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An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV) method is developed for water resources
management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP) with stochastic programming
(SP). As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages
in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices
in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing
dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic
algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water
resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue.The results indicate that
reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply
from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer
project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

1. Introduction

Water shortage has become serious issue in process of
urbanization as well as socioeconomic development grad-
ually, especially in metropolis, where water resources are
limited. Therefore, effective allocation of water resources to
various users is important. There are many uncertain factors
in practical management and decision making of complex
water resources system, which might result in significant
difficulties in optimizing water resources allocation. Conven-
tional deterministic optimization methods have difficulties
in reflecting these uncertainties [1]. Many researchers have
tried to tackle these uncertain problems through fuzzy
programming, interval programming, and stochastic pro-
gramming [2–10]. Inmany real-world problems, several types
of uncertainties may exist together in a complex system.

Therefore, hybrid uncertainty methods have been desired
for solving the problem with several types of uncertainties.
Based on inexact chance-constrained programming (ICCP)
method, Huang [11] proposed a hybrid inexact-stochastic
water management model, which improves upon the existing
inexact and stochastic programming approaches by allowing
both distribution information in right hand and uncertainties
in left hand or coefficients of objective. Hybrid uncertainties,
including interval and stochastic distribution information
in parameters and coefficients, can be directly communi-
cated into the optimization process through representing
the uncertain parameters or coefficients as fuzzy sets and
random variables [3, 9, 10, 12–15]. In these hybrid uncertainty
approaches, each coefficient or parameter has only one kind
of uncertainty, and the stochastic distribution information is
treated with the discrete way.
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Due to the complexity of the real world, highly uncer-
tain information may exist. Such boundaries of interval
parameters of the optimization model are also uncertain.
Nie et al. [16] proposed an interval parameter fuzzy-robust
programming (IFRP) model through introducing the con-
cept of fuzzy boundary interval. The parameters of the
IFRP model were represented as interval numbers with
fuzzy uncertain boundary, and the uncertainties were directly
communicated into the optimization process and resulting
solution. In this way, the robustness of the optimization
process and solution can be enhanced. Considering the
interval uncertain of boundaries of interval parameters, Liu
andHuang [17] proposed a dual interval two-stage restricted-
recourse programming (DITRP) method for flood-diversion
planning. Liu et al. [18] established a dual-interval linear
programming (DILP) model by introducing ILP approach
into the existing interval-parameter linear programming
framework. Some of coefficients and parameters in the
DILP model were represented as interval-parameter with
interval vertices. The DILP approach improved the ILP
method by allowing dual uncertainties (presented as dual
intervals) to be incorporated into the optimization process.
For the fuzzy feature of boundaries of interval parameters,
Li et al. [19] proposed a dual-interval vertex (DIV) method
by incorporating the vertex method within an interval-
parameter programming framework, and a fuzzy vertex
analysis approach was proposed for solving the DIV model.
The DIV approach can tackle uncertainties expressed as dual
intervals that exist in both objective function and left-hand
and right-hand sides of the constraints. However, these above
methods hardly deal with the dual uncertainties including
stochastic distribution attributes. Considering the stochastic
attribute of boundaries of interval parameters in objective
functions and constraints, Han et al. [20] proposed an
interval linear programmingwith stochastic vertices (ILPSV)
method to tackle dual uncertainties, which were presented
as interval parameter with stochastic vertices problem. The
fuzzy attribute of objective and constraints is not for concern
in the ILPSV model. Therefore, one potential approach for
better accounting for integrated uncertainties of parameters
of model is to incorporate the stochastic distribution within
a general fuzzy linear programming framework. This leads
to an interval-parameter fuzzy linear programming with
stochastic vertices method under dual uncertainty.

The objective of this paper is to propose an interval-
parameter fuzzy linear programming model with stochastic
vertices by coupling inexact fuzzy linear programming (IFLP)
and stochastic vertices method. Highly uncertain informa-
tion for the lower and upper bounds of interval parameters
that exist in optimization model due to the complexity of the
real world can be effectively handled through allowing the
stochastic boundary of interval parameter to be incorporated
into the optimization processes. In addition, the dual uncer-
tainty concept (being stochastic boundaries of interval) is
presented when the available information is highly uncertain
for boundaries of interval parameter of objective functions
and constraints. A hybrid intelligent algorithm based on Liu
[21, 22] has been proposed for solving the developed model.
The developed IFLPSV model is then applied to allocation of

multisource water tomultiple users in Beijing city of China in
2020, where water resources shortage is a challenging issue.

2. Methodology

2.1. Dual Uncertain Linear Programming Model. In many
practical problems, the lower and upper bounds of some
interval parameters in a water resources management system
can rarely be acquired as deterministic. Instead, they can only
be expressed by interval, fuzzy, or stochastic numbers. For
a system with such dual uncertainty, an interval-parameter
linear programming with stochastic vertices is generated as
follows:
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uncertain intervals with stochastic lower and upper vertices,
respectively; 𝑗 is the index of decision variables; 𝑛 is the total
number of decision variables; 𝑟 is the index of single interval
constraints; 𝑠 is the number of single uncertain constraints; 𝑡
is the index of dual uncertain constraints; and 𝑚 is the total
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interval number in ILP are certain as shown in Figure 1(a).
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Figure 1: Interval number with certain and uncertain vertices.

