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When utilizing the 𝑝-𝑦 curve to simulate the nonlinear characteristics of soil surrounding pile in layered foundations, due to having
not taken into account the soilmass’s longitudinal continuity, the calculation deviation of horizontal displacement increaseswith the
growth of a load.This paper adopted the layered elasticity system theory to consider the soil mass’s longitudinal continuity, as well as
utilizing the research method for layered isotropic bodies, assuming that the horizontal resistance is evenly distributed around the
perimeter of the pile’s cross-section.Then an appropriate transfer matrix method of horizontal displacement coefficient for the soil
surrounding pile in layered foundations was established. According to the calculation principle of finite element equivalent load, the
horizontal displacement coefficient matrix was deduced as well as providing a corrected formula for the horizontal displacement
of soil surrounding pile through the 𝑝-𝑦 curve method when the external load was increased. Following the established model, a
program was created which was used for calculating and analyzing the horizontal displacement coefficient matrix of three-layered
soil in order to verify this method’s validity and rationale. Where there is a relatively large discrepancy in the soil layers’ properties,
this paper’s method is able to reflect the influence on the layered soil’s actual distributional difference as well as the nearby soil
layers’ interaction.

1. Introduction

For combining the 𝑝-𝑦 curve method with the finite element
method, it can be applicable to layered foundation systems
and able to take the soil’s nonlinear characteristics into
consideration. Several scholars [1–11] have carried out the
simulation of single pile’s load-bearing characteristics and
improved the 𝑝-𝑦 curves method of piles under lateral loads
or lateral and axial loads. Whereas with the 𝑝-𝑦 curve
method, when hypothesizing that the 𝑝-𝑦 curves of different
depths are unrelated to each other, this actually results in
the soil’s longitudinal continuity being overlooked.When the
horizontal load is gradually increased merely by using the
𝑝-𝑦 curve combined with the finite element method and
other numericalmethods to calculate the displacement of soil

surrounding pile, the deviation between the calculated results
and themeasured engineering value, or the simulated results,
will gradually enlarge. Therefore, the calculations of the 𝑝-𝑦
curve method need to be amended when the horizontal load
is large to make up for the insufficiencies in the soil mass’s
longitudinal continuity.

The method which takes into consideration the soil
mass’s longitudinal continuity is proposed in the analysis
theory of elasticity. It calculates the displacement of soil
surrounding pile at the node by the Mindlin solution as
the relevant horizontal displacement coefficient when the
soil is undergoing unit load; then the corresponding matrix
of the horizontal displacement coefficient can be obtained
and be used for the next step of calculations or amend-
ments. However, the elasticity theory’s solution for horizontal
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displacement coefficient is based on the Mindlin solution
for homogeneous soil, as well as only being suitable for the
situation of the concentrated load acting upon the half space
and can only be applied to solve horizontal displacement
coefficients in homogenous soil or equivalent. Most research
[12–18] has developed on the foundation of axisymmetrical
space, whereas related research regarding the problem of
nonaxisymmetric space has been less, especially on the effect
caused by the horizontal resistance of the soil surrounding
pile towards the layered elastic foundation.

This paper takes each layer of soil mass as simply being
an isotropic elastomer, regards layer foundations as isotropic
elastomers, and assumes that the horizontal resistance is
evenly distributed around the perimeter of the pile’s cross-
section. This paper takes the transfer matrix method as its
basis [19] in line with elastic foundation theory and layered
elasticity systems theory and presents a solution applicable
for the finite element method’s horizontal displacement coef-
ficient matrix for soil surrounding pile as well as providing
revisions to the matrix expression of horizontal displacement
of soil surrounding pile. At the same time, in order to avoid
the exponential overflow problem of the transfer matrix
method’s numerical calculations, this paper introduces the
precise integration method (PIM) [20] to calculate the lay-
ered elastic foundation’s dynamic stiffness matrix.

