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A practical and reliable capability for autonomous navigation needs to reduce operation cost, to improve operational efficiency,
and to increase mission safety. Celestial navigation is a very attractive autonomous navigation solution for deep space spacecraft.
There are mainly two kinds of celestial navigation methods: the direct calculation method and the filter method. The accuracy of
the direct calculation method is low and very sensitive to the measurement noise.The filter method can provide a better navigation
performance if a high accuracy dynamical model is available. However, the main practical problem existing in the autonomous
celestial navigation of spacecraft on a gravity assist trajectory is that the accuracy of trajectory model is not enough to be used in
the real navigation sometimes, which may introduce large estimation error and even cause filter divergence. To solve this problem,
a new celestial navigation method is proposed in this paper, which effectively combines the direct calculation method and the filter
method using an interacting multiple model unscented Kalman filter (IMMUKF). The ground experimental results demonstrate
that this method can provide better navigation performance and higher reliability than the traditional direct calculation method
and filter method.

1. Introduction

The navigation of spacecrafts is performed primarily by the
ground tracking, whose navigation accuracy can reach a
few kilometers by the Doppler tracking, very long base-
line interferometry (VLBI), and delta very long baseline
interferometry (DVLBI) of deep space network (DSN) [1,
2]. However, this earthbound tracking suffers from many
limitations, such as huge cost, long time delay, discontinuity,
and easy disturbance. Autonomous navigation has become
a key requirement for reliability and safety. A variety of
autonomous navigationmethods for near earth satellites have
been proposed and explored, including the magnetometer-
based method [3, 4], global position system (GPS) [5, 6],
intersatellite link-based method, and celestial navigation
method, but for deep space explorers celestial navigation is
the only feasible way.

Generally, celestial navigation methods for spacecraft
can be classified into two categories: the direct calculation
method and the filter method.The direct calculation method
uses celestial measurements to directly calculate the position

of the spacecraft according to the geometric relations between
the spacecraft and celestial bodies [7]. This method is very
simple and is independent of the system model, but its
navigation accuracy is relatively low and very sensitive to
the measurement error. The filter method uses an optimal
filter combined with the celestial measurements and a system
model to estimate the position of the spacecraft. Because this
method can deal with measurement noise, the navigation
accuracy is higher than that of the direct calculation, but a
highly accurate dynamical model is needed [8–11].

In deep space missions, a gravity assist trajectory is often
used, which uses the gravity of a planet (or other celestial
body) to alter the path and speed of a spacecraft. This tech-
nique allows to reach destinations which would not be acces-
sible with current technology or to reach targets with signifi-
cantly reduced propulsion requirements or in a reduced travel
time. Many spacecrafts such as Voyager, Galileo, and Cassini
use the gravity assist technique to achieve their targets. The
two Voyager spacecrafts provide a classic example. Voyager
2 launched in August 1977 took one boost from Jupiter, one
from Saturn, later fromUranus, and then climbed all the way
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to Neptune and beyond. Voyager 1 launched the following
month obtained assists from Jupiter and Saturn, respectively.
Galileo took one kick from Venus and two from Earth, while
orbiting the Sun en route to its destination, Jupiter. Cassini
passed by Venus twice, then Earth, and finally Jupiter on the
way to Saturn [12–14].

In a gravity assist trajectory, angular momentum is trans-
ferred from the orbiting planet to a spacecraft approaching
from behind the planet in its progress about the sun. The
value of spacecraft’s speed relative to planet is not changed
during a gravity assist flyby, but its direction is changed.
However, both value and direction of spacecraft’s speed
relative to the sun are changed during a gravity assist
flyby. Planet’s sun-relative orbital velocity is added to the
spacecraft’s velocity, and the spacecraft does not lose this
component on its way out. Instead, the planet itself loses the
energy. The massive planet’s loss is too small to be measured,
but the tiny spacecraft’s gain can be very great. That is to say
that the orbit of spacecraft has changed before and after a
gravity assist flyby.

