→𝑥) &𝐴 (𝑥󳨀→𝑦)

=𝜃
𝐴
(𝑥, 𝑦) .

(18)

Theorem 21. Let 𝜃, 𝐴 be a lattice-valued congruence and a
lattice-valued filter on 𝐿, respectively. Then

(1) 𝜃
𝐴
𝜃

= 𝜃;

(2) 𝐴
𝜃
𝐴

= 𝐴.

Thus there is a bijection between 𝐹𝐹(𝐿) and 𝐹𝐶𝑜𝑛(𝐿).

Proof. (1) For all 𝑥, 𝑦 ∈ 𝐿, by (FC2)–(FC5), (R6), and (R15),

𝜃
𝐴
𝜃

(𝑥, 𝑦)

= 𝐴
𝜃
(𝑥󳨀→𝑦) &𝐴

𝜃
(𝑦󳨀→𝑥)

= 𝜃 (1, 𝑥󳨀→𝑦) & 𝜃 (1, 𝑦󳨀→𝑥)

≤𝜃 (1󳨀→𝑦, (𝑥󳨀→𝑦)󳨀→𝑦)& 𝜃 (1󳨀→𝑥, (𝑦󳨀→𝑥)󳨀→𝑥)

= 𝜃 (𝑦, (𝑥󳨀→𝑦)󳨀→𝑦) & 𝜃 (𝑥, (𝑦󳨀→𝑥)󳨀→𝑥)

≤ 𝜃 (𝑦 ∧ 𝑥, ((𝑥󳨀→𝑦)󳨀→𝑦)

∧ 𝑥) & 𝜃 (𝑥 ∧ 𝑦, ((𝑦󳨀→𝑥)󳨀→𝑥) ∧ 𝑦)

= 𝜃 (𝑥 ∧ 𝑦, 𝑥) & 𝜃 (𝑥 ∧ 𝑦, 𝑦)

≤ 𝜃 (𝑥, 𝑦) .

(19)

And by (FC5) and (R7),

𝜃
𝐴
𝜃

(𝑥, 𝑦)

= 𝜃 (1, 𝑥 󳨀→ 𝑦) & 𝜃 (1, 𝑦 󳨀→ 𝑥)

= 𝜃 (𝑦 󳨀→ 𝑦, 𝑥 󳨀→ 𝑦) & 𝜃 (𝑥 󳨀→ 𝑥, 𝑦 󳨀→ 𝑥)

≥ 𝜃 (𝑦, 𝑥) & 𝜃 (𝑥, 𝑦)

= 𝜃 (𝑥, 𝑦) .

(20)

(2) For all 𝑥 ∈ 𝐿, 𝐴
𝜃
𝐴

(𝑥) = 𝜃
𝐴
(1, 𝑥) = 𝐴(1 →

𝑥) & 𝐴(𝑥 → 1) = 𝐴(𝑥) & 𝐴(1) = 𝐴(𝑥).

Lemma 22. Let 𝜃 be a lattice-valued congruence on 𝐿. Then

(1) for any 𝑟 ∈ 𝑀, one has 𝜃
[𝑟]

∈ 𝐶𝑜𝑛(𝐿);
(2) if 𝑀 is a spatial frame, then for any 𝑟 ∈ 𝑃(𝑀), 𝜃

(𝑟)
∈

Con(𝐿).

Proof. This proof is trivial by the definitions of congruences
and lattice-valued congruences.

Proposition 23. For any 𝐴 ∈ 𝐹𝐹(𝐿), 𝜃 ∈ 𝐹Con(𝐿), one has
for all 𝑟 ∈ 𝑀,

(1) (𝜃
𝐴
)
[𝑟]

= ∼
(𝐴
[𝑟]

)
;

(2) (𝐴
𝜃
)
[𝑟]

= 𝐹
(𝜃
[𝑟]

)
.

Proof. (1) Consider the following:

(𝜃
𝐴
)
[𝑟]

= {(𝑥, 𝑦) ∈ 𝐿 × 𝐿 | 𝜃
𝐴
(𝑥, 𝑦) ≥ 𝑟}

= {(𝑥, 𝑦) ∈ 𝐿 × 𝐿 | 𝐴 (𝑥 󳨀→ 𝑦) ∧ 𝐴 (𝑦 󳨀→ 𝑥) ≥ 𝑟}

= {(𝑥, 𝑦) ∈ 𝐿 × 𝐿 | 𝑥 󳨀→ 𝑦, 𝑦 󳨀→ 𝑥 ∈ 𝐴
[𝑟]
}

= ∼
(𝐴
[𝑟]

)
.