The interval number of dual uncertainty linear programming
is shown in Figure 1(b), and the verticesmay possess a certain
distribution function, such as formal distribution.The 𝑦-axis
in Figure 1 does not represent any physical meaning since the
figure is used to illustrate an interval number or an interval
number with randomly distributed lower and upper bounds.
Themodels (2a), (2b), (2c), and (2d) are an interval parameter
linear programming with stochastic vertices, and it possesses
the randomly distributed attribute of stochastic vertices and
interval attribute of interval parameter; therefore, it is a
dual uncertain optimization model. The traditional solution
algorithm for interval-parameter linear programming (ILP)
is not applicable to solve the models (2a), (2b), (2c) and (2d)
due to stochastic variables existence.

Considering the fuzzy features of interval number of
linear programming model under dual uncertainty, a poten-
tial approach for handling such complexities in the dual
uncertain linear programming framework is to introduce
IFLP technique into models (2a), (2b), (2c), and (2d). This
leads to an interval-parameter fuzzy linear programming
with stochastic vertices (IFLPSV) model as follows:
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(2a), (2b), (2c), and (2d).

2.2. Solving the IFLPSV. According to Huang et al. [23, 24],
the above models (3a), (3b), (3c), (3d), (3e), and (3f) can be
transformed into two submodels, which correspond to the
upper and lower bounds of the desired objective function
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corresponding to 𝜆

𝑈 (lower bound of themembership grade)
can be first formulated as

max 𝜆

𝑈 (4a)

subject to
𝑘
1

∑

𝑗=1

[𝑐

𝑈

𝑗
+ 𝑑

𝑈

𝑗
] 𝑥

𝑈

𝑗
+

𝑛

∑

𝑗=𝑘
1
+1

[𝑐

𝑈

𝑗
+ 𝑑

𝑈

𝑗
] 𝑥

𝑈

𝑗

≥

̃

𝑓

𝐿

opt + 𝜆

𝑈

(

̃

𝑓

𝑈

opt −
̃

𝑓

𝐿

opt) ,

(4b)



4 Mathematical Problems in Engineering

𝑘
1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑟𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

Sign (𝑎

𝐿

𝑟𝑗
) 𝑥

𝑈

𝑗

+

𝑛

∑

𝑗=𝑘
1
+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑟𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑈

Sign (𝑎

𝑈

𝑟𝑗
) 𝑥

𝐿

𝑗

≤ 𝑏

𝑈

𝑟
− 𝜆

𝑈

(𝑏

𝑈

𝑟
− 𝑏

𝐿

𝑟
) ,

(𝑟 = 1, 2, . . . , 𝑠) ,

(4c)

𝑘
1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑡𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

Sign (𝑎

𝐿

𝑡𝑗
) 𝑥

𝑈

𝑗

+

𝑛

∑

𝑗=𝑘
1
+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑡𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑈

Sign (𝑎

𝑈

𝑡𝑗
) 𝑥

𝐿

𝑗

≤ 𝑏

𝑈

𝑡
− 𝜆

𝑈

(𝑏

𝑈

𝑡
− 𝑏

𝐿

𝑡
) ,

(𝑡 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑚) ,

(4d)

𝑥

𝑈

𝑗
≥ 0, (𝑗 = 1, 2, . . . , 𝑘

1
) , (4e)

𝑥

𝐿

𝑗
≥ 0, (𝑗 = 𝑘

1
+ 1, 𝑘

1
+ 2, . . . , 𝑛) , (4f)

0 ≤ 𝜆

𝑈

≤ 1. (4g)

With the solutions of models (4a), (4b), (4c), (4d), (4e),
(4f), and (4g), another submodel corresponding to 𝜆

𝐿 (lower
bound of the membership grade) can be formulated as

max 𝜆

𝐿 (5a)

subject to
𝑘
1

∑

𝑗=1

[𝑐

𝐿

𝑗
+ 𝑑

𝐿

𝑗
] 𝑥

𝐿

𝑗

+

𝑛

∑

𝑗=𝑘
1
+1

[𝑐

𝐿

𝑗
+ 𝑑

𝐿

𝑗
] 𝑥

𝐿

𝑗

≥

̃

𝑓

𝐿

opt + 𝜆

𝐿

(

̃

𝑓

𝑈

opt −
̃

𝑓

𝐿

opt) ,

(5b)

𝑘
1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑟𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑈

Sign (𝑎

𝑈

𝑟𝑗
) 𝑥

𝐿

𝑗

+

𝑛

∑

𝑗=𝑘
1
+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑟𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

Sign (𝑎

𝐿

𝑟𝑗
) 𝑥

𝑈

𝑗

≤ 𝑏

𝑈

𝑟
− 𝜆

𝑈

(𝑏

𝑈

𝑟
− 𝑏

𝐿

𝑟
) ,

(𝑟 = 1, 2, . . . , 𝑠) ,

(5c)

