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Time is an asset of critical importance in a multidisciplinary design process and it is desirable to reduce the amount of time
spent designing products and systems. Design is an iterative activity and designers consume a significant portion of the product
development process negotiating a mutually acceptable solution. The amount of time necessary to complete a design depends on
the number and duration of design iterations.This paper focuses on accurately characterizing the number of iterations required for
designers to converge to an equilibrium solution in distributed design processes. In distributed design, systems are decomposed
into smaller, coupled design problems where individual designers have control over local design decisions and seek to achieve
their own individual objectives. These smaller coupled design optimization problems can be modeled using coupled games and
the number of iterations required to reach equilibrium solutions varies based on initial conditions and process architecture. In this
paper, we leverage concepts from game theory, classical controls, and discrete systems theory to evaluate and approximate process
architectures without carrying out any solution iterations. As a result, we develop an analogy between discrete decisions and a
continuous time representation that we analyze using control theoretic techniques.

1. Introduction

The design of complex systems presents both technical
and logistical challenges to organizations. In some cases,
organizations do not have the requisite technical expertise
to overcome design challenges or meet design requirements.
However, even when an organization possesses sufficient
technical expertise, there are many cases where inadequate
logistical control can inhibit the application of this design
expertise in a meaningful manner. The logistical challenges
facing organizations are becoming increasingly significant
as the size and sophistication of modern engineered prod-
ucts increase. This growth in sophistication and size leads
to the decomposition of design systems as a means to
reduce system complexity. Although system decomposition
reduces the technical complexity of each subsystem’s indi-
vidual design problems by reducing their size, it intro-
duces significant logistical challenges. Also, it often requires
significant approximation of nonlocal behavior, interfaces,
and solutions. These decomposed systems are often large

and multidisciplinary in nature, with diverse subsystems
governed by unique objectives and constraints.

To effectively manage decomposed design problems, it is
important to understand how their constituent subsystems
interact with one another. One approach to capture and
analyze these interactions is to model the collection of
subsystems as a distributed design process. In distributed
design, understanding subsystem interactions is fundamental
to predicting the system equilibrium properties and transient
response. To predict these systems’ equilibrium proper-
ties, which include location and stability, a game theoretic
approach was introduced in [1]. This analysis was further
supported using an analogy to the cobweb model and proven
using mathematical induction in [2]. For large systems, a
discrete time linear system approach was used in [3] and
was generalized to handle different process configurations in
[4, 5]. In this paper, the linear systemmodel developed in [6]
is used as the basis for the approximation and analysis of the
transient response of distributed design processes.
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Transient response refers to the dynamic behavior of a
distributed design system, beginning with the first design
iteration and ending when the subsystems reach equilibrium.
The transient response possesses two properties: (1) the
convergence shape and (2) the convergence time [7].The con-
vergence shape depends on the properties of the distributed
design process and could be sinusoidal, exponential, or some
combination of responses. Examining the convergence shape
is a topic of future work. This paper focuses on convergence
time and develops an approach to estimate an upper bound
for the number of design iterations required for a distributed
design process to converge to an equilibrium solution.

Other work has been done to characterize and approx-
imate the solutions to certain types of two-person games
including bimatrix games characterized by nonsymmetrical
fuzzy approximations [8–10], multiplayer congestion games
[11, 12], and discontinuous games [13]. However, in this
work, we do not focus on the approximation of the solution
to particular games, but rather the convergence process to
arrive at such a solution, if it exists. We focus on two-
player continuous games, as they provide a characterization
of coupled optimization problems frequently occurring in
complex design problems.

The intellectual merit of this work is based on its
insight into the dynamics of distributed design processes.
The linear system model used in previous work to assess
stability is refined to analyze both system stability and
transient response. Through the refinement of this model,
it is demonstrated that the uniquely discontinuous nature
of any decentralized decision network must be considered
when they are modeled using systems theory. Furthermore,
several control theory principles are shown to be valid when
analyzing distributed design processes.

As an initial context for this investigation, we focus on
distributed design problems with unconstrained quadratic
objective functions.These types of problems arewellmodeled
using linear system theory, but it is recognized that many
design problems cannot easily be converted into uncon-
strained problems and/or do not have quadratic objective
functions. While techniques in metamodeling exist to repre-
sent higher-order systems using quadratic response surfaces
[14], it is desirable to analyze systems in their native mathe-
matical form. We examine quadratic systems in this paper in
order to fully understand their fundamental principles before
applying the concepts to higher-order systems. As a result,
this work represents a critical first step towards leveraging
linear system analysis techniques to understand and analyze
the behavior of distributed design systems.

This work has broader impacts in any scenario where the
decentralization of decisions is present. These scenarios can
range from product design to coordinating disaster relief.
It provides a deeper understanding of the decision-making
process and enables a greater level of process control. This
enables decision makers to reach iterative solutions quicker
and to set realistic deadlines or timetables. It represents a
unique and effective approach to find an upper bound for
the time it takes a distributed design process to converge to a
stable equilibrium. Furthermore, it provides insight into how

to best configure these processes to minimize the maximum
number of iterations required to reach equilibrium.

The following sections provide background into con-
cepts foundational to the examination of decentralized deci-
sion networks. In Section 2 an overview of stability and
convergence concerns in multidisciplinary optimization is
presented along with the basic tenets of distributed design
processes. Based on the tenets outlined in Section 2, a
linear systems approach to examine the transient response of
distributed design systems is examined in Section 3. Finally,
these results are summarized and areas of future work are
identified in Section 4.

2. Materials and Methods

MDO problems have two classifications based on the process
used to complete the design [15]. From a structural perspec-
tive, the simplest method to solve an MDO problem is to
apply an all-at-once approach. In an all-at-once approach
designers from different disciplines work as system analyzers
to determine objective function and constraint values for a
single optimization problem [16, 17]. There are significant
advantages to organizing an MDO system to solve a single
centralized optimization problem. In a centralized problem,
all designers are working towards the exact same objective
and information about the entire system is available to
designers.

Although these advantages make centralization attrac-
tive, it is almost impossible to centralize the design of complex
systems. Three major design approaches, Systematic Design,
Total Design, and Axiomatic Design, are all structured with
the understanding that some level of system decomposi-
tion is often desirable to speed development times through
parallelization, to reduce system complexity, and to reduce
computational time [18–20]. Recognizing this, it is likely
that decomposition will remain an important and necessary
aspect of product design processes in the near future.

Fortunately for designers a wide range of approaches have
been developed to aid in system decomposition. The system
decomposition process can be broken into two fundamental
steps: (1) identify the necessary subsystems, (2) establish a
framework to govern subsystem interactions. The first step
in this process is not the topic of this paper, but it is by
no means a trivial task. Subsystems can be created based
on object decomposition, aspect decomposition, sequential
decomposition, and model-based decomposition [21]. A
survey of the relative merits of these subsystem creation
approaches was performed by Sobieszczanski-Sobieski and
Haftka [15].

The second step in system decomposition is the cre-
ation of a design framework. MDO frameworks specify the
mechanics of how the design problem is solved including
the subsystemobjective functions, communication protocols,
design variable control, and the other coordination proce-
dures required for the subsystems to effectively iterate to a
solution. There are a wide range of MDO frameworks which
handle these issues differently while making certain guar-
antees about system convergence and the optimality of the
final converged solution. These approaches include analytic
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target cascading [22], concurrent subspace optimization [23,
24], bilevel integrated system synthesis [25] and collaborative
optimization [26].

Each of these frameworks has its own advantages. For
example, analytic target cascading guarantees that the decen-
tralized system converges and that the converged value is
globally optimal [27]. It also provides for traceability and
facilitates the integration of marketing, business, and design
systems [28, 29].

There are several reasons why an MDO framework may
not be applied to a complex design problem. Applying
a framework requires a significant level of coordination
between subsystems and a high level of management exper-
tise [15]. Furthermore, the engineering and design personnel
involved must all agree to some extent to the proposed
decomposition and framework.There are also some cases that
do not naturally lend themselves to formal decomposition or
where the parties involved cannot agree on an appropriate
framework. In these cases subsystems often act exclusively
in their own self interest, attempting to most effectively solve
their individual optimization formulations, and communica-
tion between subsystems is dictated by the required exchange
of design information. When these conditions exist, design
problems can be well modeled as distributed design pro-
cesses. Even when there is communication between design
teams, a distributed design process can often be used tomodel
these systems. The assumptions and mechanics governing
distributed design problems are discussed in Section 2.1.

