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The numerical simulation of fast-moving fronts originating from dam or levee breaches is a challenging task for small scale
engineering projects. In this work, the use of fully three-dimensional Navier-Stokes (NS) equations and lattice Boltzmann method
(LBM) is proposed for testing the validity of, respectively, macroscopic and mesoscopic mathematical models. Macroscopic
simulations are performed employing an open-source computational fluid dynamics (CFD) code that solves the NS combined
with the volume of fluid (VOF) multiphase method to represent free-surface flows. The mesoscopic model is a front-tracking
experimental variant of the LBM. In the proposed LBM the air-gas interface is represented as a surface with zero thickness that
handles the passage of the density field from the light to the dense phase and vice versa. A single set of LBM equations represents
the liquid phase, while the free surface is characterized by an additional variable, the liquid volume fraction. Case studies show
advantages and disadvantages of the proposed LBM and NS with specific regard to the computational efficiency and accuracy in
dealing with the simulation of flows through complex geometries. In particular, the validation of the model application is developed
by simulating the flow propagating through a synthetic urban setting and comparing results with analytical and experimental

laboratory measurements.

1. Introduction

The detailed three-dimensional (3D) simulation of free-
surface flows is a challenging task for engineering projects [1]
dealing with open flow hydraulics at both the large and
small scale because of the computational burden and the
large parameterization needed for representing the physics,
geometry, and boundary conditions. Nevertheless, in recent
times, the always larger availability of remotely sensed data,
providing digital topographic and land cover information,
and the decreasing impact of the computational burden make
the application of small-scale high-resolution 3D numerical
models feasible and attractive for engineering studies. In
particular, it is foreseen that 3D hydraulic simulations shall
support not only fluid mechanics analyses for engineering
design at the small scale, but also large-scale applications in

urban planning, river restoration, and flood mitigation and
management projects.

There are several recent works in the literature that
report the ability of the Navier-Stokes (NS) method using the
two-dimensional (2D) shallow water (SW) equations [2] to
simulate river surface flows, even if the SW hypothesis is not
always valid for the inertial effects and significant gradients
[3-5]. In fact, several fully three-dimensional NS simulations
are available in the literature for representing not only dam-
breaks [6, 7], but also unconfined surface flows along straight
river segments, bends and confluences [8], as well as impulse
waves and tsunamis [4, 9], and water falls [10] among others.

The lattice Boltzmann method (LBM) is an alternative
numerical fluid dynamics scheme based on Boltzmann’s
kinetic equation [11] that represents the flow dynamics at
the macroscopic level by incorporating a microscopic kinetic



approach that also preserves the conservation law [12, 13].
LBM has been adopted for the characterization of flows in
porous media [14] and for multiphase flows [15-17] among
others [18, 19]. The LBM demonstrated to work efficiently
for describing the complex physics of non ideal flows and
complex geometries [20]. There are also several works inves-
tigating the performances of the LBM in simulating shallow
free-surface flows [21, 22], but with no emphasis on their use
for practical engineering applications.

In this work a fully 3D front-tracking formulation of the
LBM, that was originally presented [23] for foam dynamics
and that was revisited for free-surface flow applications [24-
26], is implemented, validated, and compared to the standard
NS approach for transient hydraulic flows, including a syn-
thetic case of flow propagation through an urban setting.

The storage effect of urban areas as well as the hydrograph
separation effect resulting in different water transmission
rates was investigated in several works [27]. Experiments of
dam breaks were conducted [28] to investigate the effect of
a flood flow propagating to inundate a single building [29].
Nevertheless, the application and potential validation of LBM
for urban modeling of flash floods [30] has not been ade-
quately developed yet.

The novel aspect of the proposed work is the investigation
for the potential of the LBM to simulate the flooding in highly
urbanized areas with specific regard to the detailed char-
acterization of instantaneous discharge variations, like the
one caused by dam or dyke breaks or by intense rainfall of
flash floods, producing multidimensional street surface flow
paths, which is one of the most complex and difficult
hazardous phenomena to manage, prevent, and control. The
interaction of water flow with anthropogenic features pro-
duces complex 3D flow structures that shall be simulated by
taking into consideration all the resulting flow physics such
as hydraulics jumps, flow constrictions, and back pressure
effects. Disregarding those geometric and hydraulic features
would result in a misinterpretation of the estimated water
levels providing an inaccurate flood hazard and risk charac-
terization.

