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The Laplace-Adomian-Pade method is used to find approximate solutions of differential equations with initial conditions. The
oscillation model of the ENSO is an important nonlinear differential equation which is solved analytically in this study. Compared
with the exact solution from other decomposition methods, the approximate solution shows the method’s high accuracy with
symbolic computation.

1. Introduction

In recent years, El Niño/La Niña-Southern Oscillation
(ENSO) is a quasiperiodic climate pattern that occurs across
the tropical Pacific Ocean every five years which has caught
more and more attention of researchers due to its great
destructions. It is coupled with two phases, the warm
oceanic phase, El Niño, and the cold phase, La Niña. Some
methods were applied to consider the numerical simulation,
amongwhich is the famous Adomian decompositionmethod
(ADOM) [1].

Generally speaking, two aspects affect the accuracy of the
ADOM: the calculation of theAdomian decomposition series
and the initial iteration value. In view of these points, various
modified versions are proposed to solve the nonlinear initial
value problems [2–7].

Recently, Tsai and Chen [8–10] suggested a Laplace-
Adomian-Pade method (LAPM) to approximately solve the
initial value problems of differential equations. The method
holds the followingmerits: (a) the Laplace transformation can
be used to “fully” determine the initial iteration value; (b) the
Adomian series is used to linearize the nonlinear terms; (c)
the Pade technique is used to accelerate the convergence and
enlarge the valid area of the approximate solution.

In this paper, we use the method to approximately solve
the ENSOmodel.The approximate solution is comparedwith
other nonlinear techniques in the high order iteration and the
result shows the method’s higher accuracy.

2. Approximate Solutions of the ENSO Model

The air-sea coupled dynamical system was used to describe
the oscillating physical mechanism of the ENSO [11]
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where 𝐶,𝐷, 𝐸, and 𝑅
ℎ
are physical constants, 𝑇 describes the

temperature of the eastern equatorial Pacific sea surface, and
ℎ is the thermo-cline depth anomaly. The model (1) shows
the variations of both eastern and western Pacific anomaly
patterns.

Case I. When 𝐷 = 0 and 0 < 𝜀 ≪ 1, then (1) can be reduced
to
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3
. (2)

In order to solve (2) with the LAPM, apply the Laplace
transform 𝐿 to both sided of (2) first and we can derive
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Apply the inverse of the Laplace transform 𝐿
−1 and

expand the nonlinear term as an Adomian series [1, 12]; then
(4) can be written as
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Now the iteration formula can be determined for (2) as
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Assuming 𝑇(0) = 𝐶 = 1, the successive approximate
solutions 𝑇
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We can consider a Maple program for the approximation
and set the truncated order as 7 and 12, respectively. The 7th
term approximation and the 12th term approximation can be
obtained as
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Recall that (2) has an exact solution [13]
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Setting 𝜀 = 0.00001 in this paper, we apply the Pade-
technique to the approximate solution 𝑇

12
. In order to avoid

the tediousness, the detail expression of the result is omitted
here.

The approximate solutions from the ADOM and the
LAPM are compared using the high iteration solutions
𝑇
12th
[LAPM] and 𝑇

12th
[ADOM] in Table 1, respectively.

The exact solution (10), the approximate solutions
𝑇
12th
[ADOM], 𝑇

12th
[LAPM], and the solution 𝑇12th

[LAM] without the treat-
ment using the Pade-technique are compared in Figure 1.

The results in Table 1 and Figure 1 illustrate that the
LAPM has a higher accuracy, respectively.

Case II. For the coefficients 𝐶 = 𝐷 = 𝐸 = 𝑅
ℎ
= 1 and 𝜀 =

0.00001, (1) reduces to
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Setting the initial condition value 𝑇(0) = ℎ(0) = 1, we can
derive the following iteration formula:
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Table 1: Comparisons between 𝑇
[ADOM], 𝑇[LAPM], and the exact

solution.

𝑡 𝑇
12th
[ADOM] 𝑇

12th
[LAPM] Exact solution

0.0 1.00000000000 1.00000000000 1.00000000000
0.5 1.64870710600 1.64870710600 1.64870710600
1.0 2.71819499800 2.71819499800 2.71819499700
1.5 4.48126178100 4.48126146900 4.48126145500
2.0 7.38709279800 7.38707674000 7.38707669500
2.5 12.1738764100 12.1735250400 12.1735245800
3.0 20.0498629300 20.0452439400 20.0452435100
3.5 32.9785428200 32.9355166300 32.9355172400
4.0 54.1154755000 53.8024166600 53.8023905200
4.5 88.4548189000 86.5781681900 86.5781168700
5.0 143.748571000 134.353636200 134.352939400

where ℎ
0
+⋅ ⋅ ⋅+ℎ

𝑛
is the 𝑛th approximation of ℎ(𝑡). As a result,

for 𝑛 = 12, we can obtain the approximate solution by means
of the LAPM.
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(13)

The plotted functions 𝑓(𝑡) and 𝑔(𝑡) show that the iteration
formula is reliable (Figure 2). Now we can analytically inves-
tigate the relationship between the temperature 𝑇 and the
thermo-cline depth ℎ, which is shown in Figure 3.

Remarks. This study only concentrates on the applications
of the Adomian series in the linearization of the nonlinear
equations. For various calculations of the Adomian series,
readers are referred to the recent development of the method
in [3, 4, 14–16] and the applications in fractional different
equations in [17–19]. It is interesting to point out that the
results are the same as those of the one using the variational
iteration method [20].

In the classical ADOM, the inverse operator should be
used. For example, one can need to transform the differential
equation
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into the following equivalent integral equation
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Figure 1: The comparisons of the approximate solutions using
different methods.
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Figure 2: The residual functions: 𝑓(𝑡) and 𝑔(𝑡).

Here∫𝑡
0
⋅ ⋅ ⋅ ∫
𝑡

0
⋅ 𝑑𝑠 ⋅ ⋅ ⋅ 𝑑𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

is called the inverse operator in the
ADOM.

In Tsai and Chen’s method, the solution procedure shows
that the LAPM without using the inverse operator still keeps
approximate solutions of higher accuracies. Furthermore,
the initial iteration function can be readily determined.
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Figure 3: The temperature versus the thermo-cline depth ℎ.

The method also can be extended to fractional differential
equations [21] and 𝑞-difference equations.

3. Conclusions

With symbolic computation, the LAPM is used to approxi-
mately solve the ENSOmodel.We compared the approximate
solutions with those from the ADOM and the LAPM,
respectively. The results show that the LAPM has higher
efficiency which can accelerate the convergence and enlarge
the valid area of the approximate solution.
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