2.1. Conditions for Distributed Design Processes. Distributed
design processes are iterative and can be cooperative, non-
cooperative, or a hybrid of the two. This work examines
noncooperative distributed design processes where design
subsystems oftenhave conflicting objectives or organizational
barriers that prevent them from fully cooperating syn-
chronously. Even when subsystems share the same aggregate
design goals, there are cases where they will compete with
one another for design resources [30] due to the underlying
scarcity of such resources.

In addition to being categorized based on cooperation,
distributed design systems can be broken into hierarchical
and non-hierarchical realizations. In this work, it is assumed
that a design process can be adequately modeled as a non-
hierarchical process. This assumption is not overly restrictive
in scenarios where distributed design processes are applied,
since these scenarios typically lack a strong system level
presence. We elaborate the non-cooperative protocol used in
this paper in Section 2.2 and discuss criteria for equilibrium
stability and transient response in Sections 2.3 and 2.4,
respectively. The concept of solution process architecture is
introduced in Section 2.5.

2.2. Criteria for Noncooperation in Repeated Games. Efforts
to model and analyze subsystem interactions have led to
the development of many different models for distributed
design processes. One of the first models for distributed
design applied mathematical notions of game theory to
model design subsystems as players in a non-cooperative

game. These players act independently of one another and
through successive plays of the game, they eventually reach
an equilibrium solution [31]. This model forms the basis for
the analysis of distributed design systems in this work and
is foundational to the application of other distributed design
process models. These assumptions have been defined for
distributed design in [2] and are as follows.

(1) Subsystems have knowledge of only their own local
objectives;

(2) Subsystems act unilaterally in accordance with their
own objectives;

(3) Subsystems have complete control over specific local
design variables;

(4) Subsystems communicate by sharing the current
value of their local design variables.

The applicability of these assumptions to decentralized
design problems is discussed in various contexts in [32–
35] using examples that include the design of passenger
aircraft, automotive engines, semiconductor chips, and steam
turbines. Distributed design problems can also emerge as
iterative subproblems in a larger MDO process. For example,
in [36, 37] the ordering of decomposed design systems was
examined and iterative loops emerged due to subsystem
coupling of concurrently executed tasks.

Subsystems in distributed design processes have their
own specific objectives they are attempting to achieve. They
have complete control over a set of local design variables
which appear in their own objective formulation. These
variables also act to couple subsystems in a manner that
restricts the ability of a subsystem to independently achieve
its objectives. The influence of this coupling has been inves-
tigated using network theory to model distributed design
processes [38].The examination of such coupling using game
theory to define, identify, and classify system equilibrium is
the focus of Section 2.3.

2.3. Equilibrium Stability for Noncooperative Processes. De-
termining if a design system converges to a stable solution
is of critical importance to understanding the system. Con-
vergence stability in distributed problems has been a topic of
research for some timewith the first work being performed by
Vincent [31] for two designers, two design variables problems.
Vincent introduced the game theory model for distributed
design processes, which was investigated further by Lewis
[39]. In Vincent’s work each player alternates minimizing his
or her local objective function value and communicates the
associated design variables to the other player. Each step in
this alternating process is a play in a sequential game. After
repeated playing of the sequential game, the players either
converge to a solution or diverge and continue playing indefi-
nitely. When the players converge, they converge to a specific
point called the Nash, or non-cooperative equilibrium [40].
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Figure 1: Two subsystems—Nash equilibrium.

Mathematically, in a two-player game a set of solutions
described by the vector pair (𝑥

1
, 𝑥
2
) are a Nash solution,

(𝑥
1𝑁

, 𝑥
2𝑁

), if they fulfill the requirements outlined in (1) as

𝐹
1
(𝑥
1𝑁

, 𝑥
2𝑁

) = min
𝑥
1

𝐹
1
(𝑥
1
, 𝑥
2𝑁

) ,

𝐹
2
(𝑥
1𝑁

, 𝑥
2𝑁

) = min
𝑥
2

𝐹
2
(𝑥
1𝑁

, 𝑥
2
) .

(1)

In (1),𝐹
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are the objective functions for player 1 and

player 2 who control design variables 𝑥
1
and 𝑥

2
, respectively.

A solution pair (𝑥
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) that meets the criteria in (1) is a

Nash solution because the pair is a minimum for both 𝐹
1
and

𝐹
2
. Although in game theory the participants in a game are

called players, in engineering design they are typically called
designers or subsystems. In this work, the term subsystem
is used more generally, reflecting the linear system basis of
the work.The relationship demonstrated in (1) can be under-
stood qualitatively as the point at which no subsystem can
unilaterally improve his or her objective function [41]. This
expression identifies Nash solutions through an optimization
formulation, but they can also be expressed as the intersection
of two sets defined by (2) as
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The sets𝑋
1𝑁

and𝑋
2𝑁

are the rational reaction sets (RRS)
or best response sets [42], which embody all the possible
reactions or responses a subsystem may have towards a
decision made by another subsystem. While determining the
RRSs is not a trivial task, methods have been developed
to approximate them for large systems [43]. One of these
techniques is to calculate theRRS by taking the gradient of the
subsystem’s objective function with respect to its local design
variables.This calculation is shown in (3) for the two designer
problem studied by Vincent [31] as

𝐹
1
= 𝑥
2
+ 𝑥𝑦 − 3𝑥,

𝛿𝐹
1

𝛿𝑥
= 2𝑥 + 𝑦 − 3 = 0,

𝐹
2
= 0.5𝑦

2
− 𝑥𝑦,

𝛿𝐹
2

𝛿𝑦
= 𝑦 − 𝑥 = 0.

(3)

These RRSs are plotted with respect to the design vari-
ables, 𝑥 and𝑦, in Figure 1 alongwith an illustration of how the
solution process converges to the Nash equilibrium at (1, 1).
We have included the dotted line in Figure 1 to demonstrate
the order of the decisions made by the two subsystems. The
subsystems iterate sequentially and begin with the initial
conditions set to (1, 4). The x’s in Figure 1 shows the actual
discrete decision occurring through the repeated decisions,
identical to the plays of a sequential game. In Figure 1,
subsystem 1 adjusts the value of 𝑥 and subsystem 2 responds
by adjusting 𝑦. For the decision making process in Figure 1,
the design variable values converge to the Nash equilibrium,
defined by the intersection of the players’ RRSs. For two
subsystem problems, Vincent defined stability criteria based
on the subsystems’ RRSs [31]. This work was extended by
Chanron and Lewis to examine convergence more generally
when there are more than two players controlling multiple
design variables [3]. Convergence was shown to be a function
of the relative slope of the designer’s rational reaction sets and
linear system theory was applied for large scale problems [3–
6]. Work by Smith and Eppinger has demonstrated the same
principle using a different set of fundamental principles [44].

In this work, distributed design processes are modeled
using linear system theory, using the same approach devel-
oped by Chanron and Lewis. Similar to game theoretical
models, each subsystem is assumed to solve its optimization
problem at distinct and discrete instants in times that are
identical for every iteration based on the process configura-
tion. We assume that a state space model has already been
developed for the distributed design systems analyzed in this
paper. A detailed description of how to create these models
can be found in [3].The general formulation for a subsystem’s
objective function using nomenclature from linear system
theory is shown in (4).

𝐹
𝑛
= 𝑋
𝑇
𝐴𝑋 + 𝑌

𝑇
𝐵𝑌 + 𝑋

𝑇
𝐶𝑌 + 𝐷𝑋 + 𝐸𝑌 + 𝐹. (4)

In this representation of the 𝑛th subsystem’s quadratic
objective function,𝐹

𝑛
,𝑋 is a vector of length 𝑖which contains

the 𝑖 local design variables while 𝑌 is a vector of length 𝑗

which contains 𝑗 nonlocal design variables. The coefficients
associated with the second-order elements of 𝐹

𝑛
for the

local design variables are contained in the diagonal 𝑖 × 𝑖

matrix 𝐴 while the coefficients associated with the non-local
design variables are contained in the 𝑗 × 𝑗 matrix 𝐵. In
this representation the A matrix is formulated as a diagonal
to decouple the subsystem’s local design variables from one
another. This guarantees that each design variable value can
be determined independently and a specific RRS can be
formulated for each design variable.When these variables are
coupled, the design system can still be represented using the
form in (4). However, to do so, a change in variables must
be performed to decouple the values from one another. The
representation in (4) is examined in more depth in [3].