Speaking of layered soil and regarding the traditional 𝑝-𝑦
curvemethod for horizontal load-bearing piles, the improved
method is the general Mindlin solution which only considers
the axisymmetric problem, and the solution in the elasticity
theory for horizontal displacement coefficients is based on
theMindlin solution for homogenous soils.The new thinking
in this paper is to consider not only the nonaxisymmetric
problembut also the layered character and nonlinearity of the
soil.

2. Transfer Matrix Expression for
Homogenous Infinite Half Space

The displacement functions of non-axisymmetric space are
𝜑 = 𝜑(𝑟, 𝜃, 𝑧) and 𝜓 = 𝜓(𝑟, 𝜃, 𝑧). The relationship between
displacements 𝑢, V, and 𝑤 and the displacement functions 𝜑
and 𝜓 is as follows [21]:
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In (1), 𝑢, V, and 𝑤 are the displacements, 𝜑 and 𝜓 is the
displacement function, 𝐸 is the Young’s modulus, 𝜇 is the
Poisson’s ratio, and ∇2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 + 𝜕2/𝜕𝑧2.

According to the generalizedHooke law and the displace-
ment function (1), the series expansion for displacements 𝑢, V,
and 𝑤 can also be expressed as
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In (2), 𝑟, 𝜃, and 𝑧 are the cylindrical coordinates.
Substituting it into the elasticity equilibrium equation, we

get
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Equations (2), (3), and (4) are the expressions of the trans-
fer matrix method’s displacement and stress progression.
Substituting the previous three equations into equilibrium
and geometric equations, we get
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Furthermore,
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In (8), 𝑋(𝜉, 𝑧) is the stress and displacement component
in random layer and 𝑋(𝜉, 0) is the stress and displacement
component in the surface layer.

In addition, the fundamental relation between theHankel
transform and the inverse transform is
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In (10), 𝜏
1
and 𝜏
2
are the shear stresses. Equation (10) can

be phrased as the matrix differential equation
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3. Expression and Transformation for
Horizontal Load on a Pile Shaft

The form for distribution of horizontal resistance of the soil
surrounding pile and the concentrated force form as adopted
in the Mindlin solution, or the form for circular distribution
and hyperbolic distribution as adopted in pavement engi-
neering, have large differences in their distribution patterns.
To simplify the pile-soil model and make it easier to elicit
the analytical formula, this paper assumed that the horizontal
resistance of the pile shaft is evenly distributed around the
perimeter of the pile’s cross-section and selected the passive
soil pressure in the compression side of the pile-soil interface
as the horizontal resistance of soil surrounding pile, as shown
in Figure 1.

The expression for horizontal loads is as follows:
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Hankel transform and combining with the Dirac function’s
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Figure 1: Assumption of distribution of horizontal resistance.

During analysis of a single pile, the direction of 𝑝(𝑟) is
𝜃 = 0
∘ when setting the particular coordinate axis. Then, the

variations of horizontal load application point are

Δ𝜏
𝜃𝑧

𝑧=𝑧𝑝
= 𝑝 (𝑟) sin 𝜃,

Δ𝜏
𝑧𝑟

𝑧=𝑧𝑝
= −𝑝 (𝑟) cos 𝜃.

(16)

Amongst which, 𝑧
𝑝

is the horizontal loading depth.
According to the solution characteristics of soil resistance,
during the process of solving the horizontal displacement
coefficient, we assume that there is no pile in the soil mass.
According to (4)’s trigonometric series transform, (16) is
translated into the unit force acting on the pile as the internal
force of the layered system.Then, using theHankel transform,
we get

Δ𝑋(𝜉, 𝑧
𝑝
) = ΔP (𝜉, 𝑧

𝑝
) = [0 0 − 2𝑝 (𝑟) 0 0 0]

𝑇

.