In this study, given the impossibility of gathering mea-
sured data on such phenomena, a comparative analysis of the
performance of LBM and NS in simulating flash flood prop-
agation in urban areas is investigated by a comparison with
experimental data of dam break hydraulic effects on a
synthetic case study represented by an ideal city.

The present document is organized as follows: in the next
section, the theoretical and numerical specifications of both
LBM and NS are introduced and described. Then, in the case
study section, the results of the application of the proposed
methods are inserted with specific regard to (1) the test case of
the LBM results compared to an analytical solution; (2) the
analysis and comparison of LBM and NS codes applied on the
simulation of a rapidly varying flow along a simple geometry
of a straight river reach; (3) the evaluation and validation of
the LBM and NS code application on the flow propagating
through a synthetic urban domain by means of comparison
with experimental data of a physical model. The last two
sections represent, respectively, the discussion and conclusive
remarks.
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2. Methods

2.1. The Navier-Stokes Numerical Scheme. The most general
macroscopic model for hydraulic flows may be represented
by the incompressible Navier-Stokes equations as follows:

0
p(a—ltl—F> = -Vp+uV'u, )

where p is the fluid density, F is a specific prescribed body
force (i.e., gravity force), and y is the fluid dynamic viscosity.

As in hydraulic flows, at least two phases are always
present, water and air; the above system of equations must be
applied to a multiphase system. The simulation of multiphase
flows is a challenging task due to the inherent complexity
of the involved phenomena (i.e., moving interfaces with
complex topology) and represents one of the leading edges
of computational physics.

The following two main approaches are widely used to
simulate multiphase flows: the Euler-Lagrange approach and
the Euler-Euler approach. The latter approach, usually chosen
in hydraulics applications, is based on the assumption that
the volume of a phase cannot be occupied by other phases,
thus introducing the concept of phase volume fractions as
continuous functions of space and time.

For the present work, we employed the so-called volume
of fluid (VOF) method, [31, 32] designed for two or more
immiscible fluids where only one fluid (i.e., air) is compress-
ible and the position of the interface between the fluids is
of interest. The VOF method is a surface-tracking technique
applied to a fixed Eulerian mesh, in which a specie transport
equation is used to determine the relative volume fraction of
the two phases, or phase fraction, in each computational cell.
Practically, a single set of Reynolds-averaged Navier-Stokes
equations is solved and shared by the fluids, and, for the
additional phase, its volume fraction y is tracked throughout
the domain.

Therefore, the full set of governing equations for the fluid
flow are as follows:
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opu \%
%+v-<puu>—v-<<;»+ut>s>=—VP+pg+aK|V—V,
Y|
a—Y+V‘(uy):0
ot ’

2)

where u is the velocity vector field, p is the pressure field, g, is
the turbulent eddy viscosity, S is the strain rate tensor defined
by § = (Vu + vu®)/2, o is the surface tension, and K is the
surface curvature.

The nature of the VOF method means that an interface
between the species is not explicitly computed, but rather
emerges as a property of the phase fraction field. Since the
phase fraction can have any value between 0 and 1, the inter-
face is never sharply defined, but occupies a volume around
the region where a sharp interface should exist.
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TABLE 1: Velocity vectors for the D3Q19 models.

G Direction Number of cells ffqo
0 0 1 790
c L...6 6 S
c-V2 7,18 12 a0

The model used in this work is based on an open source
computational fluid dynamics (CFD) platform named Open-
FOAM [33], freely available on the Internet. OpenFOAM,
primarily designed for problems in continuum mechanics,
uses the tensorial approach and object-oriented techniques.
It provides a fundamental platform to write C++ new solvers
for different problems as long as the problem can be written
in tensorial partial differential equation form.

2.2. The LBM Numerical Scheme. This section introduces the
theoretical background of the proposed LBM with specific
regard to the following:

(i) the single-phase LBM and the boundary conditions,

(ii) the front tracking concept,

that are, respectively, inserted in the two following sections.