Although the local design variables must be decoupled,
it is acceptable for the local and non-local design variables
to be coupled together through the coefficients in the 𝑖 ×

𝑗 𝐶 matrix. The remaining two vectors in (4) capture the
linear elements of the system for the local and non-local
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design variables and have length 𝑖 and 𝑗, respectively. The
term 𝐹 is simply a scalar and does not play a significant role
when analyzing the system stability or transient response.
The important elements in (4) emerge when the gradient is
taken with respect to the local design variables. Setting this
gradient equal to zero results in 𝑖 decoupled equations that
represent the subsystem’s RRS. After the RRSs are found for
each subsystem, there are 𝑚 equations, where 𝑚 is the total
number of design variables controlled by subsystems. The
RRS is shown in vector form in (5) as

𝛿𝐹
𝑛

𝛿𝑋
= 2𝐴𝑋 + 𝐶𝑌 + 𝐷 = 0. (5)

Equation (5) specifies how this subsystems will respond
and suggests the system’s overall transient response is related
to the matrices 𝐴, 𝐶, and 𝐷 for each subsystem. Using these
matrices, Chanron developed the discrete state-space-based
representation to model the design systems using the update
relationship and stability criteria in (6)–(9) as
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In (6), the subscript 𝑠 denotes that𝑋𝑘
𝑠
is a vector of all the

system design variables and the superscript denotes the iter-
ation number which is consistent with linear system theory.
Since (6) describes the relationship between the subsystems,
𝑋
𝑘+1

𝑠
is length𝑚 containing all the design variables controlled

by the subsystems. The design variable values at the (𝑘 + 1)th
iteration are a function of the previous design variables at
the 𝑘th iteration; they are expressed as 𝑋𝑘

𝑠
multiplied by a

matrix Φ plus a constant Γ. The derivations for Φ and Γ can
be found in [3] and are summarized in (7) and (8). Equation
(6) was generalized in [5] to be applicable to scenarios where
decisions are made asynchronously.

The matrix Φ captures design variable interactions
between quadratic elements found in the 𝐴 and 𝐶 matrices
while the vector Γ captures interactions between quadratic
and linear elements found in the 𝐴 and 𝐷 matrices, respec-
tively. To populate Φ and Γ, the appropriate 𝐴, 𝐶, and 𝐷

matrices must be used and can be determined by examining
which subsystem controls the design variable associated with
the row being populated.The resulting dimensions forΦ and
Γ are𝑚×𝑚 and𝑚×1, respectively. When examining system
stability, only theΦmatrix needs to be considered, and if the
condition described by (9) is met then the system is stable

𝑟
𝜎
(Φ) < 1. (9)

In (9), 𝑟
𝜎
(Φ) is the spectral radius, or magnitude of the

largest eigenvalue of the matrix Φ [45]. The relationship in
(9) specifies that for stable systems, Φ must have a spectral
radius less than 1. This is the same stability criteria used
for the closed loop state space representations of discrete
control systems [46]. In addition to the examination of linear
system stability, a case for nonlinear RRSs has also been
investigated in [47] using similar criteria. Another extension
of this convergence work was performed by Gurnani and
Lewis who demonstrated that the introduction of “mistakes”
into the design process could cause some inherently unstable
problems to converge to a solution [48].

Analyzing system stability is the first step to character-
izing transient response. In this paper, we examine configu-
rations that (9) identifies as stable and develop an approach
to differentiate between them based on their convergence
time. In the next section, examining the transient response
of distributed design systems is discussed and the idea of
solution process architecture is introduced as a key factor
determining the transient response of a distributed design
system.

2.4. Transient Response of Distributed Design Systems. The
transient response of a distributed design process has two
principle aspects. The first is the shape of the transient
response.This shape depends on the eigenvalues of the system
being analyzed and could be sinusoidal, exponential, or some
combination of responses. An example transient response
shape is shown in Figure 2, which plots the value of design
variables 𝑥 and 𝑦 from (3).

Since design decisions occur at a specific instant in
time, the design variable plots in Figure 2 are staircase
plots representing discrete design variable values. Figure 2(a)
tracks the value of 𝑥 while Figure 2(b) tracks y. In this case,
both variables exhibit a decaying sinusoidal response as they
approach their equilibrium value at (1, 1) from a starting
location of (1, 2). Identifying the shape of the convergence
curve for a distributed design process is an important area
of future research, but this work focuses on examining the
second aspect of transient response, convergence time.

The convergence time in this work is measured by the
number of iterations required for the subsystem to reach an
equilibrium solution. We use iterations to evaluate conver-
gence time because they are a dimensionless characterization
of the system that can be easily translated to the time
domain by either mapping estimated task times directly
or by leveraging the work transformation matrix approach
used in [44]. Although a significant amount of rigor has
been brought to the analysis of the stability characteristics
of distributed design processes, the convergence time of
these processes or of MDO processes in general has focused
more on practical implementation than investigating con-
trolling features. Techniques like the critical path method
[49] and project evaluation and review technique [50] are
the foundational approaches used in network-based project
planning.The techniques for network-based project planning
provide approaches to organize and execute the design tasks
inherent to MDO processes. In the context of distributed
design processes, there are tools to specify the ordering or
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Figure 2: Two design variable convergence plot.

organization of the process which is discussed in Section 2.5.
These techniques have been refined to introduce technology
like Monte Carlo simulation in [51] to account for random
task duration, graph theory in [52] to enable probabilistic
organization, and feedback and precedence relationships in
[53] to account for required work flow.

More recent formulations have leveraged advances in
computing power to prescribe the fastest converging process
organization. One of these techniques is an extension of
the Design Managers Aid for Intelligent Decomposition
(DeMAID) method and is used to reduce the time required
for designers to converge to a final solution. In this extension,
Rogers utilizes the global sensitivity equations [54] with a
weighting scheme to predict an optimal ordering of designers
in iterative design loops [55]. The approach taken by Rogers
succeeded in reducing the overall design time required for
iterative loops in DeMAID when designers are ordered
sequentially. This ordering was partially based on an analysis
of design structure matrices (DSMs), which were developed
in [56] as a means to organize and visualize the coupling
between design tasks.

DSMswere also used tominimize the number of feedback
loops for sequential processes in [57]. An approach using
DSMs to represent the probability of task repetition and
durations with Markov chains was presented in [58] and a
case was made for estimating the stability and convergence
rate of concurrent tasks in [44]. In this work, a DSM-
based transformation matrix was used to link design tasks
based on the amount of rework tasks generated for one
another. An eigenvalue analysis was used to determine the
strength of these links and the task coupling. While this
approach examines the basic mechanics of the distributed
system, it does not account for changes in the ordering

of design systems and does not provide sensible bounding
conditions for the amount of time required for the system
to converge. Although these techniques suggest orderings for
the design process, only [44] provides a prediction for the
overall convergence time. Simulation-based techniques have
predicted the convergence time for concurrent engineering
in [59], for overlapping tasks in [60] and for using DSMs in
[47] which was further refined in [36].

A general convergence model for use in specifying archi-
tectures was presented in [61]. Simulation has also been used
to tie process architecture to solution quality and suggest
strategies to realize better products in [62]. Another approach
attributed design process delays to incomplete sharing of
design information and provides a dynamic work transfor-
mation model to determine when incomplete sharing occurs
in [63]. A case was made for ordering design tasks to reduce
the amount of uncertainty inherent to the problem in [64].
An analytical technique derived specifically for distributed
design processes examined the relationship between the
system transient response and the ordering of the solution
process in [65] for two-subsystem systems.

