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A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh
stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated
that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of
vibrations and noise in the gear transmission. Dynamicmodel of the planetary gears with four degrees of freedom is used. Applying
the basic principles of analyticalmechanics and taking the initial and boundary conditions into consideration, it is possible to obtain
the system of equations representing physical meshing process between the two or more gears. This investigation was focused to
a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding
fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are
obtained, and a visualization is presented. By using MathCAD the solution is obtained.

1. Introduction

Planetary gears are a great application in modern engineer-
ing systems as a replacement for the conventional manual
transmission complex because it has a compact structure and
high transmission ratios. Due to the structure of planetary
gears and the fact that the so-called planetary gear-satellites
simultaneously perform two current trends in the work of
planetary gears, there are even extreme vibration, that is,
dynamic loads, which cause damage to the gears, bearings,
and other elements of the transmission. Precise study of the
dynamic behavior of planetary gear is often a difficult math-
ematical problem, because there are no adequate models. In
the idealization of the attached planetary transmission and
selection of appropriate dynamic models usually first allocate
primary properties, which are maintained in solving the task,
and then in futurework neglect less important characteristics.

In the first papers on the dynamic behavior of gears in use,
one notes a great simplification, for example, that all changes
have linear character. However, subsequent experimental
studies have shown that this approach is not realistic and that

the dynamic behavior of gears in the paper is influenced by
many factors that cannot be described by linear relationships
[1]. These studies have shown that it is especially important
to separate the effects that occur between the gear teeth in
mesh, the dynamic effects that result in the load bearing of
the engine, dynamic errors in transmission, and so forth.
Therefore, a number of important research results of the
dynamic behavior of gear transmission will be given, with
special reference to the planetary gear.

Although gear dynamics has been studied for decades,
few studies present a formulation intended for the dynamic
response of full gear systems that contain multiple gear
meshes, flexible shafts, bearings, and so forth. There are
few reliable computational tools for the dynamic analysis of
general gear configurations. Some models exist, but they are
limited by simplified modeling of gear tooth mesh interfaces,
two-dimensional models that neglect out of plane behavior,
and models specific to a single gear configuration.

In a series of papers that follow, the fundamental task
of analytical gear research is to build a dynamic model.
For different analysis purposes, there are several modelling
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choices such as a simple dynamic factor model, compliance
tooth model, torsional model, and geared rotor dynamic
model, for example, [2, 3].

The simplest models are found in a number of textbooks
used in education in this field. So, the teeth in meshing
action can be modelled as an oscillatory system [4–6] and
so forth. This model consists of concentrated masses (each
of which represents one gear) connected with elastic and
dump element. Applying the basic principles of analytical
mechanics and taking the initial and boundary conditions
into consideration, it is possible to obtain the system of
equations representing physicalmeshing process between the
two or more gears. In order to obtain better results, it is
possible to model the elastic element as a nonlinear spring.

Dynamic transmission error is taken as the parameter for
modelling of noise in geared transmission. In the last two
decades, there is plenty of work concetrated on modelling
of the dynamic transmission error for spur and helical gears
and representing the influence of the dynamic transmission
errors on the level of noise in the geared transmission. Lately,
there has been experiments conducted in order to isolate
particular noise effects like noise coming from bearing,
housing noise, meshing action noise, and backlash noise
simply by measuring the dynamic transmission error. Some
of the earliest models are represented in [7–10].

Using the free vibration analysis, one calculates critical
parameters such as natural frequencies and vibration modes
that are essential for almost all dynamic investigations. The
free vibration properties are very useful for further analyses of
planetary gear dynamics, including eigensensitivity to design
parameters, natural frequency veering, planet mesh phasing,
and parametric instabilities from mesh stiffness variations
[11, 12].

Based on the results of the experiments conducted during
the gear vibration research, it is to conclude that the excitation
is restored every time when a new pair of teeth enters
the mesh. Vibrations with natural frequencies dominate the
vibration spectrums. The internal dynamic forces in teeth
mesh, vibration, and noise are consequences of the change in
teeth deformation, teeth impact, gear inertia due to measure,
and teeth shape deviation [13].

Paper [14, 15] aims to provide insight into the three-
dimensional vibration of gears by investigating the mecha-
nisms of excitation and nonlinearity coming from the gear
tooth mesh.