(17)

4. Transfer Matrix Solution for Horizontal
Load Acting on the Layered Foundation

4.1. Interlayer Contact Conditions. The layered foundation’s
characteristics are shown in Figure 2, where 𝐸
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and 𝜇

𝑠𝑛
are

the soil’s elasticitymodulus and Poisson’s ratio in correspond-
ing layer, and ℎ
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is the corresponding soil thickness. The

horizontal load acts on the interior of the layered soil mass.
Assuming that each layer’s complete continuity, that is,

the layer displacement and stress distribution continuity, then
the 𝑠𝑛 layer and 𝑠𝑛 + 1 layer’s contact conditions are
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Figure 2: Horizontal load acting internally on the layered soil mass.

In (18), 𝐻
𝑠𝑛

is the layer’s depth of contact point and
𝐻(𝑠𝑛) = ∑

𝑠𝑛

𝑖=1
ℎ
𝑠𝑛
. According to (2), (3), and (4), we use the

Hankel transform for layer’s contact conditions in (18) and get

𝜎
𝑧𝑘
(𝜉, 𝑧
𝑠𝑛−
) = 𝜎
𝑧𝑘
(𝜉, 𝑧
𝑠𝑛+
) ,

𝜏
1
(𝜉, 𝑧
𝑠𝑛−
) = 𝜏
1
(𝜉, 𝑧
𝑠𝑛+
) ,

𝜏
2
(𝜉, 𝑧
𝑠𝑛−
) = 𝜏
2
(𝜉, 𝑧
𝑠𝑛+
) ,

𝐸
𝑠𝑛

1 + 𝜇
𝑠𝑛

𝑈
𝑘
(𝜉, 𝑧
𝑠𝑛−
) =

𝐸
𝑠𝑛+1

1 + 𝜇
𝑠𝑛+1

𝑈
𝑘
(𝜉, 𝑧
𝑠𝑛+
) ,

𝐸
𝑠𝑛

1 + 𝜇
𝑠𝑛

𝑉
𝑘
(𝜉, 𝑧
𝑠𝑛−
) =

𝐸
𝑠𝑛+1

1 + 𝜇
𝑠𝑛+1

𝑉
𝑘
(𝜉, 𝑧
𝑠𝑛+
) ,

𝐸
𝑠𝑛

1 + 𝜇
𝑠𝑛

𝜔
𝑘
(𝜉, 𝑧
𝑠𝑛−
) =

𝐸
𝑠𝑛+1

1 + 𝜇
𝑠𝑛+1

𝜔
𝑘
(𝜉, 𝑧
𝑠𝑛+
) .

(19)

In (19), the top and bottom surfaces are separately
expressed by 𝑧

𝑠𝑛+1
and 𝑧
𝑠𝑛−1

for the corresponding soil depth
𝑧
𝑠𝑛
. The remaining subscript patterns are similar.

4.2. Deducing the Transfer Formula of Transfer Matrix
Method. When the horizontal load application point is 𝑧 =

𝑧V, as on the foundation of (12), then, according to (19) for the
layers’ displacement stress continuity condition, the whole
layered foundation system can be considered after being split
into two parts. Amongst this, the first part is from 𝑧inf to
𝑧V+, and the second part is from 𝑧V− to 𝑧 = 0. 𝑧V+ expresses
the initial point for downwards calculation of the depth
𝑧V and 𝑧V− expresses the initial point for upwards calculation
of the depth 𝑧V.Thematrix transfer formula from 𝑧 = 0 to the
bottom is

𝑋(𝜉, 𝑧V−) = [𝐺]𝑧V− ⋅ ⋅ ⋅ {[MC
0
] [𝐺]0} 𝑋 (𝜉, 0)

𝑋 (𝜉, 𝑧V+) = [𝐺]𝑧V− ⋅ ⋅ ⋅ {[MC
0
] [𝐺]0}𝑋 (𝜉, 0) + 𝑃

𝑧V

𝑋(𝜉, 𝑧V+) = [𝐺]𝑖+1 ⋅ ⋅ ⋅ {[MC
0
] [𝐺]0}𝑋 (𝜉, 0)

+ [𝐺]𝑖+1 {[MC
𝑖
] [𝐺]𝑖}

⋅ ⋅ ⋅ {[MC
𝑧V+1] [𝐺]𝑧V+1} 𝑃𝑧V.