𝑘
1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑡𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑈

Sign (𝑎

𝑈

𝑡𝑗
) 𝑥

𝐿

𝑗
+

𝑛

∑

𝑗=𝑘
1
+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑡𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

Sign (𝑎

𝐿

𝑡𝑗
) 𝑥

𝑈

𝑗

≤ 𝑏

𝑈

𝑡
−𝜆

𝑈

(𝑏

𝑈

𝑡
− 𝑏

𝐿

𝑡
) , (𝑡 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑚) ,

(5d)

0 ≤ 𝑥

𝐿

𝑗
≤ 𝑥

𝑈

𝑗 opt, (𝑗 = 1, 2, . . . , 𝑘

1
) , (5e)

𝑥

𝑈

𝑗
≥ 𝑥

𝐿

𝑗 opt, (𝑗 = 𝑘

1
+ 1, 𝑘

1
+ 2, . . . , 𝑛) , (5f)

0 ≤ 𝜆

𝐿

≤ 𝜆

𝑈

opt, (5g)

where 𝑥

𝑈

𝑗 opt (𝑗 = 1, 2, . . . , 𝑘

1
), 𝑥𝐿
𝑗 opt (𝑗 = 𝑘

1
+1, 𝑘

1
+2, . . . , 𝑛),

and 𝜆

𝑈

opt are solutions of models (4a), (4b), (4c), (4d), (4e),
(4f), and (4g). Due to the stochastic variables existence in the
models (4a), (4b), (4c), (4d), (4e), (4f), (4g), (5a), (5b), (5c),
(5d), (5e), (5f), and (5g), the traditional solving algorithms
of ILP (Liu et al. [18]) and DIV (Li et al. [19]) methods
are impracticable. The hybrid intelligent algorithm, which
incorporates ANN and GA, can be used to deal with the
stochastic variables in objective function, left-hand and right-
hand sides of constraints.The stochastic variables of objective
function and constraints need not to be initially set up,
and they are automatically determined through many times
iteration of the GA and ANN. Therefore, it is proposed as an
intelligent algorithm. The procedure of solving the IFLPSV
model by hybrid intelligent algorithm is shown in Figure 2.

3. Illustrative Example

The following illustrative example can be formulated to
demonstrate the applicability of the proposed method:
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with normal distributions of 𝑁(26.5, 0.02), 𝑁(29.5, 0.02),
𝑁(2.4, 0.01), 𝑁(2.8, 0.01), 𝑁(3.8, 0.01), and 𝑁(4.2, 0.01),
respectively. According to two-step method, the models
(6a), (6b), (6c), and (6d) can be converted into two sub-
models. A running of the hybrid intelligent algorithm (200
iteration simulations, 500 data in ANN, and 50 genera-
tions in GA) was undertaken to solve the two sub-models.
Through two-step method and hybrid artificial algorithm,
the interval solutions of models (6a), (6b), (6c), and (6d)
are 𝑥

1
= [1.3104, 1.6401], 𝑥

2
= [0.6376, 0.7748], and 𝑓 =

[29.5070, 45.0840] (as shown in Table 1, no units for all results
since it is only an illustrative example).

Based on formulas (3a), (3b), (3c), (3d), (3e), and (3f) and
Huang et al.’s [24], the models (6a), (6b), (6c), and (6d) can
be converted to an IFLP problem as follows:

max 𝜆 (7a)

Subject to [𝜉

1
, 𝜉

2
] 𝑥

1
− [5.5, 6.0] 𝑥

2

≥ 𝑓

𝐿

opt1 + 𝜆 [𝑓

𝑈

opt1 − 𝑓

𝐿

opt1] ,

(7b)

[8, 10] 𝑥

1
− [12, 14] 𝑥

2
≤ 𝜂

2
− 𝜆 [𝜂

2
− 𝜂

1
] , (7c)
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Figure 2: Flow chart of solving the IFLPSV model by hybrid intelligent algorithm.

Table 1: Comparison of results of ILP, DIV, ILPSV, and IFLPSV method.

Methods ILP DIV ILPSV IFLPSV
Objective value [[29.438, 32.150], [42.172, 45.784]] [[30.099, 31.455], [43.053, 44.895]] [29.5070, 45.0840] [30.9548, 42.6913]

[𝛾

1
, 𝛾

2
] 𝑥

1
+ [3, 4] 𝑥

2
≤ 6.5 − 𝜆 [6.5 − 6.0] ,

(7d)

0 ≤ 𝜆 ≤ 1, (7e)

where𝑓𝑈opt1 and𝑓

𝐿

opt1 are upper and lower bounds of objective
value ofmodels (6a), (6b), (6c), and (6d),𝑓𝑈opt1 = 45.0840, and
𝑓

𝐿

opt1 = 29.5070. The above models (7a), (7b), (7c), (7d), and
(7e) can be solved through a two-step method where a sub-
model corresponding to 𝜆

𝑈 is first formulated and solved.
This is based on the fact that the 𝜆

𝑈corresponding to 𝑓

𝑈

and the system objective are to be maximized. In the second
step, the other sub-model corresponding to 𝜆