(21)

(2) Consider

(𝐴
𝜃
)
[𝑟]

= {𝑥 ∈ 𝐿 | 𝐴
𝜃
(𝑥) ≥ 𝑟} = {𝑥 ∈ 𝐿 | 𝜃 (1, 𝑥) ≥ 𝑟}

= {𝑥 ∈ 𝐿 | (1, 𝑥) ∈ 𝜃
[𝑟]
} = 𝐹
(𝜃
[𝑟]

)
.

(22)

Replacing “ ≥ " by “ ≰ " in Proposition 23, we have the
following.

Theorem 24. Let 𝑀 be a spatial frame. Then 𝐴 ∈ 𝐹𝐹(𝐿), 𝜃 ∈

𝐹𝐶𝑜𝑛(𝐿), and one has for any 𝑟 ∈ 𝑃(𝑀),

(1) (𝜃
𝐴
)
(𝑟)

= ∼
(𝐴
(𝑟)

)
;

(2) (𝐴
𝜃
)
(𝑟)

= 𝐹
(𝜃
(𝑟)

)
.
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By Theorem 9, Proposition 16, Theorem 21, Proposition
23 andTheorem 24, we have the following.

Corollary 25. (1) 𝜃 ∈ 𝐹𝐶𝑜𝑛(𝐿) if and only if for any 𝑟 ∈

𝑀, 𝜃
[𝑟]

∈ 𝐶𝑜𝑛(𝐿).
(2) 𝜃 ∈ 𝐹𝐶𝑜𝑛(𝐿) if and only if for any 𝑟 ∈ 𝑃(𝑀), 𝜃

(𝑟)
∈

𝐶𝑜𝑛(𝐿).

By Corollary 25 and Remark 10, we have the following.

Corollary 26. Let 𝜃 be a lattice-valued congruence on 𝐿. Then
each of 𝜃(𝑎 ∧ 𝑐, 𝑏 ∧ 𝑑), 𝜃(𝑎 ∨ 𝑐, 𝑏 ∨ 𝑑), 𝜃(𝑎 ⊗ 𝑐, 𝑏 ⊗ 𝑑), and
𝜃(𝑎 → 𝑐, 𝑏 → 𝑑) is larger than or equal to 𝜃(𝑎, 𝑏) ∧ 𝜃(𝑐, 𝑑).

At last, we will give some properties of lattice-valued
congruence classes of lattice-valued congruences.

Lemma 27. Let 𝜃 be a lattice-valued congruence on 𝐿. Then
for any 𝑥, 𝑦 ∈ 𝐿, 𝜃(1, 𝑥 → 𝑦) ∧ 𝜃(1, 𝑦 → 𝑥) = 𝜃(𝑥, 𝑦).

Proof. It is a corollary of Theorem 21(1).

Proposition 28. Let 𝜃 be a lattice-valued congruence on 𝐿 and
𝑥, 𝑦 ∈ 𝐿. Then the following four are equivalent.

(1) 𝜃𝑥 = 𝜃
𝑦.

(2) 𝜃(𝑥, 𝑦) = 1.
(3) 𝜃(1, 𝑥 → 𝑦) = 𝜃(1, 𝑦 → 𝑥) = 1.
(4) 𝜃𝑥→𝑦 = 𝜃

𝑦→𝑥
= 𝜃
1.

Proof. Clearly, (2) is equivalent to (3) by Lemma 27.

(1) ⇒ (2): 𝜃(𝑥, 𝑦) = 𝜃
𝑥
(𝑦) = 𝜃

𝑦
(𝑦) = 𝜃(𝑦, 𝑦) = 1.

(2) ⇒ (1): for all 𝑧 ∈ 𝐿, 𝜃
𝑥
(𝑧) = 𝜃(𝑥, 𝑧) ≥ 𝜃(𝑥, 𝑦) ∧

𝜃(𝑦, 𝑧) = 1 ∧ 𝜃(𝑦, 𝑧) = 𝜃
𝑦
(𝑧).

Similarly, 𝜃𝑦(𝑧) ≥ 𝜃
𝑥
(𝑧) and so 𝜃

𝑥
= 𝜃
𝑦.

Similar to (1) ⇔ (2), we can show that (3) ⇔ (4).
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