This work differentiates itself from other techniques by
providing an approach to determine the upper bound for
the number of iterations required for a distributed design
process to reach equilibrium. It does not require simulation
to evaluate a proposed architecture and provides estimates
based on the coupling of the system’s component subsys-
tems. This provides a computationally inexpensive initial
evaluation of process architectures where the most promis-
ing architectures can be evaluated using more expensive,
time consuming techniques. It differentiates itself from [65]
through its applicability to large design systems and from
previous work by requiring no system simulation. Before
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Figure 3: Potential process architectures.

presenting the approach, however, the concept of solution
process architecture is introduced and its influence on the
systems transient response is discussed.

2.5. Solution Process Architecture. The solution process archi-
tecture is the organization or structure used to solve a
distributed design process. This structure can include both
sequential and simultaneous solution processes. Pure sequen-
tial or pure simultaneous process architectures are the two
extreme cases for process architectures. In Figure 3, a simple
diagram illustrates the iterative process for a purely sequen-
tial architecture, a purely simultaneous architecture, and a
hybrid approach which utilizes both sequential and parallel
elements.

Each of the three process architectures described in
Figure 3 represents a single iteration of the solution process.
Repeated iterations of the architecture are used to solve a
specific design process.These iterations can be further broken
down and a single subsystem or a set of subsystems arranged
in parallel with one another is called a stage. The difference
between iteration, stage, and subsystem is shown for the
hybrid architecture in Figure 3. The number of stages in pro-
cess architectures depends on the number of subsystems and
the process architecture chosen. For purely sequential process
architectures, the number of process stages is always equal
to the total number of subsystems. In contrast simultaneous,
or parallel, process architectures always consist of a single
stage.Thenumber of process stages for sequential and parallel
process architectures provide an upper and lower bound,
respectively, for the number of stages in hybrid process
architectures. For example, the hybrid process architecture in
Figure 3 has two stages.

The stability criteria developed by Chanron and Lewis
and shown in (7) is applicable to the parallel process architec-
ture in Figure 3. In a recent extension, this criteria was refined
to encompass simultaneous and hybrid systems as well [5].
This extension represents the design system in the same form
as (6) but makes some allowances for process architecture
changes. It was also demonstrated that process architecture
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Figure 4: Two subsystem—parallel design architecture.

has a significant impact on both the system stability, and the
transient response. The location of the equilibrium, however,
remains unchanged.

Some approaches have also utilized process architectures
with partial overlapping between subsystems, where a new
subsystem begins solving its optimization problem after
another has already begun but not finished its optimization
[60]. Since this is an initial investigation, we consider the
three architectures shown in Figure 3 and assume that all
subsystems begin a stage simultaneouslywith no overlapping.

To illustrate the relationship between process architecture
and convergence time, the system described in (3) is simu-
lated using a sequential process architecture in Figure 1. Since
the equilibrium design variable values are known a priori, the
process is said to have converged if all the design variables
values are within 2% of their final values. Given this criterion,
convergence takes 26 iterations for a sequential architecture.
In contrast, the convergence plot for a parallel architecture for
the two subsystem problem is shown in Figure 4.

A comparison of the dotted line representing the con-
vergence path in Figures 1 and 4 demonstrates very different
paths from the same starting location at (1, 4) to the same
Nash equilibrium at (1, 1). This difference is caused by the
way the designers share design variables.The difference in the
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Figure 5: Convergence times for the five designer problem.

path taken by the designers also translates to a difference in
solution time, with the parallel system requiring only 22 itera-
tions to converge using the same criteria as used in Figure 1. A
more comprehensive examination of the differences between
these two architectures has been summarized in a study of
convergence time in distributed design systems found in [65].

In a two-designer system, there are only two potential
design architectures. However, as the number of designers
increases, there are a large number of potential design archi-
tectures that fall into the category of hybrid. These hybrid
architectures can have a significant impact on the system
stability and convergence time. For larger systems, there
are a wide range of architecture options with very different
associated convergence times. This can be demonstrated
by considering the same problem used in [3] to study the
stability of large systems. This problem is an unconstrained
five-designer problem with sixteen unique design variables.
The convergence times for the different randomly generated
architectures simulated from a variety of initial starting
locations are plotted in Figure 5.

In Figure 5 the architectures are grouped into bins
based on the number of iterations required to converge,
demonstrating the wide range of convergence times that can
be obtained by changing the process architecture. The height
of the bars indicates the number of process architectures with
a specified range of convergence times, shown on the 𝑥-axis.
Themean convergence time for the simulated architectures is
25 iterations with the fastest convergence of 14 iterations and
the slowest convergence of 42 iterations.

Although all of the process architectures studied in
Figure 5 have a stable Nash equilibrium, there are some
cases when changing the process architecture can change
the system stability. This is because changing the process
architecture also changes the system eigenvalues as shown
in [5]. The influence of architecture, called topology, on
convergence, stability, and equilibrium is also studied for
real systems in [66, 67]. Where Braha and Bar-Yarn develop
a descriptive approach to characterize decision networks
in their work, this paper analyzes normative models to
characterize convergence rate. Since system stability can
be assessed by analyzing the system eigenvalues, it is pro-
posed in this work that the eigenvalues associated with
process architectures can be used to evaluate those systems’
transient response. Examining the relationship between the

Table 1: Spectral radius experiment parameters.

Parameter Value
Number of designers 4 to 10
Number of design variables 4 to 15
A −20 to 20
C −20 to 20

system eigenvalues and the transient response is the focus of
Section 3.

3. Results and Discussion

Since an eigenvalue analysis is used to determine the stability
of specific solution process architectures, it is natural to
examine eigenvalues to determine the architectures’ conver-
gence times. Existing linear systems theory evaluates system
eigenvalues to determine settling time, natural frequency,
modal response, systemdamping, and a number of additional
properties. Furthermore, empirical evidence in Figure 6
suggests a relationship exists between the spectral radius of
a distributed design system and the convergence rate.

The data in Figure 6 was generated by evaluating the
spectral radii associated with ten different solution process
architectures for five randomly created distributed design
systems. The data used to create these systems is shown in
Table 1 and the systems themselves are in the form of (7) and
(8). In order to reduce the number of possible parameters in
the experiment that may bias the result, the values in the 𝐷

vector were set to zero to guarantee all the design systems
had equilibrium solutions at the origin. Also, each subsystem
was given local control of one design variable while the
remaining variables were randomly allocated to the different
subsystems.

The process architectures with spectral radii greater than
1 were not included in Figure 6 because they had unstable
equilibrium solutions. To minimize the impact of starting
location on the convergence behavior, each data point in
Figure 6 is the average of twenty simulations started from
a set of different points. Similar to the previous simulation,
the process is defined to converge when the design variables
are all within 2% of their final values. Although there is some
correlation between the spectral radius and themean number
of iterations to converge, the circled architectures demon-
strate that this mapping is not monotonic as some previous
work has suggested [3]. Systems with the same spectral radius
can have very different convergence times. This variation is
demonstrated less dramatically across several of the other
architectures with smaller spectral radii as well. Even when
design systems have the same convergence time, the spectral
radii of those systems can vary significantly. The systems
generated in this section are used to experimentally support
the approach outlined in this paper.

As demonstrated in Figure 6, the spectral radius is insuffi-
cient to quantify the convergence time of a distributed design
process. For linear control systems, the real and imaginary
components of the eigenvalues are used to determine the
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Figure 7: 𝑠-Plane—natural frequency and damping loci.

natural frequency and damping ratio of the system. Using
these quantities, an upper bound can be determined for the
overall system convergence time. This approach is adapted
in this work to quantify convergence time in decentralized
design systems. However, determining the natural frequency
and damping ratio for distributed design processes is chal-
lenging and is the focus of the remainder of this paper.

Since decision networks are inherently discrete systems,
they are modeled as discrete time state space systems. To
determine the natural frequency anddamping ratio of general
discrete time systems, they are converted to continuous
time approximations. However, distributed design processes
are unique because they do not possess any underlying
continuity. A continuous time model is, therefore, a true
abstraction of the actual behavior.

In this paper, two techniques are examined to convert
between the continuous and discrete time domain. These
techniques are the zero-order hold and the bilinear, or
Tustin, approximation. These two techniques are chosen
because they are commonly used in the systems literature
and the Tustin approximation is generally acknowledged as
the preferred technique for this type of conversion [46].
This paper is not an exhaustive analysis of techniques that
can be used to transform discrete distributed design systems

into continuous time representations. Instead, it examines
two prevalent approximations and identifies the one which
results in a continuous timemodel that can exactly reproduce
subsystem decisions at the appropriate discrete point in time.