𝐿 can then be

formulated supported by the solution of the first sub-model.
The first sub-model can be formulated as follows:

max 𝜆

𝑈 (8a)

Subject to − 𝜉

2
𝑥

𝑈

1
+ 5.5𝑥

𝐿

2
+ 15.7928𝜆

𝑈

≤ −29.2912,

(8b)

8𝑥

𝑈

1
− 14𝑥

𝐿

2
+ (𝜂

2
− 𝜂

1
) 𝜆

𝑈

≤ 𝜂

2
, (8c)

𝛾

1
𝑥

𝑈

1
+ 4𝑥

𝐿

2
+ 0.5𝜆

𝑈

≤ 6.5, (8d)

0 ≤ 𝜆

𝑈

≤ 1. (8e)
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With the hybrid intelligent algorithm, the solutions ofmodels
(8a), (8b), (8c), (8d), and (8e) are 𝑥

𝑈

1
= 1.5333 and 𝑥

𝐿

2
=

0.6014, and the corresponding upper bound of membership
grade value is 𝜆𝑈 = 0.7539 (as Figure 3).

Then the sub-model corresponding to 𝜆

𝐿 can be formu-
lated as follows:

max 𝜆

𝐿 (9a)

Subject to − 𝜉

1
𝑥

𝐿

1
+ 6.0𝑥

𝑈

2
+ 15.7928𝜆

𝐿

≤ −29.2912,

(9b)

10𝑥

𝐿

1
− 12𝑥

𝑈

2
+ (𝜂

2
− 𝜂

1
) 𝜆

𝐿

≤ 𝜂

2
, (9c)

𝛾

2
𝑥

𝐿

1
+ 4𝑥

𝑈

2
+ 0.5𝜆

𝐿

≤ 6.5, (9d)

𝑥

𝐿

1
≤ 𝑥

𝑈

1 opt, (9e)

𝑥

𝑈

2
≥ 𝑥

𝐿

2 opt, (9f)

0 ≤ 𝜆

𝐿

≤ 𝜆

𝑈

opt. (9g)

The solutions of models (9a), (9b), (9c), (9d), (9e), (9f), and
(9g) are 𝑥

𝐿

1
= 1.4078 and 𝑥

𝑈

2
= 0.6080, and corresponding

lower bound of membership grade value is 𝜆

𝐿

= 0.2164 (as
Figure 4).

Therefore, the solutions of problem models (7a), (7b),
(7c), (7d), and (7e) are 𝑥

1
= [1.4078, 1.5333] and

𝑥

2
= [0.6014, 0.6080], and interval objective value is 𝑓 =

[30.9548, 42.6913]. In thework by Li et al. [19], dual uncertain
parameters were interval values, and the DIV method was
employed.The results of illustrative examples (6a), (6b), (6c),
and (6d) by ILP, DIV, ILPSV, and IFLPSV method are shown
in Table 1.

The ILP method can tackle uncertainties expressed
as interval values with known lower and upper bounds,
but the distribution functions of uncertain parameters
are unknown. The result of objective value from ILP
is [[29.438, 32.150], [42.172, 45.784]]. The solutions might
compose fuzzy information due to the parameter’s large
boundary range. The DIV can tackle the uncertainties pre-
sented as interval parameter with fuzzy vertices by incor-
porating the vertex method within an interval parameter
programming. The result of objective value from DIV is
[[30.099, 31.455], [43.053, 44.895]]. Some feasible solutions
might be missed by DIV method due to using the discrete
vertex way, and the DIV method is unable to deal with the
vertex presented as certain stochastic distribution function
problem. The upper bound (42.6913) of objective value from
IFLPSV is smaller than the interval [43.053, 44.895] of upper
bound of DIVmethod.The reason is that normal distribution
of upper and lower bounds of the interval parameter hasmore
information than that of DIV model. The ILPSV method
can tackle the interval-parameter linear programming with
stochastic vertices.The result of objective value from IFLPSV
is [30.9548, 42.6913]. The upper and lower bounds of the
objective value from IFLPSV have less uncertainty than
ILPSV since parameters with membership function have less

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Evolution epochs

Fi
tn

es
s v

al
ue

Optimal value of fitness
Average value of population fitness

Figure 3: Evolution process of upper bound of membership func-
tion by genetic algorithm.
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Figure 4: Evolution process of lower bound of membership func-
tion by genetic algorithm.

uncertainty than those with interval numbers. Furthermore,
the upper and lower bounds of the objective values from
IFLPSV model all lie in the interval of the upper and
lower bounds from ILP model. The reason is that coeffi-
cients of IFLPSV model with fuzzy membership function
and stochastic vertices have less uncertainty degree than
interval parameters of ILP with interval bounds. Therefore,
the uncertainty degree of the solution from the IFLPSV
is also less. The developed IFLPSV model is an integrated
optimization model under dual uncertainty, which considers
fuzzy, interval, and stochastic attributes of parameters and
coefficients of optimization model.
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Figure 5: Location illustration of main water resources in the study
area.

