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We combine a layer-wise formulation and a generalized differential quadrature technique for predicting the static deformations
and free vibration behaviour of sandwich plates. Through numerical experiments, the capability and efficiency of this strong-
form technique for static and vibration problems are demonstrated, and the numerical accuracy and convergence are thoughtfully
examined.

1. Introduction

The two big groups of theories for the analysis of laminated
plates are based on displacements only or on displacements
and stresses at interfaces of the laminate. This paper deals
with the first group, where again two approaches can be
considered: the equivalent-single layer (ESL) theories (where
all the layers are referred to the same degrees of freedom) or
layer-wise (LW) theories (where specific degrees of freedom
are linked to specific layers).

The classical laminated plate theory and the first-order
shear deformation theory [1–5] are the simplest ESL the-
ories, at the cost of introducing artificial shear correction
factors. ESL higher-order theories usually consider higher-
order expansion of displacements with respect to the thick-
ness coordinate of the plate, with the further advantage of
disregarding shear correction factors [6–12]. Most of the
previously mentioned ESL theories may ill-represent the
transverse shear stresses for sandwich laminates, where the
material properties of skins are typically much larger than
those of the core. In such problems, LW theories that consider
independent degrees of freedom for each layer should be

considered instead. Several LW theories have been proposed
in literature [13–21] usually considering translational degrees
of freedom at the layer interfaces. Over the last decades, an
automatic approach for generation of any kind of ESL or
LW theories was developed by Carrera [18–20], which allows
the user to freely develop new theories without much effort.
Various examples of the use of Carrera’s unified formulation
with meshless methods by the first author can be found in
[22–27].

Unlike LW theories that consider translations at each
laminate interface, in this work we adopt a layer-wise theory
that considers both translations and rotations, based on an
expansion of Mindlin’s first-order shear deformation theory
in each layer. The displacement continuity at layer’s interface
is enforced. In each layer, the theory produces constant, very
accurate transverse shear stress.

As is well known, the analysis of composite plates is typ-
ically performed by finite element method. On the contrary,
in the present study, a layer-wise shear deformation theory
is implemented within generalized differential quadrature
technique. The latter meshfree method in combination with
this layer-wise theory carries out an accurate calculation
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Figure 1: 1D representation of the layer-wise kinematics.

of the natural frequencies, displacements, and stresses of
sandwich plates. This study appears for the first time and
serves to fill the gap of knowledge in this research topic.

2. A Layer-Wise Theory

The layer-wise theory proposed in this paper is based on the
assumption of a first-order shear deformation theory in each
layer and the imposition of displacement continuity at layer’s
interfaces. Given that, a layer-wise formulation links the
degrees of freedom at each layer. Nevertheless, the problem
may become large if a large number of layers are considered,
although the present formulation is adequate for a general
laminate. In this paper, we concentrate on sandwich plates
built from two external, stiff layers and one central, soft core.
The three-layer laminate is shown schematically in Figure 1.

In order to simplify the imposition of displacement
continuity at the core-skin interfaces, we first define the
displacement field for the middle layer (the core in the
sandwich plate) as

𝑢
(2)
(𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) + 𝑧

(2)
𝜃
(2)

𝑥 (𝑥, 𝑦) ,
(1)

V(2) (𝑥, 𝑦, 𝑧) = V0 (𝑥, 𝑦) + 𝑧
(2)
𝜃
(2)

𝑦 (𝑥, 𝑦) , (2)

𝑤
(2)
(𝑥, 𝑦, 𝑧) = 𝑤0 (𝑥, 𝑦) , (3)

where 𝑢 and V are the in-plane displacements at any point
(𝑥, 𝑦, 𝑧), 𝑢0 and V0 are the in-plane displacements of the
points (𝑥, 𝑦, 0) on the midplane, 𝑤 is the deflection, and 𝜃(2)𝑥
and 𝜃(2)𝑦 are the rotations of the normals to themidplane about
the 𝑦- and 𝑥-axes, respectively.