When the spacecraft is on such a swing-by trajectory, its
orbit changes very rapidly which will make it very difficult
to build an accurate dynamical model. If the inaccurate
dynamicalmodel is used in the filtermethod, it will introduce
large estimation error and even cause the filter divergence.
So, this paper presents a new celestial navigation method
combining the direct calculation method and the filter
method for spacecraft on a gravity assist trajectory. When an
accurate dynamical model is available, the filter method is
used to reduce the estimation error caused by measurement
error. When such an accurate dynamical model is not
available, the result of direct calculation method is used to
correct the estimation error caused by inaccurate dynamical
model and prevent the filter from divergence. An interacting
multiple model unscented Kalman filter (IMMUKF) is used
to deal with the data association problem. Compared to the
traditional celestial methods, this newmethod can efficiently
improve the accuracy and reliability in this case. The feasi-
bility of this new method is validated by ground experiments
using a spacecraft on the Mars gravity assist trajectory.

This paper is systematized in five sections. After this
introduction, the principle of the direct calculationmethod is
outlined in Section 2. Then the principle of the filter method
is described, followed by the state and measurement models
in Section 3. Simulation results in Section 4 demonstrate
the performance improvement. Conclusions are drawn in
Section 5.

2. Direct Calculation Method

Celestial navigation method is based on the fact that the
position of celestial body (Sun, Earth, Mars, and stars) in
inertial frame at certain time is known and their position
observed on spacecraft in the spacecraft body frame is a
function of spacecraft’s position.The angle between the vector
pointing towardMars and the vector pointing toward the star
from the spacecraft determines a cone. The apex of the cone
is located at the position ofMars, the symmetry axis points to
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the star, and the opening angle is twice the measured angle.
The spacecraft must be on the surface of the cone. Obser-
vations of two other stars can determine two other cones.
The spacecraft must be on the line (L

1
) where all three cones

intersect, as illustrated in Figure 1. L
1
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From an observation of the Phobos, a second line of
position (L

2
) can be determined. The position of spacecraft

can be specified uniquely on the point where the two lines
intersect, as shown in Figure 2.
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where r is the position vector of the spacecraft, R
1
and R

2

are the position vectors of Mars and Phobos, respectively, 𝜌
1

and 𝜌

2
are the distances of spacecraft to Mars and Phobos,

respectively. Solving 𝜌

1
and 𝜌

2
from (3), the position of

spacecraft can be determined by (2).
The limitation of the direct calculation method is that the

measurement error has a great impact on the calculation error
and it can not provide the velocity information.

3. Filter Method

The filter method exploits the dynamics of the spacecraft to
remove the effects of the noise and obtain a good estimation
of the position and velocity of the spacecraft at the present
time using the differences between the measured and esti-
mated celestial data. In the filter method, the state (dynamic)
and measurement models are needed. The dynamical model
describes how the state variables change over time, and the
measurement model describes the relationship between the
measurement variables and the state variables.

The patched-conic technique [15, 16] is a useful tool
for designing a fuel-saving gravity assist trajectory. In this
technique, a two-body orbit about the Sun is first kine-
matically patched onto a two-body hyperbolic orbit about
the planet. Then the spacecraft proceeds along the planet-
centered hyperbolic orbit during the flyby, and finally a new
two-body orbit about the Sun is patched onto the postflyby
hyperbolic orbit. For a spacecraft on Mars gravity assist
trajectory, its trajectory can be broadly divided into two parts.

When the spacecraft is outside Mars, sphere of influence,
its orbital motion can be described as a multibody problem
with the sun as the central body. Its dynamical model is
expressed in the sun-centered inertial frame (J2000.0) as
follows:
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inertial frame. rse and rsm are the position vectors of the
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𝑇 is the system
noise.

When the spacecraft is in Mars sphere of influence,
its orbital motion can be described as a perturbed two-
body problem with Mars as the central body. The dynamical
model in Mars-centered inertial frame (J2000.0) is written as
follows:
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(5)

All parameters used in (5) have the same meaning as
those in (4), except that these parameters are expressed in
Mars-centered inertial frame instead of sun-centered inertial
frame.

Because these twomodels are in different frames, the final
results have to be transformed to the sun-centered inertial
frame.