4. Application

4.1. Overview of the Study Area. Beijing city, the capital of
China, is located in the northern part of the North China
Plain as shown in Figure 5. The annual precipitation is about
590mm in Beijing, with 85% of the annual precipitation
falling during the period from July to September. The main
surface water source is from Guanting reservoir and Miyun
reservoir in Beijing city. The amount of exploitable water
resources ranges from 3.0 to 4.12 billion m3 per year.
However, under changing climate and overexploitation of
water resources, the total of exploitable water resources
is 2.308 billion m3 in 2010 [26], including surface water
resources 0.722 billion m3 and groundwater 1.586 billion m3.
The water consumption users include industry, agriculture,
domestic, and environment in Beijing city. The amount of
water consumption of Beijing city was 3.52 billionm3 in 2010.
Water shortage problem is severe, and there has appeared
four times water crisis in urbanization process of Beijing city.
The per capita water resource in Beijing city is less than 300
cubic meters, which is one-thirtieth of the world average.
Beijing has become one of the most water-scarce megacities
in the world. Water resource has become a key factor which
limits urbanization process and socioeconomic development
in Beijing city.

In order to meet water requirements of Northwest and
North China, the South-to-North Water Diversion Projects
have been developed early. The Middle Route of South-to-
North Water Diversion Project will transfer water from the
Danjiangkou Reservoir on the Hanjiang river, a tributary of
the Yangtze river, to Beijing city through opening channel.
TheMiddle Route Project will be completed in 2014.The total
amount of transferred water to Beijing city ranges from 1.0 to
1.4 billion m3 per year, which will be another important part
of water resources for Beijing city in the future.

4.2. IFLPSV Optimization Model for Water Resources Allo-
cation in Beijing City. Reasonable allocation of urban water
resources is usually a multiobjective problem. In this study,
the objective functions include net economic benefit max-
imization and greenbelt irrigation area maximization as

shown in formulas (10a) and (10b). The objective functions
are subject to ten kinds of constraints, including water
delivery capacity limit from river or lake as formula (10c),
Guanting reservoir water supply capacity limit as formula
(10d), Miyun reservoir water supply capacity limit as formula
(10e), groundwater supply capacity limit as formula (10f),
reused water supply capacity limit as formula (10g), South-to-
North Water Transfer supply capacity limit as formula (10h),
the lowest requirement limit of domestic water consumption
as formula (10i), the lowest requirement limit of industry
water consumption as formula (10j), the lowest requirement
limit of agriculture water consumption as formula (10k),
the lowest requirement limit of greenbelt water irrigation as
formula (10l), nonnegativity constraint is as formula (10m):

𝑓

1
=

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
𝑥

𝑖𝑗
(net benefit of economy) , (10a)

𝑓

2
=

𝑚

∑

𝑖=1

1

𝑝

𝑥

𝑖
(greenbelt irrigation area) , (10b)

Subject to
𝑛

∑

𝑗=1

𝑥

𝑗
≤ 𝑄deliv (water deliver capacity constraint

from river or lake) ,
(10c)

𝑛

∑

𝑗=1

𝑥

𝑗
≤ 𝑄reser1 (Guanting reservoir water

supply capacity constraint) ,

(10d)

𝑛

∑

𝑗=1

𝑥

𝑗
≤ 𝑄reser2 (Miyun reservoir water

supply capacity constraint) ,

(10e)

𝑛

∑

𝑗=1

𝑥

𝑗
≤ 𝑄ground (groundwater supply capacity

constraint) ,
(10f)

𝑛

∑

𝑗=1

𝑥

𝑗
≤ 𝑄reuse (reused water supply capacity

constraint) ,

(10g)

𝑛

∑

𝑗=1

𝑥

𝑖𝑗
≤ 𝑄trans (South-to-North Water Transfer

supply capacity constraint) ,
(10h)
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𝑚

∑

𝑖=1

𝑥

𝑖
≥ 𝑄domes (the lowest requirement of

domestic water consumption) ,

(10i)

𝑚

∑

𝑖=1

𝑥

𝑖
≥ 𝑄indus (the lowest requirement of

industry water consumption) ,

(10j)

𝑚

∑

𝑖=1

𝑥

𝑖
≥ 𝑄agri (the lowest requirement of

agriculture water consumption) ,
(10k)

𝑚

∑

𝑖=1

𝑥

𝑖𝑗
≥ 𝑄env (the lowest requirement of

greenbelt water irrigation) ,

(10l)

𝑥

𝑖𝑗
≥ 0 (non-negativity constraint) , (10m)

where 𝑓

1
, 𝑓

2
are the interval objective function of the

net economic benefit maximization and greenbelt irrigation
area maximization, respectively, 𝑥

𝑖𝑗
(𝑖 = 1, 2, 3, . . . , 𝑚; 𝑗 =

1, 2, 3, . . . , 𝑛) denotes the interval amount of water source
𝑖 supply to 𝑗 water user, 𝑚 = 6 is the total number
of water source (lift or deliver water from river and lake,
Guanting reservoir, Miyun reservoir, groundwater, reused
water, and South-to-North Water Transfer); 𝑛 = 4 is the total
number of water users (domestic, industry, agriculture and
environment), 𝑏