Before any of these analyses can be conducted, however,
a discrete time state space model must first be created to
accurately represent the system. Creating these state space
models is the topic of [3, 5] and in this paper all state space
models are created using these processes. The fundamental
difference between discrete time and continuous time state
space models is that their eigenvalues are plotted in the 𝑧-
plane rather than the 𝑠-plane.The transforms required to plot
these eigenvalues are discussed in the following section.

3.1. Laplace and 𝑍 Transforms for Distributed Design Models.
The primary challenge in quantifying the convergence time
of distributed design processes is successfully transforming
them to the continuous time domain. The advantage of a
continuous time representation of a system is that it enables
the eigenvalues to be plotted in the 𝑠-plane to capture the
frequency response characteristics of the system. However, to
plot a system in the 𝑠-plane, itmust first be represented as a set
of algebraic equations in a single value, typically 𝑠, by taking
the system’s Laplace transform.

The roots, poles, or eigenvalues of these algebraic equa-
tions have both real and imaginary components and are
plotted in the complex 𝑠-plane where the real components
are plotted on the 𝑥-axis while the imaginary components
are plotted on the 𝑦-axis. The basic information provided in
this plot is a system’s natural frequencies, damping ratios, and
stability characteristics. Furthermore, these properties can
often be determined through inspection. A representation
of the 𝑠-plane generated using the sgrid() command in
MATLAB which includes lines of constant natural frequency
and damping is shown in Figure 7.

In Figure 7, the lines radiating outward from the origin
into the second and third quadrants are lines of constant
damping ratio, 𝜁. The concentric arcs in Figure 7 centered
at the origin and extending through the second and third
quadrant are curves of constant damped natural frequency,
𝜔
𝑛
. Systems with eigenvalues located on the left hand side

of the 𝑦-axis are stable and settle to an equilibrium value
in finite time, while systems with eigenvalues located on the
right hand side of the 𝑦-axis are unstable and diverge. If the
eigenvalues are on the 𝑦-axis in the 𝑠-plane, they are saddle
points and the system oscillates forever, without moving
closer or further away from the equilibrium value.

In the same way, an 𝑠-plane representation captures the
characteristics of a continuous time system, and the 𝑧-plane
can be used to capture characteristics of discrete time systems.
To represent a system in the 𝑧-plane, the 𝑧 transform of the
system’s time-invariant difference equations is taken to create
an analytical expression in terms of a single variable, 𝑧. Once
again the roots of this expression are plotted, this time in the
𝑧-plane. Although the 𝑠-plane and 𝑧-plane are both complex
planes, the 𝑧-plane’s properties are significantly different. A
plot showing contours with constant natural frequency and
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Figure 8: 𝑧-Plane—natural frequency and damping loci.

damping in the 𝑧-plane was generated using the MATLAB
command 𝑧grid() and is shown in Figure 8.

The stable region of the 𝑧-plane is shown in Figure 8
and corresponds to the region circumscribed by the unit
circle, which graphically shows the stability criteria in (9).The
region outside the unit circle is unstable and the unit circle
itself is the set of saddle points. The region inside the unit
circle has two sets of contours.The contours originating from
the 𝑥-axis at (1, 0) are curves of constant damping ratio. The
other set of contours, perpendicular to the unit circle, are arcs
of constant natural frequency.

Examination of the 𝑧-plane explains why eigenvalues,
which correspond to roots of the 𝑧 transform, with the
same magnitude have a wide range of convergence times
in Figure 6. Although these eigenvalues have the same
magnitude, they map to very different natural frequencies
and damping ratios.The damping ratio and natural frequency
of a system can be used to determine the system’s convergence
time. For a second order, linear time invariant system, the
convergence time, called the settling time, can be related to
the damping ratio and natural frequency using (10) [68] as

𝑡
𝑠
< 4.6𝜏,

𝜏 =
1

𝜔
𝑛
𝜁
.

(10)

In (10), 𝑡
𝑠
is the settling time, which is defined to be the

time required for a system to converge to within 2% of its
final value as measured from its initial value. The variable
𝜏 is the system’s time constant which is the inverse of the
natural frequency, 𝜔

𝑛
, multiplied by the damping ratio, 𝜁. In

this paper, we examine the applicability of (10) to systems that
are not inherently continuous and use it to create an upper
bound for their convergence time.

To apply (10), the natural frequency and damping ratio
associated with the system roots is required. Unlike an 𝑠-
plane representation, this value cannot be read directly from
a plot in the 𝑧-plane and it depends on the sampling period

for the discrete system. This sampling period is also critical
to map system roots between the 𝑧-plane and the 𝑠-plane,
which is a desirable transformation since the analysis of
system transient response is often conducted in the frequency
domain represented by the 𝑠-plane.The relationship in (10) is
an example of an approach to approximate the convergence
time of a continuous time system. The relationship between
the complex variables in the 𝑧- and 𝑠-planes ismathematically
expressed in (11) [46] as

𝑧 = 𝑒
𝑇𝑠
. (11)

In (11), 𝑧 is a complex number representing a root in the
𝑧-plane while 𝑠 is the associated root in the 𝑠-plane.The value
𝑇 is the sampling period for the system, usually measured
in seconds. Since 𝑇 can be any positive value, a single point
in the 𝑧-plane can be mapped to many values in the 𝑠-plane
depending on the sampling rate. The entire left hand side of
the 𝑠-plane is represented by the unit circle in the 𝑧-plane
because both encompass the entirety of the stable regions for
a linear system.

The relationship expressed in (11) maps points between
the 𝑧- and 𝑠-planes and can be applied to points in discrete
time systems sampled at the appropriate rate. It is leveraged
later in this work to transform eigenvalues of distributed
design systems. However, to this point it has not been used
to map poles of distributed design processes from the 𝑧- to
𝑠-plane because 𝑇 has remained indeterminate. To facilitate
this mapping, an analogy for the sampling rate of distributed
design processes is discussed in the next section and the
zero-order hold and bilinear transformation are presented
to transform discrete systems into continuous systems and
determine 𝑇.

3.2. Distributed Design Sampling Rates and Transformations.
Distributed design systems are unique because they are truly
discrete systems. A distributed design process is composed of
a set of point discontinuities that represent specific decisions
made at an instant in time. Since the process is governed by
discrete iterations, there is no underlying continuity between
decision points. This contrasts with most other systems
that are fundamentally continuous, but sampled in time to
create a discrete representation. The sampling rate for these
continuous time systems is of critical importance, because
low sample rates can inhibit the accurate reproduction of
the continuous time signal. Furthermore, relationships used
to analyze and reconstruct the signal for discrete systems
generally require a specific sampling rate. To capture the
system’s transient response for this reconstruction, it must be
sampled at aminimumrate called theNyquist frequency [68].

When a continuous time system is sampled at a rate
above the Nyquist frequency, the resulting set of points is
an abstraction of the actual continuous time system. Since
distributed design processes are by their nature discrete,
creating a signal in the continuous time domain is not a
reconstruction of the signal but an abstraction of the system’s
true behavior. This distinction restricts which linear system
tools and techniques can be used to analyze and model
distributed design processes. In this work, the zero-order
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Table 2: Eigenvalues associated with system approximation.

Approximated eigenvalues
Zero-order hold method Tustin approximation
−0.367 −0.363
−0.482 ± 1.33𝑖 −0.740 ± 1.43𝑖

−1.62 −1.34

hold and the Tustin, or bilinear, approximation are used to
construct a continuous time representation for distributed
design processes to determine 𝑇. A simulated annealing
algorithm was used to determine the sampling rates that led
to the most accurate overall representation. The objective
function for the simulated annealing algorithm was the
distance between the discrete time points and the continuous
time curve as measured using an 𝐿

2
norm. The design

variable in the optimization formulation shown in (12) is 𝑇.

Minimize: 𝑓 (𝑇) = √
𝑘

∑
𝑗=1

𝑚

∑
𝑖=1

(𝑥
𝑗

𝑖
− 𝑔
𝑗

𝑖
(𝑇))
2

Subject to: 𝑇 > 0.