2.2.1. Single-Phase Lattice Boltzmann Method and Boundary
Conditions. Artificial and natural fluvial hydrodynamics may
be simulated at the macroscopic scale using the LBM that is
structured as a mesoscopic (i.e., scaled larger than micro and
smaller than macro) method. LBM treats the water mass by
analysing its density probability function, f;(x,¢;,t), where
x is the particle spatial location within the lattice domain,
t is the time variable, and ¢; is the kinematic component.
The dynamic of the particle distribution function is described
in (3) that represents a discrete lattice Boltzmann equation,
representing the evolution in time of the fluid flow by
providing a numerical solution of the modification of the
density probability function:

fi (x+ ALt + At) — f; (x,1)

©)

+At-F,=C,(x,1), i=1,...,b

where the left and right terms represent, respectively, the
molecular free-streaming and the particle collisions. F; is an
additional term accounting for internal (e.g., collision) and
external forcing processes (e.g., electric and magnetic fields
or gravity).

For water-driven processes, it is reasonable to assume a
discrete set of directions along which particles may route and,
as a consequence, ¢; is restricted to a maximum of 7 to 9 for
2D or 19 directions for 3D flows. This 19-direction discretized
cubic lattice model implemented here (namely, D3Q19) is
characterized by the set of predefined velocity vectors sche-
matically represented in Figure 1 and reported in Table 1.
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FIGURE 1: D3Q19 velocity model.

The collision component is integrated by implementing
the Bhatnagar-Gross-Krook Model (BGK) [34]

C;(x,t) = [fixt) - 1 (x1)] (4)

At
T
that characterizes the density modifications caused by par-
ticle collisions as related to dynamic modifications from the
local equilibrium ffq [35, 36].

If the relative Knudsen and Mach numbers are small
enough, this formulation is able to represent the dynamics
of a fluid with pressure P = ¢’p and a kinematic viscosity
v= cs2 (t — At/2), where ¢, is the lattice sound velocity [12].

The proposed numerical approach is implemented on a
structured Cartesian lattice (i.e., mesh) where the particles
may only reside on the mesh nodes.

In the proposed model boundary nodes are solved using
the bounce-back scheme meaning that particles colliding
with a stationary wall simply reverse their momentum [12,
37]. In particular, the half-way bounce-back scheme is here
applied by posing the reflecting wall at a medium distance
between boundary nodes and the physical walls [38]. As a
result, the proposed model can simulate both solid features
(e.g., walls, levees, etc.) of known geometry or open bound-
aries of predefined velocity, discharge, or pressure function.

The turbulence flow field is implemented in the pro-
posed LBM model by employing a Large Eddy Simulation
(LES) approach [39] that characterizes the flow field sim-
ulating large-scale structures (resolved grid scales), which
are assumed to be mostly predominating in defining the
transport of mass and momentum, and not directly sim-
ulating the small-scale local effects. The definition of
the boundary between small and large processes is based on
the Smagorinsky model [40].



2.2.2. Front-Tracking Model. In the Front-Tracking (FT) for-
mulation proposed here [23], the interface is treated as a zero
thickness, mathematical surface, across which the density
field jumps from the light to the dense phase and vice
versa and is tracked throughout the computational domain
through an additional scalar variable (i.e., liquid mass frac-
tion). A single set of LB equations is solved for both the heavy
fluids with respect to the light fluids (i.e., gas) in agreement
with the front-tracking methodology that do not aim at pro-
viding any description of the physics of the phase-transition
between the two phases. The main difference, which also
represents the main advantage of the LBM front-tracking
approach, with respect to the traditional continuum methods,
is that the single-species transport equation, used in Navier-
Stokes/VOF model to determine the relative volume fraction
of the two phases in each computational cell, is not needed,
since the free-surface tracking is automatically performed
by advancing the fluid elements. In practical terms, only
the liquid phase flow is numerically solved, while the gas
characterization is neglected, and an additional variable ¢
(i-e., the liquid volume fraction) is structured to track the free
surface throughout the computational domain. This variable
is numerically solved using the following equation:

x1) e(x) =0, Vx € G,
e(x,t) = % t1e(x) =1, Vx €L, (5)
P 0<e(x)<1, Vxel,

inwhich G, L, and I represent respectively empty (gas), liquid,
and interface cells.