𝑖𝑗
is the benefit coefficient of the water source

𝑖 supply to 𝑗 user, which belongs an interval number, 𝑝 is the
interval coefficient of greenbelt irrigation water consumption
per acre, 𝑄deliv is the maximization water deliver capacity
from rivers and lakes, which is an interval number, 𝑄reser1
is the water supply capacity of the Guanting reservoir, which
is an interval number, 𝑄reser2 is the water supply capacity of
the Miyun reservoir, which is an interval number, 𝑄ground
is the groundwater supply capacity, which is an interval
number,𝑄reuse is the reusedwater supply capacity, which is an
interval range, 𝑄trans is the available water amount from the
South-to-NorthWater Diversion Project, which is an interval
number, 𝑄domes is the lowest amount of domestic water
requirement, which belongs an interval range, the reused
water for domestic is small, it is ignored, 𝑄indus is the lowest
amount of industry water requirement, which is an interval
number, 𝑄agri is the lowest amount of agriculture water
requirement, depending on weather and rainfall. The value
of agriculture water requirement is an interval number with
normal distribution boundaries, 𝑁(12.05 × 10

8

, 10000) m3
and𝑁(12.01 × 10

8

, 10000)m3 respectively;𝑄env is the lowest
amount of greenbelt irrigationwater requirement, which is an
interval number. In this study, the greenbelt irrigation water
requirement includes river water supplement and urban
roadway watering.

The developed model is a multiobjective optimization
model, including two conflict objectives. In this study, the
multiobjective weighted method is adopted to solve the
multi-objective model.The two objective functions are trans-
ferred to a single objective function as follows:

𝐹 (𝑋) =

𝑚

∑

𝑖=1

𝑤

𝑖
𝑓

𝑖
(𝑥) , (11)

where𝑚 = 2 and𝑤

𝑖
is the weight coefficient of the 𝑖 objective

function 𝑓

𝑖
(𝑥), (∑𝑚

𝑖
𝑤

𝑖
= 1). In this study,𝑤

1
= 𝑤

2
= 0.5, and

it means that economic benefit and environment protection
are considered to be of the same importance. Table 2 shows
the coefficients and parameters in models (10a), (10b), (10c),
(10d), (10e), (10f), (10g), (10h), (10i), (10j), (10k), (10l), and
(10m).

The capacity of water source supply under different flow
frequencies is shown in Table 3.

Scenario 1 denotes the normal flow year, in which fre-
quency of flow is 50%. The total amount of water resource is
[6.184, 6.285] billion cubic meters in scenario 1. The amount
of available water from local rivers and lakes is [1.38, 1.40] ×

10

8m3. The available water from the Guanting and Miyun
reservoirs is [7.51, 7.55] × 10

8m3 and [9.15, 9.20] × 10

8m3,
respectively. The amount of water from the South-to-North
Middle Rout Project is [9.5, 10.0] × 10

8m3 in scenario 1.
Scenario 2 denotes the dry year, in which frequency of flow
is 75%. The total amount of water resource is [5.751, 5.851]

billion cubic meters in scenario 2, which decline 0.434 billion
cubic meters comparing with scenario 1. The amount of
available water from local rivers and lakes is [1.05, 1.08] ×

10

8m3 in scenario 2, which declines to [0.32, 0.33] × 10

8m3
compared with scenario 1. The water amounts from the
Guanting and Miyun reservoirs are [4.45, 4.49] × 10

8m3 and
[6.20, 6.24] × 10

8m3, respectively, in scenario 2, which corre-
sponding declines to [3.06, 3.06] × 10

8m3 and [3.04, 3.05] ×

10

8m3 compared with scenario 1. The amount of water from
the South-to-North Middle Route Project is [11.5, 12.0] ×

10

8m3 in scenario 2, in which increase 0.2 billion cubic
meters comparing with scenario 1. Scenario 3 denotes the
extraordinary dry year, which frequency of flow is 90%. The
total amount of water resource is [5.40, 5.50] billion cubic
meters in scenario 3. The amount of available water from
local rivers and lakes is [0.70, 0.72] × 10

8m3 in scenario 3, in
which declines to 0.68×10

8m3 comparedwith scenario 1.The
amounts of water from the Guanting and Miyun reservoirs
are only [1.90, 1.94] × 10

8 m3 and [3.60, 3.64] × 10

8 m3,
respectively, in scenario 3, in which declines to 5.61 × 10

8m3
and [5.55, 5.56] × 10

8m3 compared with scenario 1. The
amount of water from South-to-North Middle Route Project
is [13.5, 14.0] × 10

8m3 in scenario 3, which increase 0.4
billion cubic meters compared with scenario 1. The amount
of exploitable groundwater and reused water keep the same
for all three scenarios.

4.3. Results andDiscussion. Table 4 shows the results of water
allocation to water users under three scenarios. The total
amount of allocated water is [6184, 6285] million m3 in
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Table 2: Coefficients and parameters of model.