For different analysis purposes, there are several mod-
elling choices such as a simple dynamic factormodel, compli-
ance toothmodel, torsional model, and geared rotor dynamic
model [6]. Using the free vibration analysis one calculates
critical parameters such as natural frequencies and vibration
modes that are essential for almost all dynamic investigations.
The free vibration properties are very useful for further anal-
yses of planetary gear dynamics, including eigensensitivity to
design parameters, natural frequency veering, planet mesh
phasing, and parametric instabilities from mesh stiffness
variations [16–22]. It is also necessary to systematically study
natural frequency and vibration mode sensitivities and their
veering characters to identify the parameters critical to gear
vibration. In addition, practical gears may be mistuned

by mesh stiffness variation, manufacturing imperfections,
and assembling errors. For some symmetric structures, such
as turbine blades, space antennae, and multispan beams,
small disorders may dramatically change the vibration [18,
19].The following articles [10, 23] are related to the nonlinear
analysis of dynamic behavior of gears, using experimental
methods and the application of finite elementmethod (FEM).

Paper [24, 25] examines the nonlinear dynamics of
planetary gears by numerical and analytical methods over
themeaningfulmesh frequency ranges. Concise, closed-form
approximations for the dynamic response are obtained by
perturbation analysis.

By using three-dimensional finite element analysis, it is
possible to model the whole planetary gear and get adequate
solutions. Such a solution to the classic gear transmissions
is given in the paper [26]. General three-dimensional finite
element models for dynamic response are rare because they
require significant computational effort.This is accomplished
by many time steps required for the transient response to
diminish so that steady-state data can be obtained. This
study attempts to fill this gap with a general finite element
formulation that can be used for full gearbox dynamic
analyses.

A finite element formulation for the dynamic response
of gear pairs is proposed in [24, 26, 27] and so forth.
Following an established approach in lumped parameter
gear dynamic models, the static solution is used as the
excitation in a frequency domain solution of the finite ele-
ment vibration model. The nonlinear finite element/contact
mechanics formulation provides an accurate calculation of
the static solution and average mesh stiffness that are used
in the dynamic simulation. The frequency domain finite
element calculation of dynamic response compares well with
numerically integrated (time domain) finite element dynamic
results and previously published experimental results. Sim-
ulation time with the proposed formulation is two orders
of magnitude lower than numerically integrated dynamic
results. This formulation admits system level dynamic gear-
box response, which may include multiple gear meshes,
flexible shafts, rolling element bearings, housing structures,
and other deformable components.

In the latest research, light fractional order coupling
element is used to describe the dynamic behavior of gears and
set of constitutive relationships, so the fractional calculus can
be successfully applied to obtain results.

The monograph [28–31] contains a basic mathematical
description of fractional calculus and some solutions of the
fractional order differential equations necessary for appli-
cations of the corresponding mathematical description of a
model of gear transmission based on the teeth coupling by
standard light fractional order element.

In the series of references [32–40], the mixed discrete-
continuum or continuummechanical systems with fractional
order creep properties are mathematically described and
analytically solved.

Paper [40] presents two models of the geared transmis-
sion with two or more shafts. First approach gives a model
based on the rigid rotors coupled with rigid gear teeth, with
mass distributions not balanced and in the form of the mass
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particles as the series of the mass disturbance of the gears in
multistep gear transmission. Using very simple model it is
possible and useful to investigate the nonlinear dynamics of
themultistep gear transmission and nonlinear phenomena in
free and forced dynamics. This model is suitable to explain
source of vibrations and big noise, as well as no stability
in gear transmission dynamics. Layering of the homoclinic
orbits in phase plane is source of a sensitive dependence non-
linear type of regime of gear transmission system dynamics.
Second approach gives a model based on the two-step gear
transmission taking into account deformation and creeping
and also viscoelastic teeth gears coupling. This investigation
was focused to a new model of the fractional order dynamics
of the gear transmission. For this model we obtain analytical
expressions for the corresponding fractional ordermodes like
one frequency eigen vibrationalmodes. Generalization of this
model to the similarmodel of themultistep gear transmission
is very easy.

The model in this paper represents dynamic model of
the planetary gears with four degrees of freedom. Our
investigation was focused to a new model of the fractional
order dynamics of the planetary gears. For this model we
obtain analytical expressions for the corresponding fractional
order modes like one frequency eigen vibrational modes.