The computation scheme is integrated numerically in
three steps as follows: (1) interface positioning and flow mass
motion update defined by analysing cell fluxes; (2) definition
of the boundary conditions at the interface to separate the gas
and liquid state; (3) update of cell type. As a result, interface
cells defined by the x position and time ¢ are defined as
follows:

0, Vx € G,
ipc (x + AL, £) - ff,-c (x,1), vx e L,
Am; = (s (x,1) + & (x + AL t) > (6)
2

x [P (x+ At t) - 75 (x )], Vxel,

in which pc characterizes the postcollision state and the sign
is related to the mass direction where —i has opposite direc-
tion with respect to i. Mass dynamics in space and time are
defined as

18
m(x,t + At) :m(x,t)+ZAmi (x,t). (7)

i=1

Combining (6) and (7), the continuity principium is in
respect with the condition that direct modification of state,
from liquid to gas or vice versa, is not permitted outside the
interface. In fact, liquid and gas cells are only allowed to
transform into interface cells, whereas interface cells can be
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FIGURE 2: Schematic representation of the water surface profile for
a 20 m long straight channel dam break.

transformed into both gas and liquid cells. In this way, mass
and density are completely decoupled and, as a results, mass
evolution does not affect the particle distribution functions.

3. Numerical Results for Three Case Studies

The proposed LBM and NS are applied for the following three
test cases:

(a) the free-surface flow routed along a straight channel,
with LBM modeling results that are validated by
comparison with two different types of analytical
solutions;

(b) the free-surface flow routed along a straight channel
deriving from the partial asymmetrical collapse of
a vertical dam embankment with results that are
compared in terms of hydraulics and computational
efficiency;

(c) the simulation of a severe transient flow through a
synthetic urban district.

The three tests are hereafter presented in detail.

3.1. Test (a): Fast Flow Propagating along a Straight Channel.
The routing of a fast moving flow resulting from a dam
break, propagated through a 20m long straight channel
(see Figure2), is simulated, and the numerical results are
compared to the analytical solution provided by Ritter [41].

The channel bed is horizontal. Bottom and wall friction
is set to null. The numerical mesh is made up of 2,000 cubic
elements with a grid-spacing of 0.01 m. At time zero, a 0.5m
by 7m volume of water ideally positioned at the most,
upstream section of the channel is released instantaneously
and two resulting waves propagate, respectively, downstream
and upstream back to the reservoir. At a given time t from the
start of the simulation (i.e., dam break/breach or ideal vertical
wall removal), three different regions are defined (Figure 2) as
follows:

(1) for x < x> we have h = Hy = 0.5m,
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FIGURE 3: LBM simulation results, analytical solution, and experi-
mental data for the 20 m long straight channel dam break at times
0.5s,1s,2s,and 3s.

(2) for x;, < X < X, the water surface profile is
parabolic
Hy 2 2
h= 5 (x = 2X 05X + Xpnax ),

Xmin = ~t\|gH, + X, ®

Xmax = 284/gHy + xg,

(3) for x > x,,,» we have h = 0,

where h is the water elevation. Figure 3 shows the agreement
between numerical and analytical data apart some minor
expected differences at the boundaries [42]. In fact, where
Ritter’s analytical scheme is not suited for this comparison,
other methods were selected like the Chanson’s solution [43]:

§l(1—U/2)3= t
3f U’ \/g/Ho,
X t 4

. Xy (3 U\*
(o) )
H, H, \2 9H, | fP\ T2

9 H, (t/\/9/H,)
if -t <(x—x0)S<§U_1>;

Vo/Hy ~ H, 2 Vg/H,’
iz\/iUz(xs_x)

4 H,

LI

>

)

i (EU—1> t <(x—x0)<(x5—x0)

2 JVo/H, © H, H

that is also plotted in Figure 3.
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FIGURE 4: Comparison between numerical LBM and analytical and
experimental results at time 56.8 s for the 40 m long straight channel
dam break.

To further prove the validity of the code, a dam break
flow propagating along a 40m long straight channel is
simulated. At time zero, a 0.23m by 18 m water volume is
released instantaneously. In Figure 4, LBM numerical results
are compared to the Ritter [41] and Chanson [43] as well as
to the experimental measurements provided by [44]. The
comparison is performed in terms of dimensionless instan-
taneous free-surface profiles (h/d) between numerical and
analytical data (assuming f = 0.02).