(20)



Mathematical Problems in Engineering 5

In the previous equations, 𝑃
𝑧V is the stress and dis-

placement array increment of the horizontal load application
point, and

[MC]𝑠𝑛 =

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 𝑚
𝑠𝑛

0 0

0 0 0 0 𝑚
𝑠𝑛

0

0 0 0 0 0 𝑚
𝑠𝑛

]
]
]
]
]
]
]

]

. (21)

Amongst which,𝑚
𝑠𝑛
= 𝐸
𝑠𝑛+1

(1 + 𝜇
𝑠𝑛
)/𝐸
𝑠𝑛
(1 + 𝜇

𝑠𝑛+1
), and

𝑚
0
= 1.

4.3. Definite Conditions. In practical engineering, the suf-
ficiently far stress, deformation, and displacement can be
defined as 0. For superlong piles, due the pile top to the pile-
tip distance being rather far, the effect of the horizontal load
is extremely small. Therefore, the horizontal displacement of
the pile tip can be defined as 0. Also for the superlong piles,
principally for friction piles or frictional end-bearing piles,
the settlement value of the pile tip can be defined as 0 or a
fixed constant. To simplify the solution, the definite condition
of the pile tip can be defined as

𝑈
𝑘
(𝜉, 𝑧
𝑙
) = 𝑉
𝑘
(𝜉, 𝑧
𝑙
) = 𝜔
𝑘
(𝜉, 𝑧
𝑙
) = 0. (22)

That is,

𝑋(𝜉, 𝑧
𝑙
) = [𝜎

𝑧𝑘
(𝜉, 𝑧
𝑙
) 𝜏
1
(𝜉, 𝑧
𝑙
) 𝜏
2
(𝜉, 𝑧
𝑙
) 0 0 0]

𝑇

. (23)

Amongst which, 𝑧
𝑙
is the depth of the buried pile.

Due to there being no load on the soil surface when 𝑧 = 0,
the boundary condition can be defined as

𝑋 (𝜉, 0) = [0 0 0 𝑈
𝑘
(𝜉, 0) 𝑉

𝑘
(𝜉, 0) 𝜔

𝑘
(𝜉, 0)]

𝑇

. (24)

According to the two boundary conditions of (23) and
(24), the actual force conditions of the layered foundation
system cannot be fully reflected. According to (17), where
𝑧 = 𝑧V, 𝑃𝑧V can be represented as

𝑃
𝑧V = ΔP (𝜉, 𝑧𝑝) = [0 0 − 2𝑝 (𝑟) 0 0 0]

𝑇

. (25)

5. Deducing the Horizontal Displacement
Coefficient Matrix

Supposing that the foundation is a layered isotropic elas-
tomer, the displacement of soil surrounding pile can then be
obtained by the generalizedMindlin solution under horizon-
tal load. During the calculation process in the finite element
method, the pile shaft can be divided into a number of units.

In Figure 3(a), the pile shaft’s node numbering is 1 ∼ 𝑛.
Due to the interaction between the pile and the soil, the soil’s
horizontal displacement 𝑈

𝑖
for node 𝑖 can be represented as

𝑈
𝑖
= 𝑢
1
+ 𝑢
2
. (26)

Amongst which, 𝑢
1
is the horizontal displacement pro-

duced by the equivalent horizontal resistance at node 𝑖, and

𝑢
2
is the horizontal displacement produced by the equivalent

horizontal resistance at other nodes. This equation can also
be represented as

𝑈
𝑖
= 𝑃
𝑖
𝑢
𝑒

𝑖,𝑖
+ (

𝑖−1

∑

𝑗=0

𝑃
𝑗
𝑢
𝑒

𝑖,𝑗
+

𝑛

∑

𝑗=𝑖+1

𝑃
𝑗
𝑢
𝑒

𝑖,𝑗
) . (27)