2. Mathematical Model of the Planetary Gear

In the practice, planetary gears are very often exposed to
action of forces that change with time (dynamic load).
There are also internal dynamic forces present. The internal
dynamic forces in gear teeth meshing are the consequence of
elastic deformation of the teeth and defects in manufacture
such as pitch differences of meshed gears and deviation of
shape of tooth profile. Deformation of teeth results in the
so-called collision of teeth which is intensified at greater
difference in the pitch of meshed gears. Occurrence of
internal dynamic forces results in vibration of gears so that
the meshed gears behave as an oscillatory system.This model
consists of reduced masses of the gear with elastic and
damping connections (see [6, 14, 15, 26, 27]). By applying the
basic principles of mechanics and taking into consideration
initial and boundary conditions, the system of equation is
established which describes physicality of the gear meshing
process. On the other hand, extremely cyclic loads (dynamic
forces) can result in breakage of teeth, thus causing failure of
the mechanism or system.

Primary dependences between geometrical and physical
quantities in themechanics of continuum (andwith planetary
gear as well) include mainly establishing the constitutive
relation between the stress state and deformation state of
the tooth’s material in the two teeth in contact for each
particular case. Thus, solving this task, it is necessary to
reduce numerous kinetic parameters to minimal numbers
and obtain a simple abstract model describing main proper-
ties for investigation of corresponding dynamical influences.

Based on previous, at starting this part, we take into
account that contact between two teeth is possible to be
constructed by standard light element with constitutive

stress-strain state relations which can be expressed by frac-
tional order derivatives.

The papers [29, 39] analyzed in details the standard light
coupling elements of negligible mass in the form of axially
stressed rod without bending, which has the ability to resist
deformation under static and dynamic conditions.

Figure 1 shows the model planetary gear when the cou-
pling between the teeth (sun-planet and ring-planet meshes)
was obtained from a standard light fractional element. The
planetary gear model consists of three members (the sun, 3
planets, and ring).

The motion of the sun gear and the ring gear is given by
translations that is expressed as 𝑦

𝑖
, 𝑖 = 1, 2 ( ⃗𝑟

𝑖
, 𝑖 = 1, 2), and

rotations that is expressed as 𝜑
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, 𝑖 = 1, 2. The kinetic energy
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Sun gear is supported with bearing which is modeled as
linear spring 𝑐

10
, and planet gear is supported with bearing

which is modeled as linear spring 𝑐
20
, but the meshes of sun

gear-planet gear and ring gear-planet gear are described by
standard light fractional element with restitution forces 𝑃
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The restitution forces are in the function of element
elongation 𝑥

𝑖
(𝑡), and they are in the form
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are rigidity momentary and prolonged coeffi-
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The equations ofmotion for the planetary gear are derived

from Lagrange’s equation given by well-known form
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Figure 1: The model of the planetary gear with viscoelastic fractional order tooth coupling: (a) the frontal plane, (b) the direction of contact.

(a) The initial configuration of planetary gear (b) First mode of the planetary gear

Sun gear Planet gear

(c)

Sun gear Planet gear

(d)

Figure 2: First rotational-axial modes of the planetary gear system defined in Table 1. Translational (a) and angular (b) displacements-eigen
amplitudes for 𝜔

1
= 215,546Hz.
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Sun gear Planet gear

(a)

Sun gear Planet gear

(b)

Figure 3: A pair of degenerate translational (a) and angular (b) displacements-eigen amplitudes for second modes of the planetary gear
system defined in Table 1. Translational (a) and angular (b) displacements-eigen amplitudes for 𝜔

2
= 2901Hz.

Sun gear Planet gear

(a)

Sun gear Planet gear

(b)

Figure 4: A pair of degenerate translational (a) and angular (b) displacements-eigen amplitudes for second modes of the planetary gear
system defined in Table 1. Translational (a) and angular (b) displacements-eigen amplitudes for 𝜔

3
= 40890Hz.

where 𝑞
𝑗
are generalized coordinates, 𝑄∗

𝑗
are generalized

forces, and Φ is Rayleigh dissipation function (in our case
Rayleigh dissipation function is zero because damping effects
are taken into consideration). Generalized coordinates for the
given system are 𝑦

1
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2
, 𝜑
1
, and 𝜑

2
.

Therefore, the dynamic behavior will be governed by four
independent equations of motion. In matrix form they are
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where the matrixM is diagonal inertia matrix and the matrix
C is stiffness matrix.
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Lagrange equations of motion are obtained following
substitution (9) into (7), and they can be expressed as
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Sun gear Planet gear

(a)

Sun gear Planet gear

(b)

Figure 5: Fourth rotational-axial modes of the planetary gear system defined in Table 1. Translational (a) and angular (b) displacements-eigen
amplitudes for 𝜔

4
= 50000Hz.