(12)

In (12), 𝑥𝑘
𝑖
is the design variable value for the 𝑖th design

variable at the 𝑘th iteration. The term 𝑔
𝑗

𝑖
(𝑘) is the 𝑖th

design variable value as determined from the continuous time
model generated using either the zero-order hold or Tustin
approximation at the 𝑗th iteration. Finally, 𝑇, the sampling
rate, is the design variable value for the optimization and is
used to develop the continuous time expression 𝑔

𝑗

𝑖
(𝑘). From

this experiment, it is found that a sample rate of 1 sample per
second most accurately represented the discrete time system
in continuous time for both the Tustin approximation and
zero-order hold.

Even though both transformations used the same sam-
pling rate, the zero-order hold and Tustin approximation did
not construct identical continuous time representations. As
an example, the four largest eigenvalues for one of the sim-
ulated systems are summarized in Table 2 for both the zero-
order hold representation and the Tustin approximation.

Both approximations result in models with different
continuous time eigenvalues. Examination of the eigenvalues
in Table 2 shows that both methods identify almost the
same first eigenvalue for the design system. However, the
second eigenvalue identified is significantly different for each
method.

When determining the appropriate sampling rate, the
zero-order hold representations are more accurate when
considering the distance between the continuous and discrete
time points as measured using the objective function in (12).
The difference between these two representations is more
obvious when plotted. The curves generated for the first
design variable of the system summarized in Table 2 are
plotted in Figures 9 and 10, respectively.

In Figures 9 and 10, time is plotted on the 𝑥-axis
and the systems reach their equilibrium value after eleven
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Figure 9: Zero-order hold method.
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Figure 10: Tustin Approximation.

iterations. The design variable value is plotted on the 𝑦-
axis, starting from an initial value of one and converging
to a value of 0. Both plots show the first design variable
for the simulated system and are created using the initial()
function in MATLAB. The actual discrete design variables,
as determined through simulation, are marked by x’s in both
Figures 9 and 10.

The curve in Figures 9 and 10 is the continuous time
approximation for the discrete system. Inspection of the two
figures shows that the approximation based on the zero-order
hold passes through every discrete design variable value.This
representation is more desirable because each discrete design
variable represents an actual decision in the design process.
TheTustin approximation does not pass through every design
point in Figure 10 and does not accurately reproduce the
design process.

The zero-order hold produces an accurate continuous
time model for the system because its assumptions match
extremely well to the fundamental mechanics of distributed
design processes. The zero-order hold converts a discrete
time signal to continuous time by holding a single sample’s
values constant over the sampling period. This signal recon-
struction technique mirrors distributed design processes,
where each subsystem assumes constant non-local design
variable valueswhen solving their local optimization problem
for a single decision step in the process.
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Figure 11: Experimental versus analytical convergence results.

Using the zero-order hold to transform a discrete state
spacemodel of a distributed system enables the analysis of the
system using classical control techniques. The identification
of the appropriate sample rate for these models makes the
transformation from the 𝑧-plane to the 𝑠-plane simpler as
well. In the next section, an analytical relationship based on
these findings is introduced to transform discrete time eigen-
values to their continuous time equivalents.These continuous
time equivalents are then analyzed using control theoretic
relationships and the results are validated experimentally.

3.3. Analyzing the Convergence Time of Distributed Design
Processes. In this section, the concept of the system time
constant is examined for distributed design processes and
its applicability to discrete time systems is demonstrated
empirically. The mathematical relationship for continuous
time systems between the natural frequency, damping ratio,
and time constant is summarized in (10). It is demonstrated
using the zero-order hold that it is possible to model dis-
tributed design processes as continuous time systems, and
it is proposed that the relationship in (10) can be used to
create an upper bound on the convergence time of distributed
design processes as well. Since (10) requires only information
about the damping ratio and natural frequency, a complete
continuous timemodel of the system is not required. Instead,
a simpler relationship can be used to determine these prop-
erties from the discrete time eigenvalues. These relationships
are provided in (13) and (14) [46] as follows:

𝜁

√1 − 𝜁
= ln(

|𝑧|

∠𝑧
) , (13)

𝜔
𝑛
= − ln(

|𝑧|

𝑇𝜁
) . (14)

In (13) and (14), 𝜁 is the damping ratio, and 𝜔
𝑛
is the

natural frequency. To determine |𝑧|, and ∠𝑧 it is assumed that
the 𝑧-plane form of the eigenvalues is 𝑧 = 𝑎+𝑏𝑖, with 𝑎 being
the real part of 𝑧 and 𝑏 being the imaginary part. Using 𝑎 and 𝑏

the magnitude, |𝑧| is the vector sum of 𝑎 and 𝑏while ∠𝑧 is the
arctan(𝑏/𝑎). The parameter 𝑇 in (14) is the sampling period
for the system. Recall that this does not have a direct analogy
for distributed design systems but is discussed in Section 3.2
and is 1 sample per iteration.

Equations (10), (13), and (14) are used to evaluate the
convergence time for 250 distributed design systems using
the parameters outlined in Table 1. The settling time for each
system is analytically determined and plotted in Figure 11
against the actual settling time for the system as determined
by simulation.

The line in Figure 11 is shown as a reference to com-
pare the convergence time determined by simulation to the
analytical convergence rate predictions. It has a slope of one
to differentiate between cases where the approach over and
under predicted the system convergence time. For almost
all the systems, the analytical results, determined using the
settling criterion from (10), provide an upper bound for the
convergence time of the design systems. Approximately 7.6%
of the systems are above the solid line in Figure 11, which
means that the approach underestimated the convergence
time. The furthest system above the line exceeded the pre-
dicted maximum convergence time by 6 iterations, which
is 10% of its convergence time. All other points, however,
are at most 2 design iterations greater than their predicted
value which means that the prediction was very close to the
simulated convergence time.

One advantage to this approach is its efficiency, since it
only considered the largest pole of the system, required no
simulation, and is independent of the starting location. The
dynamic behavior of many of the systems may have been
understated with this simplification. For example, the system
whose convergence was underpredicted by 6 iterations was
composed of 6 unique subsystems collectively controlling 32
unique design variables. To capture the dynamics of more
sophisticated design problems using a single eigenvalue may
be insufficient to appropriately model the system.

In spite of only considering one eigenvalue, the approx-
imation provides an upper bound for many of the systems.
One reason for this may be the discrete nature of distributed
design processes. A continuous time model for a truly
discrete system overestimates the settling time because the
gaps between discrete time points enable it to skip past the
peaks of the continuous time curve. These peaks may remain
outside of the 2% settling time longer than the discrete points
unless a discrete time point is located on a peak. Additional
areas of future work to increase the effectiveness of this
approach for large systems are discussed in the next section.

4. Conclusions

In this paper, the transient response of distributed design
processes, as modeled as a two-player continuous game,
is characterized. An eigenvalue analysis formed the basis
for this examination and concepts native to continuous
control theory are used to evaluate and approximate the
transient response of distributed design systems. The tran-
sient response is broken down into two components: shape
and convergence rate. This paper focuses on the convergence
rate of distributed design processes and it is shown that
the convergence rate cannot be assessed using only the
magnitude of the system’s largest eigenvalue.

Instead of examining eigenvalue magnitudes, this paper
modeled inherently discrete distributed design processes as
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continuous time systems. Two commonly used approxima-
tions, the zero-order hold and Tustin approximation, are
evaluated to determine the parameters required to ana-
lyze distributed design processes in continuous time. Both
approximations suggest that the best sampling period, a key
parameter in the conversion between discrete and continuous
time systems, is 1 sample per iteration. It is also shown
that the Tustin approximation does not provide an accurate
reproduction of distributed design processes in continuous
time. On the other hand, the zero-order hold provides a good
approximation for these systems because its assumptions
match well with the fundamental mechanics of distributed
design processes.

By using a continuous time approximation, the con-
vergence rate aspect of a transient response is evaluated.
This analysis uses a second-order approximation for the
system. It is demonstrated that for many systems a second-
order approximation provides a reliable upper bound for the
number of iterations required for a design system to converge
to an equilibrium solution. In cases where the approach is
unable to provide an accurate estimate of the system transient
response, the prediction remained in the neighborhood of the
time required for the system to converge as determined by
simulation.