In (27), {P} is the horizontal soil resistance array, and 𝑢𝑒
𝑖,𝑗

represents the horizontal displacement at node 𝑖 produced by
the equivalent horizontal resistance acting at node 𝑗, which
is the element in line 𝑖 and column 𝑗 in the horizontal dis-
placement coefficient matrix. Consider

[u𝑒] =
[
[
[
[
[
[

[

𝑢
𝑒

1,1
𝑢
𝑒

2,1
⋅ ⋅ ⋅ 𝑢

𝑒

(𝑛−1),1
𝑢
𝑒

𝑛,1

𝑢
𝑒

1,2
𝑢
𝑒

2,2
⋅ ⋅ ⋅ 𝑢

𝑒

(𝑛−1),2
𝑢
𝑒

𝑛,2

...
... d

...
...

𝑢
𝑒

1,(𝑛−1)
𝑢
𝑒

2,(𝑛−1)
⋅ ⋅ ⋅ 𝑢
𝑒

(𝑛−1),(𝑛−1)
𝑢
𝑒

𝑛,(𝑛−1)

𝑢
𝑒

1,𝑛
𝑢
𝑒

2,𝑛
⋅ ⋅ ⋅ 𝑢

𝑒

(𝑛−1),𝑛
𝑢
𝑒

𝑛,𝑛

]
]
]
]
]
]

]

. (28)

The horizontal displacement array {U} of soil surround-
ing pile is

{U} = [u𝑒]
𝑛×𝑛

{P} . (29)

When the pile shaft is undergoing a horizontal load, the
horizontal resistance around the pile will actually have con-
tinuous distribution. Every two continuous elements under-
going the horizontal resistance are shown in Figure 3(b).
Regarding the distribution load, the finite element method
often adopts the following equation to calculate the node’s
equivalent load:

P(𝑒) = ∫
𝐿

0

N𝑇𝑞 (𝑥) 𝑙 𝑑𝜉. (30)

In (30), P(𝑒) is the horizontal equivalent load,N is the dis-
placement shape function, 𝑞(𝑥) is the horizontal distributed
load, and 𝑙 is the pile length.

During the process of calculating the horizontal resis-
tance of node 𝑖, the continuous distribution of soil resistance
within the scope of two adjacent nodes 𝑖−1 and 𝑖+1 has been
considered. Therefore, (27) can be rewritten as

𝑈
𝑖
= 𝑢


1
+

𝑖−2

∑

𝑗=0

𝑃
𝑗
𝑢
𝑒𝑗𝑖
+

𝑛

∑

𝑗=𝑖+2

𝑃
𝑗
𝑢
𝑒𝑗𝑖 (31)

In (31), 𝑢
1
is the horizontal displacement produced by the

equivalent horizontal resistance of node 𝑖 and adjacent nodes
𝑖−1 and 𝑖+1, and it can be calculated by the𝑝-𝑦 curvemethod.
[u𝑒] is the horizontal displacement coefficient matrix of the
rewritten form. Consider

[u𝑒] = [u𝑒] −
[
[
[
[
[

[

𝑢
𝑒

1,1
𝑢
𝑒

2,1
0

𝑢
𝑒

1,2
𝑢
𝑒

2,2
d

𝑢
𝑒

2,3
d 𝑢
𝑒

(𝑛−1),(𝑛−2)

d 𝑢
𝑒

(𝑛−1),(𝑛−1)
𝑢
𝑒

𝑛,(𝑛−1)

0 𝑢
𝑒

(𝑛−1),𝑛
𝑢
𝑒

𝑛,𝑛

]
]
]
]
]

]

. (32)
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Figure 3: Pile foundation model.