The diagonal inertia matrixM is

M = diag (𝑚
1
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) . (11)

The stiffness matrix C is

C =

[
[
[
[
[
[
[
[

[

𝑐
10
+ 𝑐
1

𝑐
1
𝑟
𝑏1

−𝑐
1

−𝑐
1
𝑟
𝑏2

𝑐
1
𝑟
2

𝑏1
−𝑐
1
𝑟
𝑏1

−𝑐
1
𝑟
𝑏1
𝑟
𝑏2

Symmetric 𝑐
20
+ 𝑐
1
+ 𝑐
2
(𝑐
1
− 𝑐
2
) 𝑟
𝑏2

(𝑐
1
+ 𝑐
2
) 𝑟
2

𝑏2

]
]
]
]
]
]
]
]

]

. (12)

3. Modal Analysis of the Planetary Gear

The system is tuned, that is, all sun-planet and ring-planet
mesh stiffnesses, and their centers of stiffnesses, are identical
among all planets; the planet bearing stiffnesses, the axial
locations of the planet bearings, and the planet inertias are
the same for all planets.

3.1. Eigenvalue Problem. The proposed solutions are in the
form of

{𝑞} = {𝐴} cos (𝜔𝑡 + 𝜀) . (13)

The eigenvalue problem is

(C − 𝜆M) {𝑞} = 0 (14)

with natural frequencies√𝜆.
It is known that to have nontrivial solutions thematrix on

the left side must be singular. It follows that the determinant
of the matrix must be equal to 0, so
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Corresponding frequency equation in the polynomial
form is
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where, for instance, 𝑎
4
= traceM, 𝑎

0
= detC, and so forth.

Solving this polynomial four roots 𝜆
𝑗
, 𝑗 = 1, 2, 3, 4 and

corresponding eigen circular frequencies 𝜔
𝑗
= √𝜆𝑗, 𝑗 =

1, 2, 3, 4, can be obtained.
The solution of basic linear differential equation is
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Figure 6: First eigen fractional mode 𝜉
1
(𝑡) with corresponding first fractional order time components 𝜂

1
(𝑡) and 𝜁

1
(𝑡) for different system

kinetic and geometric parameter values.

and in matrix presentation

{𝑞 (𝑡)} = R {𝐶
𝑠
cos (𝜔

𝑠
𝑡 + 𝜀
𝑠
)} , (19)

where R is modal matrix defined by the corresponding
cofactors, 𝜉

𝑠
= 𝐶
𝑠
cos(𝜔

𝑠
𝑡 + 𝜀
𝑠
), and 𝑠 = 1, 2, 3, 4 are main

coordinates of the linear system.

With this expression, the system of the fractional differ-
ential equation (10) can be transformed in the form of [39]

̈𝜉
𝑠
+ 𝜔
2

𝑠
𝜉
𝑠
= −𝜔
2

𝛼𝑠
𝐷
/

𝛼
[𝜉
𝑠
] , 𝑠 = 1, 2, 3, 4. (20)

This resulted the system of the fractional differential
equation. Analytical solution of these fractional order differ-
ential equations is obtained using the approach presented in
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Figure 7: Second eigen fractionalmode 𝜉
2
(𝑡)with corresponding second fractional order time components 𝜂
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(𝑡) and 𝜁

2
(𝑡) for different system

kinetic and geometric parameter values.

[37, 39]. Therefore, each fractional differential equation can
be written in the form of

𝜉
𝑠 (𝑡) = 𝜉0𝑠

∞

∑

𝑘=0

(−1)
𝑘
𝜔
2𝑘

𝛼𝑠
𝑡
2𝑘

×

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

(∓1)
𝑗
𝜔
2𝑗

𝛼𝑠
𝑡
−𝛼𝑗

𝜔
2𝑗

𝑠 Γ (2𝑘 + 1 − 𝛼𝑗)

+ ̇𝜉
0𝑠

∞

∑

𝑘=0

(−1)
𝑘
𝜔
2𝑘

𝛼𝑠
𝑡
2𝑘+1

×

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

(∓1)
𝑗
𝜔
−2𝑗

𝛼𝑠
𝑡
−𝛼𝑗

𝜔
2𝑗

𝑠 Γ (2𝑘 + 2 − 𝛼𝑗)

, 𝑠 = 1, 2, 3, 4,

(21)
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Figure 8: Third eigen fractional mode 𝜉
3
(𝑡) with corresponding third fractional order time components 𝜂

3
(𝑡) and 𝜁

3
(𝑡) for different system

kinetic and geometric parameter values.

where 𝜉
𝑠
(0) = 𝜉

0𝑠
and ̇𝜉
𝑠
(0) = ̇𝜉

0𝑠
are initial values of main

coordinates defined by initial conditions and 𝛼 is rational
number (0 < 𝛼 < 1).