Water source Benefit coefficients (RMB/m3) Greenbelt irrigation ration (m3/acre)
Domestic Industry Agriculture environment

Deliver water from river or lake [4.0, 4.5] [455, 465] [0.07, 0.08] [1.5, 2.0]

Guanting reservoir [4.0, 4.5] [460, 470] [0.06, 0.08] [1.5, 2.0]

Miyun reservoir [4.0, 4.5] [460, 470] [0.06, 0.08] [1.5, 2.0]

Groundwater [4.0, 4.5] [460, 470] [0.05, 0.07] [1.5, 2.0]

Reused water [0.0, 0.0] [460, 470] [0.00, 0.00] [1.5, 2.0]

South-to-North Water Transfer [4.0, 4.5] [460, 470] [0.06, 0.08] [1.5, 2.0]

RMB: monetary symbol in China.

Table 3: Capacity of water source supply under three scenarios.

Flow frequency Deliver water from
rivers or lakes

Guanting
reservoir Miyun reservoir Ground

water Reused water South-to-North
Water Transfer

Scenario 1 (50%) [1.38, 1.40] [7.51, 7.55] [9.15, 9.20] [26.3, 26.5] [8.0, 8.2] [9.5, 10.0]
Scenario 2 (75%) [1.05, 1.08] [4.45, 4.49] [6.20, 6.24] [26.3, 26.5] [8.0, 8.2] [11.5, 12.0]
Scenario 3 (90%) [0.70, 0.72] [1.90, 1.94] [3.60, 3.64] [26.3, 26.5] [8.0, 8.2] [13.5, 14.0]
Data source from [25].
(units 108 m3).

Table 4: Results of water resources allocation among water users under three scenarios.

Scenario no. Domestic Industry Agriculture Environment Total water consumption
Scenario 1 (50%) [1634, 1634] [2146, 2146] [1205, 1220] [1199, 1285] [6184, 6285]
Scenario 2 (75%) [1634, 1634] [1712, 1712] [1205, 1220] [1200, 1285] [5751, 5851]
Scenario 3 (90%) [1632, 1634] [1361, 1361] [1205, 1220] [1201, 1285] [5400, 5500]
(units million m3).

normal flow year (50%). The total amount of allocated water
is [5751, 5851] million m3 in dry year (75%), less [433, 434]

million m3 than that in scenario 1. The total amount of
allocated water is only [5400, 5500] million m3 in scenario 3,
less [784, 785] million m3 than that in scenario 1.

In Table 4 and Figure 6, the industry and domestic are
main water utilization sectors in Beijing city. For example,
in scenario 1, the amount of water allocation to industry
is [2146, 2146] million cubic meters, which accounts for
[34.1%, 34.7%] of total allocated water. The amount of allo-
cated water to domestic is [1634, 1634] million cubic meters,
which accounts for [26.0%, 26.4%] of total allocated water.
In scenario 2, the amount of water allocation to industry
is declined to [1712, 1712] million cubic meters, which
accounts for [29.3%, 29.8%] of total allocated water. The
amount of allocated water to domestic is [1634, 1634]million
cubic meters, which accounts for [27.9%, 28.4%] of total
allocated water. In scenario 3, the industrial water consump-
tion is declined to [1361, 1361] million cubic meters, which
only accounts for [24.7%, 25.2%] of total allocated water.
The amount of allocated water to domestic is [1632, 1634]

million cubic meters, which accounts for [29.7%, 30.2%]

of total allocated water. Although the amount of domestic
water consumption is almost not changed, its proportion
is more than industrial in scenario 3. The proportion of
domestic water consumption increases from [26.0%, 26.4%]

in scenario 1 to [29.7%, 30.2%] in scenario 3.The results show

that domestic has higher priority than industry on water
consumption under water shortage situation. The amount
of water consumption of agriculture and environment reach
its least requirement in Beijing city. Therefore, the amounts
of agricultural and environmental water consumption are
almost the same under three scenarios. In the dry year or
extraordinary dry year, the water crisis might be relieved by
reducing industrial water consumption.

Figure 7 shows the allocation results of different water
source supplies to different water users in Beijing city under
three scenarios. Domestic water consumption of Beijing city
is mainly from groundwater, reservoirs, and South-to-North
Middle Route Project in 2020. Although the total amount
of the domestic water consumption is the same under three
scenarios, the amounts of water in Guanting and Miyun
reservoirs (reservoir1 and reservoir 2 in Figure 2) for the
domestic sector evidently decreased with rainfall reduction.
Moreover, groundwater is the primary and reliable water
source for the domestic sector. The allocated groundwater
for domestic sector is raised from [738.2, 738.2] million
m3 in scenario 1 to [764.3, 764.3] million m3 in scenario 2
and to [808.2, 808.2] million m3 in scenario 3. Meanwhile,
the water amount for the domestic sector from South-to-
North Middle Route Project is raised from [325.7, 325.7]

million m3 in scenario 1 to [401.8, 401.8] million m3 in
scenario 2 and to [495.7, 495.7] million m3 in scenario 3.
The South-to-NorthMiddle Route Project gradually becomes
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Figure 6: Rate of water resources allocation among water users under three scenarios.
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Figure 7: Result of water source supply among sectors under three scenarios.