According to the𝑝-𝑦 curvemethod or othermethods, the
calculation of horizontal displacement for soil mass is

[u
𝑖
] = [𝑢

𝑒

1,1
𝑢
𝑒

2,2
⋅ ⋅ ⋅ 𝑢

𝑒

(𝑛−1),(𝑛−1)
𝑢
𝑒

𝑛,𝑛
]
𝑇

. (33)

Under a larger load, the horizontal displacement array
{U} of soil surrounding pile can be expressed as

{U} = [u
𝑖
] + [u𝑒] {P} . (34)

6. The Solving Process of Horizontal
Displacement Coefficient Matrix

Based on the layered elasticity systems theory, the arithmetic
solution of the horizontal displacement coefficient matrix
[𝑢
𝑒
]
𝑛×𝑛

can be obtained by the transfer matrix method. The
solving process is shown in Figure 4.

7. Selecting the 𝑝-𝑦 Curve

The 𝑝-𝑦 curve of Hohai University that we selected in this
paper reflects the actual situation of engineering and tallies
well with the experimental results [22]. The coefficient is also
relatively easy to determine. The 𝑝-𝑦 curve is as follows:

𝑝 =
𝑦/𝑦
50

𝑎 + 𝑏𝑦/𝑦
50

𝑝
𝑢

𝑦

𝑦
50

≤ 𝛽,

𝑝 = 𝑝
𝑢

𝑦

𝑦
50

> 𝛽.

(35)

Amongst which, 𝑎 = 𝛽/(𝛽−1), 𝑏 = (𝛽−2)/(𝛽−1), 𝑦
50
=

4.5𝜀
50
𝐷
0.75

, 𝛽 = 𝜀
100
/𝜀
50
, 𝜀
50
is the strain value that is equal

to a half of the difference stress in the triaxial undrained com-
pressing test.

The ultimate soil resistance 𝑝
𝑢
is as follows:

𝑝
𝑢
= (3 +

𝛾

𝐶
𝑢

𝑧 +
𝐽

𝐷
𝑧)𝐶
𝑢
𝐷,

𝑝
𝑢
= 9𝐶
𝑢
𝐷.

(36)

Amongst which, 𝐶
𝑢

is the triaxial undrained shear
strength, 𝛾 is the average severe, 𝑧 is the depth, 𝐷 is the pile
diameter, and 𝐽 is the experience coefficient, usually 𝐽 = 0.5.

8. Confirmation and Analysis of the Example

A certain single pile at a dock is buried to soil depth of 36m
with a diameter𝐷 = 1m.The soil surrounding pile is divided
into three layers.The surface layer thickness is 2m, the second
layer thickness is 4m, and the third layer extends infinitely.
The three layers are identical with Poisson’s ratios of 0.3. In
order to more clearly perceive the results, the modulus is
taken as a dimensionless number. Two cases are discussed as
follows:

(1) 𝐸
1
= 1.Themodulus ratios are𝐸

1
: 𝐸
2
: 𝐸
3
= 1 : 1 : 1,

𝐸
1
: 𝐸
2
: 𝐸
3
= 1 : 2 : 3, 𝐸

1
: 𝐸
2
: 𝐸
3
= 1 : 3 : 2 and

𝐸
1
: 𝐸
2
: 𝐸
3
= 1 : 3 : 5.

(2) 𝐸
3
= 1.Themodulus ratios are𝐸

1
: 𝐸
2
: 𝐸
3
= 1 : 1 : 1,

𝐸
1
: 𝐸
2
: 𝐸
3
= 3 : 2 : 1, 𝐸

1
: 𝐸
2
: 𝐸
3
= 2 : 3 : 1 and

𝐸
1
: 𝐸
2
: 𝐸
3
= 5 : 3 : 1.

Using the paper’s method and the classic Mindlin for-
mula, respectively, the horizontal displacement coefficient for
soil surrounding pile within the depth range of 0–36m can
be calculated and comparisons made. In order to increase
comparability, as well as to avoid the horizontal displacement
coefficient from trending towards an infinitely large situation,
(28) is adopted for the transfer matrix method’s results. The
horizontal displacement coefficient’s average value of the
points on the pile’s perimeter cross-section is taken as the
arithmetic solution of the Mindlin formula.

According to (34), the horizontal displacement coefficient
of this example can be directly used to amend the horizontal
displacement of soil surrounding pile.