The corresponding displacement fields for the (skins)
upper layer (3) and lower layer (1) are given, respectively, as

𝑢
(3)
(𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) +

ℎ2

2

𝜃
(2)

𝑥 (𝑥, 𝑦) +
ℎ3

2

𝜃
(3)

𝑥 (𝑥, 𝑦)

+ 𝑧
(3)
𝜃
(3)

𝑥 (𝑥, 𝑦) ,

V(3) (𝑥, 𝑦, 𝑧) = V0 (𝑥, 𝑦) +
ℎ2

2

𝜃
(2)

𝑦 (𝑥, 𝑦) +
ℎ3

2

𝜃
(3)

𝑦 (𝑥, 𝑦)

+ 𝑧
(3)
𝜃
(3)

𝑦 (𝑥, 𝑦) ,

𝑤
(3)
(𝑥, 𝑦, 𝑧) = 𝑤0 (𝑥, 𝑦) ,

𝑢
(1)
(𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) −

ℎ2

2

𝜃
(2)

𝑥 (𝑥, 𝑦) −
ℎ1

2

𝜃
(1)

𝑥 (𝑥, 𝑦)

+ 𝑧
(1)
𝜃
(1)

𝑥 (𝑥, 𝑦) ,

V(1) (𝑥, 𝑦, 𝑧) = V0 (𝑥, 𝑦) −
ℎ2

2

𝜃
(2)

𝑦 (𝑥, 𝑦) −
ℎ1

2

𝜃
(1)

𝑦 (𝑥, 𝑦)

+ 𝑧
(1)
𝜃
(1)

𝑦 (𝑥, 𝑦) ,

𝑤
(1)
(𝑥, 𝑦, 𝑧) = 𝑤0 (𝑥, 𝑦) ,

(4)

where ℎ𝑘 are the 𝑘th layer thickness and 𝑧(𝑘) ∈ [−ℎ𝑘/2, ℎ𝑘/2]
are the 𝑘th layer 𝑧 coordinates.

Deformations for a generic layer 𝑘 are given by

{
{
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(𝑘)
𝑦𝑦

𝛾
(𝑘)
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}
}
}
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}
}
}
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}

}

=
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{
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{
{
{
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{
{
{
{
{
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{
{
{
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{
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{
{
{
{
{
{
{
{
{
{
{

{

𝜕𝑢
(𝑘)

𝜕𝑥

𝜕V(𝑘)

𝜕𝑦

𝜕𝑢
(𝑘)

𝜕𝑦

+

𝜕V(𝑘)

𝜕𝑥

𝜕𝑢
(𝑘)

𝜕𝑧

+

𝜕𝑤
(𝑘)

𝜕𝑥

𝜕V(𝑘)

𝜕𝑧

+

𝜕𝑤
(𝑘)

𝜕𝑦

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}

. (5)

It is common that the ESL theories decouple the in-plane
deformations with the out-of-plane deformations. The in-
plane deformations can be expressed as

{
{
{
{

{
{
{
{

{

𝜖
(𝑘)
𝑥𝑥

𝜖
(𝑘)
𝑦𝑦

𝛾
(𝑘)
𝑥𝑦

}
}
}
}

}
}
}
}

}

=

{
{
{
{

{
{
{
{

{

𝜖
𝑚(𝑘)
𝑥𝑥

𝜖
𝑚(𝑘)
𝑦𝑦

𝛾
𝑚(𝑘)
𝑥𝑦

}
}
}
}

}
}
}
}

}

+ 𝑧
(𝑘)

{
{
{
{

{
{
{
{

{

𝜖
𝑓(𝑘)
𝑥𝑥

𝜖
𝑓(𝑘)
𝑦𝑦

𝛾
𝑓(𝑘)
𝑥𝑦

}
}
}
}

}
}
}
}

}

+

{
{
{
{

{
{
{
{

{

𝜖
𝑚𝑓(𝑘)
𝑥𝑥

𝜖
𝑚𝑓(𝑘)
𝑦𝑦

𝛾
𝑚𝑓(𝑘)
𝑥𝑦

}
}
}
}

}
}
}
}

}

(6)

and shear deformations as

{

{

{

𝛾
(𝑘)
𝑥𝑧

𝛾
(𝑘)
𝑦𝑧

}

}

}

=

{
{
{

{
{
{

{

𝜕𝑤0

𝜕𝑥

+ 𝜃
(𝑘)
𝑥

𝜕𝑤0

𝜕𝑦

+ 𝜃
(𝑘)
𝑦

}
}
}

}
}
}

}

. (7)

The membrane components are given by

{
{
{
{
{

{
{
{
{
{

{

𝜖
𝑚(𝑘)
𝑥𝑥

𝜖
𝑚(𝑘)
𝑦𝑦

𝛾
𝑚(𝑘)
𝑥𝑦

}
}
}
}
}

}
}
}
}
}

}

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝜕𝑢0

𝜕𝑥

𝜕V0
𝜕𝑦

𝜕𝑢0

𝜕𝑦

+

𝜕V0
𝜕𝑥

}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}

}

, (8)

where superscript𝑚 denotes membrane components.
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The bending components can be expressed as
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𝜖
𝑓(𝑘)
𝑥𝑥