3.2. Test (b): Asymmetrical Dam Break—LBM and NS Numer-
ical Models. The second test is characterized by the simu-
lation of a submersion wave caused by the partial collapse
of a nonsymmetrical sluice gate (or partial asymmetric dam
breach). The spatial 3D computational domain is 200 m X
200m x 20m, where the boundaries of the domain are
impermeable walls. The nonuniform initial condition for the
liquid phase fraction is specified: the water surface level
is initially 10 m for the upstream section and 5m for the
downstream section. An unsteady flow is generated by
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Sections A-A and B-B and Points P1 (100, 130), P2 (110, 130), P3 (130,
130), and P4 (150, 130) are shown. All dimensions are in m.

the instantaneous collapse of an asymmetrical 75m long
portion of the dam (see Figure 5). The bottom is flat, and
ground resistance to the motion is neglected.

Numerical results of several authors are available in the
literature for this case [6, 45, 46], that is, a standard bench-
mark for hydraulic models in dam break applications. We
chose to compare the LBM and NS, described in the previous
section, in terms of computational efficiency. Calculations
have been performed with a time step of 0.01s on a com-
putational mesh of 800,000 nodes (i.e., lattice sites for the
LBM). Figure 6 shows the comparison of the computed water
level 7.2 seconds after the breach, when the flow reaches the
left side of the tank, while Figure 7 shows the simulated water
surface levels along sections A-A (longitudinal Y = 130 m)
and B-B (transverse X = 110 m). Water level hydrographs at
selected points of the domain have been also evaluated, and
Figure 8 shows the results obtained for points P1 and P3 with
both LBM and NS approaches.

Results show that NS and LBM, using the same grid
resolution, are in good agreement in terms of water heights
and hydrograph, along the section AA, while the results for
the section BB (Figure 7(b)) are remarkably different espe-
cially in terms of water depths. This is expected with specific
regard to the central part of the domain where the dam break
originates and the flow is significantly 3D, while in the other
portions of the domain, through which the emptying of the
system applies (from the noncollapsing area towards where
the breach is) in the direction of the flow that is parallel to the
gate, the two models give different results with greater water
depths evaluated by NS.

From the computational point of view, using the same
hardware, the LBM model has completed the tests in one-fifth
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TaBLE 2: Computational efficiency of LBM and NS.

Mathematical Ax Computational Simulation
Model time (s) time (s)
NS 1.0 6941 7.2
LBM 1.0 1512 7.2
LBM 0.8 3011.04 7.2
LBM 0.6 4676.4 7.2
LBM 0.4 6350 7.2
LBM 0.3 7300.08 7.2

of the time needed by the NS. Results are summarized in
Table 2 that also shows that the LBM code is able to provide
a higher level of details of the flow pattern using the same
computational time or to provide the same accuracy and
details in less time. Figure 9, synthesizing the LBM versus
NS computational efficiency comparison test, shows that
the LBM model can use a mesh 65% denser than NS one
(AX(LBM) = 0.35cm, AX(NS) = 1m) for the same
computational time.

3.3. Test (c): Severe Transient Flow through a Synthetic Urban
District. This test presents the simulation of the effects of
a severe transient flow on a synthetic urban area. This case
study replicates the experiment developed at the Hydraulic
Laboratory of the Civil and Environmental Engineering
Department of the Université Catholique de Louvain in
Belgium [47]. The geometric configuration is characterized
by a regular distribution of rectangular obstacles (buildings)
intercepting the flow in geometric domain. The realistic
average ratio between building and street widths of 1 to 3
was selected by interpreting a real urban configuration (the
aerial view of Brussels in Belgium). Buildings’ heights are
simulated as high enough in order not to be overtopped by the
flow. The experimental physical setup consists of a 36 m long
by 3.6 m wide channel, with a flat profile (Figure 10). Build-
ings, wooden parallelepipeds of 30 cm by 30 cm, and streets
that are 10 cm wide are positioned along the flow direction.
The initial reservoir water level is 0.40 m upstream. Water
surface measurements were performed [47] by means of
several resistive level gauges for estimating the water surface
geometric and dynamic properties (depths and surface veloc-
ity fields).