When the soil’s modulus is 𝐸
1
: 𝐸
2
: 𝐸
3
= 1 : 1 : 1, the

results of the horizontal displacement coefficient for unit load
acting at the depth of 5m are shown in Figure 5, and the com-
parison between the transfer matrix method’s result and the
finite element method’s result is shown in Figure 6.
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Figure 4: Calculation flowchart.
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Figure 5: Comparison between the transfer matrix method and the
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0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 4035
Depth (m) 

H
or

iz
on

ta
l d

isp
la

ce
m

en
t c

oe
ffi

ci
en

ts/
u
e
·E

−
1

This method
Finite element

Figure 6: Comparison between the transfer matrix method and the
finite element method (unit load acting at 5m).



8 Mathematical Problems in Engineering

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 5 10 15 20 25 30 4035
Depth (m) 

E1 : E2 : E3 = 1 : 1 : 1
E1 : E2 : E3 = 1 : 2 : 3
E1 : E2 : E3 = 1 : 3 : 5

H
or

iz
on

ta
l d

isp
la

ce
m

en
t c

oe
ffi

ci
en

ts/
u
e
·E

−
1

Figure 7: Comparison of the results when the subsoil modulus is
larger (unit load acting at 5m).

When the three layers’ soilmoduli are the same, the exam-
ple can be simplified as an elastic semi-infinite space pro-
blem, and a comparison can be directly made between
the transfer matrix method and the Mindlin solution. As
observed in Figure 5, apart from the slightly large computing
results using the Mindlin Formula for the horizontal loading
point, the rest points’ results using the two methods are sim-
ilar. Therefore, the transfer matrix method can provide solu-
tions for elastic semi-infinite bodies by assuming that the
horizontal resistance is evenly distributed around the perime-
ter of the pile’s cross-section, which verifies the validity of
this paper’s method. As observed in Figure 6, the results are
similar between the transfer matrix method and the finite
elementmethod.Meanwhile, the computational results of the
transfer matrix method are intermediate between those of
the Mindlin solution and the numerical simulation, which
further proves this method’s correctness.

By using the transfer matrix method, the curves of hori-
zontal displacement coefficient are smoother than those of
the Mindlin solution at the load application point and other
adjacent areas, with displacement being less than theMindlin
solution. By considering the soil mass’s longitudinal contin-
uity, this paper’s method manages to fully reflect the effect
of the interactions between the adjacent soil layers and joint
sharing of the load.

When the soil modulus is 𝐸
1
= 𝐸
2
= 𝐸
3
, 𝐸
1
< 𝐸
2
< 𝐸
3
,

𝐸
1
> 𝐸
2
> 𝐸
3
, and 𝐸

2
> 𝐸
1
, 𝐸
2
> 𝐸
3
, then the corresponding

horizontal displacement coefficient for unit load at a depth of
5m are shown in Figures 7, 8, and 9. As observed in Figure 7,
apart from the unit load’s application point, the calculation of
the horizontal displacement coefficient is continuous, which
further proves the validity of this paper’s method and cor-
responding program composition. Where the soil modulus
is gradually increasing, following on the calculated curve’s
laws, the horizontal displacement coefficient will gradually
decrease, and there is an obvious discrepancy in results.
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Figure 8: Comparison of the results when the topsoil modulus is
larger (unit load acting at 5m).
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Figure 9: Comparison of the results when the interlayer soil
modulus is larger (unit load acting at 5m).

According to theMindlin formula’s form, when the mod-
ulus is equal or equivalent modulus changes, the horizontal
displacement coefficients for different depths will change in a
fixed ratio, which cannot adequately reflect the effect brought
about by the layer distribution in the layered system. As this
paper’s method makes clear, when the modulus is magnified,
then the proportional changes to the horizontal displacement
coefficient for differing depths are not the same, from the soil’s
surface to a depth of 5m, and with this change ratio in the
region of 0.49∼0.31. Therefore, this paper’s method is able to
better reflect the effect of the layered soil’s actual distribution
difference.