One of themajor contributions of the approach presented
is that it enables the evaluation of different design process
architectures without the need to simulate the distributed
design system. Another contribution of this approach is that
it validates an extension of the linear system theory analogy
used tomodel distributed design systems. It identifies the role
of sampling in the overall system response and emphasizes
the truly discrete nature of distributed design problems.
For systems with dominant closed loop poles the approach
provides a mathematically provable upper bound for the
system convergence time. Even when this criterion is not
met, the approach is able to bound the convergence time
for most cases without the computational costs associated
with simulation. This provides a filter to identify potential
process architectures that are worth committing additional
resources to investigating. Finally, it provides a basis for the
analysis of increasingly complex distributed design systems
by examining the basic challenges to predicting system
transient response.

Future work will focus on extending the approach to ana-
lyze large systems by considering more than one eigenvalue.
Performing this analysis will require the identification of the
most influential closed loop poles to create a higher-order
model of the system. This model will provide greater fidelity
and predictive ability while reducing the computational costs
to simulate the system. Another area of future work is in
the application of model reduction techniques to reduce the
size of the models for distributed design systems. Currently
distributed design models require a number of states equal
to the number of shared design variables. Reducing the
model will minimize the computational cost to analyze these
systems both with respect to their stability and transient
response characteristics. Incorporating our technique with a
comprehensive simulation-based approach to evaluate pro-
cess architecture is another area of future work. Combining

the fidelity of simulation-based techniques with the initial
response characterization from this work will reduce the
computational burden to identify preferred process architec-
tures.

Finally, the expanded applicability of control theory
techniques demonstrated in this work provides a foundation
to investigate principles used to analyze nonlinear systems.
Translating these principles into techniques that provide
meaningful evaluations of convergence times will enable the
analysis of a broader class of distributed design problems.

Acknowledgments

The authors would like to thank the National Science Foun-
dation, Grant DMII-0322783, and the Moog Corporation
for their support of this work. Approved for Public Release;
Distribution Unlimited: 88ABW-2013-2106, dated May 1,
2013.

References

[1] V. Chanron and K. Lewis, “A study of convergence in decen-
tralized design,” in Proceedings of the ASME Design Engineering
Technical Conferences and Computers and Information in Engi-
neering Conference (DETC ’03), 48782, pp. 765–774, Chicago, Ill,
USA, September 2003.

[2] V. Chanron and K. Lewis, “A study of convergence in decentral-
ized design processes,” Research in Engineering Design, vol. 16,
no. 3, pp. 133–145, 2005.

[3] V. Chanron and K. Lewis, “Convergence and stability in dis-
tributed design of large systems,” in Proceedings of the ASME
Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (DETC ’04), 57344, pp.
593–603, Montreal, Canada, October 2004.

[4] E. Devendorf, P. Cormier, and K. Lewis, “Development of a dis-
tributed design toolkit for analyzing process architectures,” in
Proceedings of the 13th AIAA ISSMO Multidisciplinary Analysis
andOptimization Conference (AIAA ’10), 9029, FortWorth, Tex,
USA, 2010.

[5] E. Devendorf and K. Lewis, “The impact of process architec-
ture on equilibrium stability in distributed design,” Journal of
Mechanical Design, vol. 133, no. 10, pp. 101001–101013, 2011.

[6] E. Devendorf and K. Lewis, “Quantifying the convergence
time of distributed design processes,” in Proceedings of the
ASME Design Engineering Technical Conferences & Computers
and Information in Engineering Conference (DETC ’11), 48377,
Washington, DC, 2011.

[7] Y. C. Kim, L. H. Keel, and S. P. Bhattacharyya, “Transient
response control via characteristic ratio assignment,” Institute
of Electrical and Electronics Engineers, vol. 48, no. 12, pp. 2238–
2244, 2003.

[8] C.-L. Li, “Characterization of the equilibrium strategy of fuzzy
bimatrix games based on L-R fuzzy variables,” Journal of Applied
Mathematics, vol. 2012, Article ID 824790, 15 pages, 2012.

[9] V. Vidyottama, S. Chandra, and C. R. Bector, “Bi-matrix games
with fuzzy goals and fuzzy pay-offs,” Fuzzy Optimization and
Decision Making, vol. 3, no. 4, pp. 327–344, 2004.

[10] T. Maeda, “On characterization of equilibrium strategy of two-
person zero-sum games with fuzzy payoffs,” Fuzzy Sets and
Systems, vol. 139, no. 2, pp. 283–296, 2003.



14 Mathematical Problems in Engineering

[11] S. Chien and A. Sinclair, “Convergence to approximate Nash
equilibria in congestion games,”Games and Economic Behavior,
vol. 71, no. 2, pp. 315–327, 2011.

[12] I. Caragiannis, A. Fanelli, N. Gravin, and A. Skopalik, “Com-
puting approximate pure Nash equilibria in congestion games,”
ACM SIGecom Exchanges, vol. 11, no. 1, pp. 26–29, 2012.

[13] L. I. de Castro, “Equilibrium existence and approximation of
regular discontinuous games,” Economic Theory, vol. 48, no. 1,
pp. 67–85, 2011.

[14] V. M. Perez, J. E. Renaud, and L. T. Watson, “Reduced sampling
for construction of quadratic response surface approximations
using adaptive experimental design,” in Proceedings of the 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference (AIAA ’02), 1587, Denver, Colo, USA,
2002.

[15] J. Sobieszczanski-Sobieski and R. T. Haftka, “Multidisciplinary
aerospace design optimization: survey of recent developments,”
Structural and Multidisciplinary Optimization, vol. 14, no. 1, pp.
1–23, 1997.

[16] A. Khajavirad and J. J. Michalek, “A deterministic lagrangian-
based global optimization approach for quasiseparable noncon-
vex mixed-integer nonlinear programs,” Journal of Mechanical
Design, vol. 131, no. 5, pp. 051009-1–051009-8, 2009.

[17] E. J. Cramer, J. E. Dennis, Jr., P. D. Frank, R. M. Lewis,
and G. R. Shubin, “Problem formulation for multidisciplinary
optimization,” SIAM Journal on Optimization, vol. 4, no. 4, pp.
754–776, 1994.

[18] N. P. Suh,Axiomatic Design: Advances and Applications, Oxford
University Press, New York, NY, USA, 2001.

[19] G. Pahl and W. Beitz, Engineering Design: A Systematic
Approach, Springer, New York, NY, USA.

[20] S. Pugh, Creating Innovative Products Using Total Design,
Addison-Wesley, Reading, Mass, 1996.

[21] M. M.Wiecek and J. A. Reneke, “Complex systems decomposi-
tion under uncertainty and risk,” in Proceedings of the 6thWorld
Congress of Structural and Multidisciplinary Optimization, Rio
de Janeiro, Brazil, 2005.

[22] H. M. Min, N. F. Michelena, P. Y. Papalambros, and T. Jiang,
“Target cascading in optimal systemdesign,” Journal ofMechan-
ical Design, vol. 125, no. 3, pp. 474–480, 2003.

[23] B. Wujek, J. E. Renaud, and S. Batill, “A concurrent engineering
approach for multidisciplinary design in a distributed com-
puting environment,” inMultidisciplinary Design Optimization:
State of the Art, N. Alexandrov and M. Y. Hussaini, Eds., pp.
189–208, NASA, Hampton, Va, USA, 2003.

[24] B. A.Wujek, J. E. Renaud, S.M. Batill, and J. B. Brockman, “Con-
current subspace optimization using design variable sharing in
a distributed computing environment,” Concurrent Engineering
Research and Applications, vol. 4, no. 4, pp. 361–376, 1996.

[25] J. Sobieszczanski-Sobieski, J. S. Agte, and R. R. J. Sandusky,
“Bi-level integrated system synthesis (BLISS),” NASA Technical
Memorandum 208715, NASA, Hampton, Va, USA, 1998.

[26] R. Braun, Collaborative optimization: an architecture for large-
scale distributed design [Ph.D. dissertation], Stanford University,
Palo Alto, Calif, USA, 1996.

[27] N. Michelena, H. Park, and P. Y. Papalambros, “Convergence
properties of analytical target cascading,” AIAA Journal, vol. 41,
no. 5, pp. 897–905, 2003.