The solution of the basis system [39] can be expressed in
the following form:

𝑞
𝑗 (𝑡) =

4

∑

𝑠=1

𝐾
(𝑠)

𝑝𝑘
𝜉
𝑠 (𝑡)

=

4

∑

𝑠=1

𝐾
(𝑠)

𝑝𝑘
𝜉
0𝑠

∞

∑

𝑘=0

(−1)
𝑘
𝜔
2𝑘

𝛼𝑠
𝑡
2𝑘

×

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

(∓1)
𝑗
𝜔
2𝑗

𝛼𝑠
𝑡
−𝛼𝑗

𝜔
2𝑗

𝑠 Γ (2𝑘 + 1 − 𝛼𝑗)

+

4

∑

𝑠=1

𝐾
(𝑠)

𝑝𝑘

̇𝜉
0𝑠

∞

∑

𝑘=0

(−1)
𝑘
𝜔
2𝑘

𝛼𝑠
𝑡
2𝑘+1

×

𝑘

∑

𝑗=0

(
𝑘

𝑗
)

(∓1)
𝑗
𝜔
−2𝑗

𝛼𝑠
𝑡
−𝛼𝑗

𝜔
2𝑗

𝑠 Γ (2𝑘 + 2 − 𝛼𝑗)

, 𝑠 = 1, 2, 3, 4.

(22)
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Figure 9: Fourth eigen fractional mode 𝜉
4
(𝑡) with corresponding third fractional order time components 𝜂

4
(𝑡) and 𝜁

4
(𝑡) for different system

kinetic and geometric parameter values.

3.2. Numerical Visualisation. Eigensolutions of a sample sys-
tem [20, Table 1], with four degrees of freedom are evaluated
numerically to expose the modal properties.

Eigensolutions of a sample system (Table 1) with three
equally spaced planets are evaluated numerically to expose
the modal properties. Four natural frequencies and their
corresponding mode types are given in Figures 2, 3, 4, and
5. In Figure 2(a), the initial configuration of planetary gear

is shown, and Figure 2(b) shows the planetary gear first
mode. In order to better consideration ofmodes of individual
elements of the gear in the following Figures 2(c), 2(d), 3, 4
and 5, separate elements of planetary gear are shown.

The vibration modes exhibit distinctive characteristics.
The central member rotates and translates axially and planets
do same. Regardless of the system parameters the modal
deflection of planet gears are zero for 𝜔

4
= 50000Hz.
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Figure 10: Four eigen fractional modes, 𝜉
1
(𝛼, 𝑡), 𝜉

2
(𝛼, 𝑡), 𝜉

3
(𝛼, 𝑡), and 𝜉

4
(𝛼, 𝑡) presented by surfaces.

Table 1: Parameters of the planetary gear.

Parameter Sun Planet
Base radius 𝑟

𝑏
, mm 24 16

Radial bearing stiffnesses 𝑐
10
and 𝑐
20
,

N/m 0.5 × 109 0.5 × 109

Stiffness of teeth 𝑐
1
and 𝑐
2
, N/m 2.91 × 108 1.81 × 108

Mass𝑚, kg 0.3 0.20
Rotational inertia, 𝐽

1
, kgm2 10 × 10−3 100 × 10−6

Based on (18), the first normal mode corresponds to
both masses moving in the opposite direction while angular
displacements are in the same direction. The second normal
mode corresponds to the masses moving in the opposite
directions and angular displacements are in the opposite
directions also. The masses, for 𝜔

3
and 𝜔

4
, move in the

same direction, but angular displacements are in the opposite
directions or equal zero (fourth mode). The general solution
is a superposition of the normal modes where the initial
conditions of the problem must be used.