The usually used celestial measurements include (1) the
directions of near celestial bodies (the sun and the planet), (2)
the planet-planet angles, and (3) the star-planet angles. Here
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we take the last one as an example and the corresponding
measurement equation is given by the following:
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where s is the position vector of the navigation star in the
sun-centered inertial frame, which is obtained from the star
catalog by star identification. Assume measurement 𝑍
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When the spacecraft flies far from the planets, the star-
planet angles change very slowly.The star-planet angles alone
cannot supply enough information for position estimation
without the help of an accurate dynamical model in the
filter method. However, when the spacecraft is on a gravity
assist trajectory, its orbit changes very fast and an accurate
dynamical model is not available, which may introduce
large estimation error and even cause the filter diver-
gence.

4. New Method Based on IMMUKF

For solving problems of above two methods, a new celestial
navigation method is presented for the flyby spacecraft. In
this new method, the direct calculation method is used to
get a preliminary position estimation result, and then this
preliminary result is used as a supplementary measurement
in the filter. The difficulty existing in the new method
is that the measurement noise covariance matrix is not
constant because the position estimation error of the direct
calculation method changes over time due to the movement
of spacecraft. An IMMUKF method is used to deal with
this problem and to enhance the adaptive capability of the
filter.

4.1. System Model. As mentioned above, the orbital motion
of the spacecraft can be described by two dynamical models,
which are defined by (5) and (6). They can be written
in general as ̇
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In this new method, the position estimation result

obtained by the direct calculation method is used as a
supplementary measurement besides the star-planet angle
measurement defined by (7). The measurement used in this
new method can be described as follows:
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𝑇 is the position estimation result obtained
by the direct calculation method. 𝑘 is a scale factor, which is
used to make the magnitude of position measurement match
that of star-planet angle measurement. The measurement
model can be presented as follows:

𝑍

2
(𝑡) = 𝐻

2 [
𝑋 (𝑡) , 𝑡] + 𝑉

2
(𝑡) . (10)

Because the measurement noise covariance matrix of this
model is unknown and time varying, a set of different
matrices is used to approximate it. Then 𝑁 measurement
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is the experimental measurement noise covariance

matrix of the direct calculation method. In this paper, 𝑅
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4.2. IMMUKF Method. The interacting multiple model
(IMM) algorithm is a very effective estimation algorithm for
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systems which can be described by a mixing of continuous
states and discrete modes [17, 18]. The switching between
submodels is governed by a Markov chain. The IMMUKF
method includes interaction, filtering, model probability
update, and combination of four steps [19–21], as shown in
Figure 3.
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4.2.2. Filtering. Because the state model and measurement
model described above are nonlinear, the optimal state and
covariance estimates 𝑋
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(15)

where 𝑟
𝑖
(𝑘) and 𝑆

𝑖
(𝑘) are innovation vector and its covariance,

respectively. Λ

𝑖
(𝑘) is Model likelihood. 𝑁(𝑥) is Gaussian

distribution.

4.2.4. Combination. Combined state𝑋(𝑘) and its covariance
𝑃(𝑘) are calculated from the weighted state estimates 𝑋

𝑖
(𝑘)

and covariances 𝑃
𝑖
(𝑘) as follows:

𝑋 (𝑘) =

𝑁

∑

𝑖

𝑋

𝑖
(𝑘) ⋅ 𝜇

𝑖
(𝑘) (16)

𝑃 (𝑘) =

𝑁

∑

𝑖

{𝑃

𝑖
(𝑘) + [𝑋

𝑖
(𝑘) − 𝑋 (𝑘)]

⋅[𝑋

𝑖
(𝑘) − 𝑋 (𝑘)]

𝑇

} ⋅ 𝜇

𝑖
(𝑘) .

(17)

5. Simulation Results

This section presents simulation results to show the perfor-
mance improvement of this new method compared with the
traditional direct calculation method and the filter method.
The process of simulation is shown in Figure 4.