[28] Y. Li, Z. Lu, and J. J. Michalek, “Diagonal quadratic approxima-
tion for parallelization of analytical target cascading,” Journal of
Mechanical Design, vol. 130, no. 5, pp. 051402-051401–051402-
051411, 2003.

[29] S. Tosserams, L. F. P. Etman, P. Y. Papalambros, and J. E. Rooda,
“An augmented lagrangian relaxation for analytical target cas-
cading using the alternating directions method of multipliers,”
in Proceedings of the 6th World Congress of Structural and
Multidisciplinary Optimization, Rio de Janeiro, Brazil, May
2005.

[30] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no.
3859, pp. 1243–1248, 1968.

[31] T. L. Vincent, “Game theory as a design tool,” Journal of
Mechanisms, Transmissions, and Automation in Design, vol. 105,
no. 2, pp. 165–170, 1983.

[32] J. Eddy, Solving distributed, non-cooperative design problems
using multi agent systems [Ph.D. dissertation], University at
Buffalo, Buffalo, NY, USA, 2006.

[33] K. Lewis and F. Mistree, “Collaborative, sequential, and isolated
decisions in design,” Journal of Mechanical Design, vol. 120, no.
4, pp. 643–652, 1998.

[34] C. Loch, J. Mihm, and A. Huchzermeier, “Concurrent engineer-
ing and design oscillations in complex engineering projects,”
Concurrent Engineering Research and Applications, vol. 11, no.
3, pp. 187–200, 2003.

[35] R. I. Whitfield, A. H. B. Duffy, G. Coates, and W. Hills, “Dis-
tributed design coordination,” Research in Engineering Design,
vol. 13, no. 3, pp. 243–252, 2002.

[36] S. Cho and S. D. Eppinger, “A simulation-based process model
for managing complex design projects,” IEEE Transactions on
Engineering Management, vol. 52, no. 3, pp. 316–328, 2005.

[37] T. R. Browning and S. D. Eppinger, “Modeling impacts of
process architecture on cost and schedule risk in product
development,” IEEE Transactions on Engineering Management,
vol. 49, no. 4, pp. 428–442, 2002.

[38] E.Devendorf,M.Devendorf, andK. Lewis, “Using network the-
ory to model distributed design systems,” in Proceedings of the
13th AIAA ISSMO Multidisciplinary Analysis and Optimization
Conference (AIAA ’10), 9027, Fort Worth, Tex, USA, 2010.

[39] K. Lewis and F. Mistree, “Collaborative, sequential and isolated
decisions in design,” in Proceedings of the ASME Design Engi-
neering Technical Conferences & Computers and Information in
Engineering Conference, Sacramento, Calif, USA, 1997.

[40] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol.
54, pp. 286–295, 1951.

[41] G. L. Thompson, “Signaling strategies in N-person games,”
in Contributions to the Theory of Games, H. W. Kuhn and
A. W. Tucker, Eds., pp. 267–277, Princeton University Press,
Princeton, NJ, USA, 1953.

[42] G. Hernandez, C. C. Seepersad, and F. Mistree, “Designing for
maintenance: a game theoretic approach,” Engineering Opti-
mization, vol. 34, no. 6, pp. 561–577, 2002.

[43] K. Lewis and F. Mistree, “Modeling subsystem interactions: a
game theoretic approach,” Journal of Design Manufacturing and
Automation, vol. 1, no. 1, pp. 17–26, 2001.

[44] R. P. Smith and S. D. Eppinger, “Identifying controlling features
of engineering design,” Management Science, vol. 43, no. 3, pp.
176–193, 1997.

[45] D. Poole, Linear Algebra: A Modern Introduction, Thomas
Learning, 2003.

[46] K. Ogata, Discrete-Time Control Systems, Prentice Hall, Upper
Saddle River, NJ, USA, 2nd edition, 1995.

[47] V. Chanron, T. Singh, and K. Lewis, “Equilibrium stability in
decentralized design systems,” International Journal of Systems
Science, vol. 36, no. 10, pp. 651–662, 2005.



Mathematical Problems in Engineering 15

[48] A. Gurnani and K. Lewis, “Collaborative, decentralized engi-
neering design at the edge of rationality,” Journal of Mechanical
Design, vol. 130, no. 12, pp. 121101–121109, 2008.

[49] J. Kelly andM.Walker, “Critical-path planning and scheduling,”
in Proceedings of the Eastern Joint Computer Conference, Boston,
Mass, USA, 1959.

[50] D. Malcolm, J. Roseboom, C. Clark, and W. Fazar, “Application
of a technique for research and development program evalua-
tion,” Journal of Operations Research, vol. 7, no. 5, pp. 646–669,
1959.

[51] R. V. Slyke, “Monte carlo methods and the PERT problem,”
Journal of Operations Research, vol. 5, no. 11, pp. 839–860, 1963.

[52] A. Pritsker, Modeling and Analysis Using Q-GERT Networks,
Wiley & Sons, New York, NY, USA, 2nd edition, 1979.

[53] S. Elmaghraby and J. Kamburowski, “The analysis of activity
networks under generalized precedence relationships (GPR’s),”
Journal of Management Science, vol. 38, no. 9, pp. 1245–1263,
1992.

[54] J. Sobieszczanski-Sobieski, “On the sensitivity of complex,
internally coupled systems,”AIAA Journal, vol. 28, no. 1, pp. 173–
180, 1990.

[55] J. L. Rogers, “DeMAID/GA an enhanced design manager’s
aid for intelligent decomposition,” in Proceedings of the 6th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis andOptimization (AIAA ’96), 4157, Seattle,Wash, USA,
1996.

[56] D. V. Steward, “The design structure system: a method for
managing the design of complex systems,” IEEE Transactions on
Engineering Management, vol. 28, no. 3, pp. 71–74, 1981.

[57] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala,
“A model-based method for organizing tasks in product devel-
opment,” Research in Engineering Design, vol. 6, no. 1, pp. 1–13,
1994.

[58] R. P. Smith and S. D. Eppinger, “A predictivemodel of sequential
iteration in engineering design,” Management Science, vol. 43,
no. 8, pp. 1104–1120, 1997.

[59] A. Y. Ha and E. L. Porteus, “Optimal timing of reviews in
concurrent design for manufacturability,”Management Science,
vol. 41, no. 9, pp. 1431–1447, 1995.

[60] V. Krishnan, S. D. Eppinger, and D. E. Whitney, “A model-
based framework to overlap product development activities,”
Management Science, vol. 43, no. 4, pp. 437–451, 1997.

[61] B. A. Huberman andD.M.Wilkinson, “Performance variability
and project dynamics,” Computational andMathematical Orga-
nization Theory, vol. 11, no. 4, pp. 307–332, 2005.

[62] J. Mihm, C. Loch, and A. Huchzermeier, “Problem-solving
oscillations in complex engineering projects,” Management
Science, vol. 49, no. 6, pp. 733–750, 2003.

[63] A. Yassine, N. Joglekar, D. Braha, S. Eppinger, and D. Whitney,
“Information hiding in product development: the design churn
effect,” Research in Engineering Design, vol. 14, no. 3, pp. 145–161,
2003.

[64] C. Sen, F. Ameri, and J. D. Summers, “An entropic method
for sequencing discrete design decisions,” Journal of Mechanical
Design, vol. 132, no. 10, pp. 10100401–10100411, 2010.

[65] E. Devendorf and K. Lewis, “Are we there yet? Investigating
the role of design process architecture in convergence time,”
in Proceedings of the ASME International Design Engineering
Technical Conferences and Computers and Information in Engi-
neering Conference (DETC ’09), 87517, pp. 997–1008, San Diego,
Calif, USA, September 2009.

[66] D. Braha and Y. Bar-Yam, “Topology of large-scale engineering
problem-solving networks,” Physical Review E, vol. 69, no. 1,
Article ID 016113, pp. 161131–161137, 2004.

[67] D. Braha and Y. Bar-Yam, “The statistical mechanics of complex
product development: empirical and analytical results,” Man-
agement Science, vol. 53, no. 7, pp. 1127–1145, 2007.

[68] K. Ogata, Modern Control Engineering, Prentice Hall, New
Delhi, India, 4th edition, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