The aim of this test is to investigate the potential of LBM
and NS to correctly represent the complex dynamics of tran-
sient flows. In particular, the physics of interest is related to
those flood phenomena propagated through urban setting
for which an initial severe transient phase is often followed
by a slow transient that could approximate under certain
steady state conditions. Nevertheless, since the first instants
correspond to a severe transient flow involving specific flow
features characterized by high velocities and transcritical
flows, wave impacts on structures, or higher water rise follow-
ing wave reflection against a structure, the LBM and NS are
challenged to provide such unsteady irregular behavior
followed by the regular steady conditions of the following
sequences.
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FIGURE 6: Comparison of the computed water level 7.2 seconds after the breach—LBM versus and NS are, respectively, plotted in the left and
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3.3.1. Simulation Setup—Mesoscopic Approach Using LBM.
Due to the large-scale of the domain in horizontal XY plane,
the test case has been replicated using a computational mesh
of cubes of 0.025m resolution producing a total number of
4,976,640 nodes. The downstream region has been repre-
sented assigning a liquid volume fraction of 0.5 to the first
vertical row of nodes. Considering the dimension of the
domain, the mesh is quite rough and only few computational
nodes describe the streets that are only 0.1 m wide.

3.3.2. Simulation Setup—Continuous Approach Using NS. For
all simulations, the computational domain is the same with
the following dimensions: 36 m long, 3.6 m wide, and 1m
high. Five scenarios have been developed for the NS simu-
lation, varying the resolution of the mesh in the three direc-
tions. The computational mesh for each scenario derives from

the intersection and refinement of the mesh composed of
hexahedra (configuration A, see Table 3) with the 3D surface
of the synthetic urban setting (Figure 11). In configuration A
a grid variation along the vertical with a ratio of 1 to 10 is
used. The result of such a refinement process is represented
by configuration B (see Table 3). For the five scenarios, M1 to
M5, the diverse grid resolutions lead to discrepancies between
the numerical results and physical measurements both inside
and outside the city. The comparison between experimental
data and numerical results provided by the LBM and the NS,
scenarios M1, M2, M5, for the section y = 2m att =5, 6 and
10 s after the break are presented in Figure 12.

The free-surface profile includes a hydraulic jump at 5s
after the break. In the graphs for t = 5s and ¢ = 6 s, when the
flow depth in the city is still low, the flow reflection against the
buildings is clearly visible for both LBM and NS simulations,
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TABLE 3: Geometric characteristics of computational meshes adopted for scenarios M1, M2, M3, M4, and M5.

M1 M2 M3 M4 M5
Number of TOT cells 3.24E + 04 2.59E + 05 5.18E + 05 1.04E + 06 2.07E + 06
Min volume cell (ms) 9.79E — 04 1.25E - 04 6.33E — 05 3.16E — 05 1.58E - 05
Max volume cell (m3) 9.79E - 03 1.25E - 03 6.33E - 04 3.16E - 04 1.58E - 04
. 3.78E + 04 2.80E + 05 5.48E + 05 1.08E + 06 2.16E + 06
Number of points
(180 x 18 x 10) (360 x 36 x 20) (360 x 36 x 40) (360 x 72 x 40) (720 x 72 x 40)
Number of faces 1.02E + 05 7.98E + 05 1.58E + 06 3.15E + 06 6.30E + 06
Number of TOT cells 6.16E + 04 4.01E + 05 7.96E + 05 1.12E + 06 2.02E + 06
Min volume cell 6.10E — 06 1.50E - 06 7.70E — 07 3.10E - 06 1.25E - 05
Max volume cell 9.79E - 03 1.25E - 03 6.33E - 04 3.16E - 04 1.58E - 04
Number of points 8.35E + 04 4.84E + 05 9.37E + 05 1.21E + 06 2.12E + 06
Number of faces 2.07E + 05 1.29E + 06 2.53E + 06 3.44E + 06 6.17E + 06
N
1.3
E:
3.6 I h=04m ;/%1\‘
l 13 0.35blko0.1
6.75 0.8 5 /!
35.8
FIGURE 10: Schematic representation of experimental and computational domain.
3.5
3
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1
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FIGURE 11: Computational mesh definition procedure. Example of intersection between 3D obstacle surface and original mesh.
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SectionY = 2m

t=6s

SectionY = 2m

t=10s

LBM model
—— NS model (M5)
..... NS model (M2)

--- NS model (M1)
X Experimental

FIGURE 12: Comparison between experimental and simulated free-surface value for the section Y = 2 m for scenarios M1, M5 of continuous

approach, and LBM for ¢ = 5, 6, and 10 s after the break.

and the LBM model correctly predicts the free surface at low
x values as the NS model with the finest mesh. At t = 10s,
the upstream hydraulic jump is still present, but the water
level has significantly increased in the streets. The flow in
the streets evolves from supercritical Fr > 1 (with a control
section near the street entrance) to subcritical (with a control
section at the street exit).