The ideal trajectory of spacecraft is created by the STK
(Satellite Tool Kit), whose initial value of semimajor axis is
193,216,365.381 km, eccentricity 0.236386, inclination 23.455∘,
right Ascension of the ascending node 0.258∘, and the argu-
ment of periapsis 71.347∘. The near bodies used in the direct
calculation method are Mars and Phobos. All measurements
are created by the celestial navigation simulation platform
[24] using ideal trajectory of STK, ephemeris of DE405, and
Tycho-2 catalogue. The ideal trajectory of the spacecraft is
shown in Figure 5, which has been checked according to
Tisserand’s criterion described in (17) [18, 20]:

𝑇 =

𝑟mars
𝑎

+ 2

√

𝑎 (1 − 𝑒

2
)

𝑟mars
cos 𝑖. (18)

The Tisserand parameter 𝑇 is conserved around −0.2686

before and after the close encounter with Mars.
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Figure 4: The process of simulation.
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Figure 5: The ideal trajectory of the spacecraft.

The accuracy of the Sun sensor, Phobos’ sensor, the Earth
sensor, and Mars sensor are selected to be 5, 5, 1.5, and
0.005∘, respectively. The accuracy of the star sensor is 3.

Figure 6 shows the performance of the direct calculation
method, which is obtained with a 1-minute sampling interval
during the 20-day periodwhen the spacecraft is nearMars. As
it can be seen from Figure 6, the navigation accuracy of this
method mainly depends on the accuracy of measurement, so
it is very sensitive to the measurement noise. The geometry
relationship of the spacecraft, Mars, and Phobos also has
an impact on the navigation performance. The shorter the
distance between spacecraft andMars (or Phobos), the higher
the navigation accuracy is.

Figure 7 shows the performance comparison between
this new method and the traditional filter method, which
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Figure 6: The position estimation error of the direct calculation
method.

only uses the star-planet angles as measurement, under the
same simulation conditions. As demonstrated in Figure 7,
the traditional filter method can provide a good navigation
performance when the spacecraft is far from Mars and a
highly accurate model is available, but its estimation error
increases greatly when the spacecraft is close to Mars. This
is because the star-planet angles alone cannot supply enough
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Table 1: Performance comparison of different methods.

Method Position estimation error
(RMS) (km)

Velocity estimation error
(RMS) (m/s)

Position estimation error
(Max) (km)

Velocity estimation error
(Max) (m/s)

Direct calculation method 192.50 — 1816.2 —

Filter method 71.725 0.1507 154.68 0.4937

New method 6.2082 0.1118 16.787 0.4486
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Figure 7: Results comparison between IMMUKF and UKF.

information to correct the large estimation error introduced
by the inaccurate dynamical model, which even cause the
divergence of the filter after then. The innovation sequence
of the two methods which has subtracted the measurement
noise is shown in Figure 7. The figure of the innovation
sequence also demonstrates the divergence of the traditional
filter method. However, the new method presented in this
paper shows a stable and satisfying navigation performance.
The details are given in Table 1.

From these results, we see that this IMMUKF-based
new celestial navigation method overcomes the shortcom-
ings of the direct calculation method and the traditional
filter method. On one hand, when an accurate dynamical
model is available, the impact of measurement error on
the navigation performance is reduced by the dynamical
model. On the other hand, when an accurate dynamical
model is not available, the impact of system error on the
navigation performance is reduced by the result of direct
calculation method. The navigation accuracy and reliability
are greatly improved by the effective combination of the
direct calculationmethod and the filtermethod.These results
demonstrate that this new method is a particularly suitable
celestial navigation method of spacecrafts on a gravity assist
trajectory.

6. Conclusions

A new autonomous celestial navigation method for space-
crafts on a gravity assist trajectory is studied, which effectively
combines the direct calculationmethod and the filtermethod
based on IMMUKF. The navigation performance of this new
method is tested by the ground experiments, and a position
estimation error within 20 km is obtained. Compared with
the traditional methods, this method can achieve a higher
accuracy and stability. These results verify that this method
is a promising and attractive scheme of autonomous navi-
gation for the spacecraft using gravity assist. A limitation of
this study is the significant increase in computational cost.
This method should have a broad application potential in
autonomous navigation of deep space probes, especially in
cases when the accurate dynamical model is not available.
How to enhance the adaptive capability and to reduce the
computational cost is under further investigation.
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