When the soil modulus is 𝐸
1
= 𝐸
2
= 𝐸
3
, 𝐸
1
< 𝐸
2
< 𝐸
3
,

𝐸
1
> 𝐸
2
> 𝐸
3
, and 𝐸

2
> 𝐸
1
, 𝐸
2
> 𝐸
3
, then the corresponding

soil surface horizontal displacement coefficients for unit load
acting at differing depths are shown in Figures 10, 11, and 12.



Mathematical Problems in Engineering 9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14
Depth (m) 

E1 : E2 : E3 = 1 : 1 : 1
E1 : E2 : E3 = 1 : 2 : 3
E1 : E2 : E3 = 1 : 3 : 5

H
or

iz
on

ta
l d

isp
la

ce
m

en
t c

oe
ffi

ci
en

ts/
u
e
·E

−
1

Figure 10: Comparison of the surface soil’s results when the subsoil
modulus is larger (unit load acting at different depths).

When 𝐸
1
= 𝐸
2
= 𝐸
3
, that is, when the three layers’ properties

are completely equal, then the corresponding curves will be
comparatively smooth. When 𝐸

1
> 𝐸
2
> 𝐸
3
or 𝐸
1
< 𝐸
2
< 𝐸
3
,

the change to the curve’s variation trend will be relatively
obvious when approaching the soil layers’ interface. As the
ratios of soil modulus increases the transition area of the
curve increases. This change exactly illustrates that, when
there are relatively large differences amongst the soil layers,
then each soil layer’s mechanics and load-bearing behavior
will be affected by the adjacent soil layers. When 𝐸

1
= 𝐸
2
=

𝐸
3
, the result can be regarded as the calculated result of

the Mindlin formula, which indicates that Mindlin formula
cannot adequately reflect the effects of soilmodulus variation.

9. Conclusions

Because the𝑝-𝑦 curvemethod andothermethods donot take
into account the soil’s longitudinal continuity, under relatively
large horizontal loads, then amendments to the calculated
horizontal displacement of soil surrounding pile need to be
instituted by using the horizontal displacement coefficient
matrix. Regarding the solutionmethod for thismatrix and the
corrections to the soil’s horizontal displacement, this paper’s
operations and conclusions are as follows.

(1) This paper assumed that the horizontal resistance of
soil surrounding pile is evenly distributed around
the pile’s cross-section. According to the elastic foun-
dation theory and layered elasticity system theory,
the horizontal displacement coefficient matrix of pile
foundation was calculated by the transfer matrix
method. This paper’s method can overcome the
inconvenience and defects of applying the Mindlin
formula on pile foundation. Under relatively large
horizontal loads, the amended formula for horizontal
displacement array {U} of soil surrounding pile, as
well as horizontal displacement matrix [u𝑒], was
calculated.
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Figure 11: Comparison of the surface soil’s results when the topsoil
modulus is larger (unit load acting at different depths).
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Figure 12: Comparison of the surface soil’s results when the
interlayer soilmodulus is larger (unit load acting at different depths).

(2) Based on the solution model for the horizontal dis-
placement matrix of the pile foundation, the corres-
ponding program was worked out. When the three
layers’ soil moduli are the same, the layered founda-
tions will degenerate into homogeneous foundations,
and here the calculated results of this paper’s model
tally with those of the Mindlin formula; it is also
fundamentally identical with the results of numeri-
cal simulation. These two points verify this paper’s
method’s validity and feasibility.

(3) All the curves of horizontal displacement coefficient
in this paper are smoother than theMindlin solution’s
curves at the load application point and the adjacent
areas, with less displacement than the Mindlin solu-
tion results.

(4) By considering the soil mass’s longitudinal continuity,
this paper’s method is able to reflect the influence
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on the layered soils’ actual distributional difference
as well as the adjacent layers’ interaction. It can solve
the problem of the Mindlin formula being unable to
adequately reflect the soil layers’ distribution.
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