The overall agreement between the numerical and exper-
imental results is promising for the use of the mesoscopic
numerical model for replicating the complex physics of
rapidly varying flows in such a dense urban area, even if, due
to the mesh resolution, results of lattice-based simulations
are less accurate than the NS because of the mesh refinement
(especially for M5). Analyzing the effect of mesh refinement,
the obstacle mesh refinement of M3-M5 is able to better
reproduce the unsteady hydraulic features and flow processes
like hydraulics jumps, while the coarser meshes of M1-M2
are characterized by some errors where the flow behavior is
irregular.

For LBM at the time steps t = 5 and 6 s, significant differ-
ences appear between the two numerical models. For exam-
ple, the depression and the hydraulic jump at the entrance
of the urban district (x = 5.20m) is absent in the LBM
coarse mesh result. One limitation of the used LBM code is
that the computational mesh is not refined locally for example
in a single area of interest. This disadvantage with respect to

the used NS model clearly indicates the utility of employing
mesh refinement techniques, as those developed for standard
LBM [48].

Figure 13 shows the results at t = 4 seconds for 5 different
meshes, while in Figure 14 snapshots of free-surface evolution
at different time steps (0, 2, 4, 6, 8, and 10s) are inserted.
Figure 15 reports the value of velocity magnitude for the same
time steps.

Observations indicated that the flow rises at the city front
before entering the streets, after the wave impact, a phe-
nomenon that is similar to the impact against a single obstacle
rather than a series of obstacles. A hydraulic jump is repre-
sented at the impact section (Figure 14), with the water level
that is locally higher with respect to the same case without
buildings, while a wake zone is developed immediately
downstream of the city.

4. Conclusions

In this study an experimental fully 3D flow modeling frame-
work is implemented to numerically simulate the unsteady
irregular flows originating from dam breaks with specific
regard to the complex interaction between the geometrical
urban features and the associated physical hydraulic pro-
cesses. The proposed novel technique is based on a front-
tracking variant of the lattice Boltzmann method that is here
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FIGURE 13: Comparison of experimental free-surface value (points) and simulated fraction fill results for 6 different computational meshes at

time = 4 s from the release at section Y = 2 m.

investigated as a valid alternative to the standard numerical
Navier-Stokes model in the treatment of instantaneously
varying flows interacting with artificial structures. In partic-
ular, test cases evaluate the accuracy and the computational
efficiency of numerical simulations with respect to analyt-
ical solutions and experimental data. The critical analysis
of model performances provides the following conclusive
remarks.

The proposed LBM is able to predict with a high level of
accuracy typical hydraulic phenomena characterizing engi-
neering applications related to the flooding of simple straight

channels (test (a)) and asymmetrical front waves in rectan-
gular basins (test (b)). More specifically, as compared to the
fully 3D NS model, it is reported the validity and robustness
of LBM results that, while implementing the same resolution
of the geometric domain, are demonstrated to be more
computationally efficient (test (b)).

The last test investigates the diverse hydraulic unsteady
processes, like the hydraulic jump, return, and diverged flow,
that originate from the passage of the flood wave through
a synthetic urban setting (test (c)). The application of the
presented 3D numerical schemes shows the major advantages
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(b)

FIGURE 14: Free-surface evolution for scenario M5 for different time steps ((a) = 0s, (b) =25, (c) =45, (d) = 655, (e) = 8, and (f) =105).
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FIGURE 15: Evolution of velocity magnitude for scenario M5 at
different time steps—t = 4's (a), and 6 s (b).

and disadvantages of both LBM and NS schemes confirming
the ability of LBM in representing such abruptly changing and
irregular flow dynamics. Nevertheless, the mesoscopic LBM
approach is significantly bound by the regular structured
mesh, while the continuous NS model performs well, also in
large domains, especially when using a more accurate grid

(M5) that is adaptively refined to more accurately represent
obstacles.
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