By using different numerical values of the kinetic and
geometrical parameters of the planetary gear model, the
series of the graphical presentation of the four sets of the two
time components 𝜂

𝑠
(𝑡) and 𝜁

𝑠
(𝑡), 𝑠 = 1, 2, 3, 4 of the solutions,

by using expressions (21) are obtained. In the series Figures
6–10 are presented characteristicmodes for different values of
the 𝛼 coefficient of the fractional order of the used standard
light fractional order element for describing teeth coupling
between sun-planet and planet-ring. Time 𝑡 is in sec, and all
values on the vertical axis are in 𝜇m.

First eigen fractional order mode 𝜉
1
(𝑡) with corre-

sponding first eigen fractional order time components 𝜂
1
(𝑡)

and 𝜁
1
(𝑡) for different system kinetic and geometric parame-

ter values is presented in Figure 6.
In Figure 7, we can see second eigen fractionalmode 𝜉

2
(𝑡)

with corresponding second fractional order time components
𝜂
2
(𝑡) and 𝜁

2
(𝑡) for different system kinetic and geometric

parameter values.
In Figure 8, third eigen fractional mode 𝜉

3
(𝑡) with corre-

sponding third fractional order time components 𝜂
3
(𝑡) and

𝜁
3
(𝑡) for different system kinetic and geometric parameter

values is presented.
Fourth eigen fractional mode 𝜉

4
(𝑡) with corresponding

third fractional order time components 𝜂
4
(𝑡) and 𝜁

4
(𝑡) for

different system kinetic and geometric parameter values, in
Figure 9, is presented.

In Figure 10, first, second, third, and fourth eigen
fractional modes 𝜉

1
(𝛼, 𝑡), 𝜉

2
(𝛼, 𝑡), 𝜉

3
(𝛼, 𝑡), and 𝜉

4
(𝛼, 𝑡) are

presented by surfaces. Also, the family trajectory in the plane
(𝛼, 𝑡) is shown.

Based on the obtained results in this paper, we can con-
clude that eigen fractional ordermodes are like one frequency
vibrationmodes similar to single frequency eigenmode of the
corresponding linear system [29, 38, 39, 41].

The fractional order dynamic system is like dumping
system. With the increase of the parameter 𝛼, the period
of oscillation increases but the amplitude becomes smaller.
So we can say that parameter 𝛼 has the same influence as
dumping coefficient in the corresponding system.

4. Conclusions

This paper presents a new dynamic model of a planetary
gear. The planetary gear system is represented by a model
that allows for four degrees of freedom per gear-shaft body
supported by bearings at arbitrary axial positions and with
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standard creep constraint element. The standard light frac-
tional order coupling element is between sun-planet and
planet-ring. A novel approach for the planetary gear dynamic
analysis is developed. So, in this paper it is shownhow the new
model of the fractional order dynamic planetary gear can be
applied to study dynamic behavior. This model simulates the
real behavior of the planetary gear.

With this simple model, it is possible to research the non-
linear dynamics of the planetary gear and nonlinear phe-
nomena in free and forced dynamics. The model is suitable
to explain source of vibrations and big noise, as well as no
stability in planetary gear.

A new method, using MATCAD software, is used in this
paper for the obtaining of the eigen values and for analysis
results.

In the literature, similar procedures are presented in
introduction, and they were used as referencematerial for the
composition and verification of models and results.

On the basis of the numerical results, shown in this
paper, it has been concluded that themethodology developed
to study the dynamic behaviour of planetary gear is very
efficient. It gives a lot of possibilities and can be easily
upgraded for analysis of other effects.

The dynamic behavior and analysis of results suggest that
the gear transmission is very complex and that it is almost
impossible to include all the effects by such and similar
research. This paper considers planetary gear with 3 planet
gears, which makes the problem more complex.

Further research should be directed at studying the effects
of mutual dynamic impact of teeth in mesh, as well as at
including more effects [42]. So, it is possible to study eigen
frequency of planetary gear with moving excentric masses on
the body of one of the gears or with holes on the body, by
using finite element method.

In accordance with the present trend of application of
new materials, authors will, in future studies, simulate the
dynamic behavior of a gear made of composite materials and
study the life of the gears at the load. Also, future research
should focus on the study of planetary gears life using low
cycle fatigue properties and so forth.

Results in this paper can be taken as relevant for further
research, because this model simulates the real behavior of
the planetary gear, more than earlier models.
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[33] K. Hedrih and R. Knežević, “Structural stability of the planetary
reductor nonlinear dynamics phase portrait,” Facta Universi-
tatis, vol. 1, no. 7, pp. 911–923, 2000.
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