the second water source for the domestic sector when
water supply capacity of the Guanting and Miyun reservoirs
decreases in dry and extraordinary dry year. Industry sector
mainly uses groundwater, reused water, reservoirs water, and
South-to-North Middle Route Project water. The allocated
water amount from these water sources for industry are all
declined with total available water reducing. For example,
the groundwater for industry is significantly declined, from
[742.2, 742.2] million m3 in scenario 1 to [667.1, 667.1]

billion m3 in scenario 2 and to [566.8, 566.8] million m3
in scenario 3. Although the total amount of reused water
supply is same, the amount of reused water for industry
is declined from [496.1, 496.1] million m3 in scenario 1 to
[451.1, 451.1] million m3 in scenario 2 and to [399.2, 399.2]

millionm3 in scenario 3.The agricultural water consumption
is mainly from rivers and lakes, reservoirs, groundwater, and
South-to-North Middle Route Project. Because the available
water from rivers, lakes, and reservoirs is declined with
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rainfall reduction in dry year and extraordinary dry year,
the exploitation amount of groundwater and South-to-North
Middle Route Project water is raised to compensate water
shortage of the agriculture sector. The allocated groundwater
for agriculture is raised from [586.7, 599.7] million m3 in
scenario 1 to [620.8, 633.8] million m3 in scenario 2 and
to [679.9, 686.7] million m3 in scenario 3. The amount of
South-to-North Middle Route Project water for agriculture
is also raised from [187.2, 187.2] million m3 in scenario 1 to
[271.3, 271.3] million m3 in scenario 2 and to [374.2, 374.2]

million m3 in scenario 3. The environment mainly uses
reservoirs water, groundwater, reused water, and South-to-
North Middle Route Project water. The water amount of
Guanting and Miyun reservoirs for environment is declined
with rainfall reduction. Contrarily, the groundwater, reused
water, and transfer water for environment are all raised.
For example, the reused water amount for environment is
remarkably raised from [303.9, 323.9] million m3 in sce-
nario 1 to [348.9, 368.9] million m3 in scenario 2 and to
[400.8, 420.8] million m3 in scenario 3. The results show that
transferwater fromSouth-to-NorthMiddleRoute Project has
significant impact on water supply structure in Beijing city. It
will mitigate the water shortage issue of social and economy
development inBeijing city in some extent, particularly in dry
year and extraordinary dry year.

5. Conclusion

An interval-parameter fuzzy linear programming with
stochastic vertices (IFLPSV) has been developed for water
resources allocation under dual uncertainty. The developed
IFLPSV model improves upon the existing IFLP method by
allowing the uncertain boundaries of interval parameter to
be incorporated into the optimization processes. A hybrid
intelligent algorithmbased on genetic algorithm and artificial
neural network was used to solve the developed model. The
developed IFLPSV considers fuzzy, interval, and stochastic
attributes of parameters and coefficients of objective func-
tions and constraints. The application results indicated that
it is effective for regional water resources allocation and
planning under dual uncertainty. IFLPSV may provide more
satisfactory solutions for an optimization problem under
dual uncertainty. The developed IFLPSV model has been
applied tomultisource water allocation amongmultiple users
in Beijing city in 2020, where water resources shortage is
a challenging issue. The results indicate that transfering
water from South-to-North Middle Route Project has an
important impact on water supply structure in Beijing city,
particularly in dry year and extraordinary dry year. The
developed model and solution algorithm can be extended to
other water resources system and environment management,
where bounds of interval parameters or coefficients are dual
uncertainty.

In this study, only two objectives including economic and
greenbelt irrigation area maximization have been considered
when carrying out water allocation in Beijing city. In the
future, other objectives, such as social and environmen-
tal objective, might also be involved into water resources

allocation in Beijing city. Moreover, interactive method for
solving multi-objective optimization model is supposed to
be incorporated into the methodology, so that the decision
makers can make compromise among conflict objectives.

There are many uncertain factors in practical man-
agement and decision making of water resources system.
The interval programming is an effective method to tackle
uncertainties expressed as interval values with known lower
and upper bounds. However, due to high complexity of water
resources system, sometimes it is hard to determine the exact
values of both the lower and upper bounds. They might be
with characteristics of interval, fuzzy, or random. Therefore,
in this paper, the dual uncertainties are defined as interval
or fuzzy numbers with lower and upper bounds with inter-
val, fuzzy, or random characteristics. Although the bounds
of interval parameters might be randomly distributed, the
elements within the interval are regarded as certain num-
bers. In future research, physical meaning of the stochastic
attribute of upper and lower bounds of interval parameters
is suggested to in-depth investigation. Further discussion
should be undertaken to answer whats the difference between
interval number with randomly distributed bounds when
the elements within the interval are simply considered as
certain numbers and interval parameter as simply a random
parameter with its own distribution.
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