𝜖
𝑓(𝑘)
𝑦𝑦

𝛾
𝑓(𝑘)
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}
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}

}
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{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝜕𝜃
(𝑘)
𝑥

𝜕𝑥

𝜕𝜃
(𝑘)
𝑦

𝜕𝑦

𝜕𝜃
(𝑘)
𝑥

𝜕𝑦

+

𝜕𝜃
(𝑘)
𝑦

𝜕𝑥

}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}

}

, (9)

where superscript 𝑓 denotes flexural or bending components
and the membrane-bending coupling components for layers
2, 3, and 1 are, respectively, given as

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜖
𝑚𝑓(2)
𝑥𝑥

𝜖
𝑚𝑓(2)
𝑦𝑦

𝛾
𝑚𝑓(2)
𝑥𝑦

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

=

{
{

{
{

{

0

0

0

}
}

}
}

}

,

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜖
𝑚𝑓(3)
𝑥𝑥

𝜖
𝑚𝑓(3)
𝑦𝑦

𝛾
𝑚𝑓(3)
𝑥𝑦

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

ℎ2

2

𝜕𝜃
(2)
𝑥

𝜕𝑥

+

ℎ3

2

𝜕𝜃
(3)
𝑥

𝜕𝑥

ℎ2

2

𝜕𝜃
(2)
𝑦

𝜕𝑦

+

ℎ3

2

𝜕𝜃
(3)
𝑦

𝜕𝑦

ℎ2

2

(

𝜕𝜃
(2)
𝑥

𝜕𝑦

+

𝜕𝜃
(2)
𝑦

𝜕𝑥

)+

ℎ3

2

(

𝜕𝜃
(3)
𝑥

𝜕𝑦

+

𝜕𝜃
(3)
𝑦

𝜕𝑥

)

}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}

}

,

{
{
{
{
{

{
{
{
{
{

{

𝜖
𝑚𝑓(1)
𝑥𝑥

𝜖
𝑚𝑓(1)
𝑦𝑦

𝛾
𝑚𝑓(1)
𝑥𝑦

}
}
}
}
}

}
}
}
}
}

}

=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

−

ℎ2

2

𝜕𝜃
(2)
𝑥

𝜕𝑥

−

ℎ1

2

𝜕𝜃
(1)
𝑥

𝜕𝑥

−

ℎ2

2

𝜕𝜃
(2)
𝑦

𝜕𝑦

−

ℎ1

2

𝜕𝜃
(1)
𝑦

𝜕𝑦

−

ℎ2

2

(

𝜕𝜃
(2)
𝑥

𝜕𝑦

+

𝜕𝜃
(2)
𝑦

𝜕𝑥

)−

ℎ1

2

(

𝜕𝜃
(1)
𝑥

𝜕𝑦

+

𝜕𝜃
(1)
𝑦

𝜕𝑥

)

}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}

}

,

(10)

where superscript 𝑚𝑓 denotes membrane-flexural compo-
nents.

The present layer-wise formulation neglects the trans-
verse normal deformations, by assuming a constant trans-
verse displacement in every layer. Neglecting 𝜎(𝑘)𝑧 for each

orthotropic layer, the stress-strain relations in the fiber local
coordinate system can be expressed as

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝜎
(𝑘)
1

𝜎
(𝑘)
2

𝜏
(𝑘)
12

𝜏
(𝑘)
23

𝜏
(𝑘)
31

}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}

}

=

[

[

[

[

[

[

[

[

[

[

[

[

𝑄
(𝑘)
11 𝑄
(𝑘)
12 0 0 0

𝑄
(𝑘)
12 𝑄
(𝑘)
22 0 0 0

0 0 𝑄
(𝑘)
33 0 0

0 0 0 𝑄
(𝑘)
44 0

0 0 0 0 𝑄
(𝑘)
55

]

]

]

]

]

]

]

]

]

]

]

]

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝜀
(𝑘)
1

𝜀
(𝑘)
2

𝛾
(𝑘)
12

𝛾
(𝑘)
23

𝛾
(𝑘)
31

}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}

}

, (11)

where subscripts 1 and 2 are, respectively, the principalmiddle
surface directions, 3 is the direction normal to the middle
plane of the plate, and the reduced stiffness components,𝑄(𝑘)

𝑖𝑗
,

are given by

𝑄
(𝑘)

11 =
𝐸
(𝑘)
1

1 − ](𝑘)12 ]
(𝑘)
21

, 𝑄
(𝑘)

22 =
𝐸
(𝑘)
2

1 − ](𝑘)12 ]
(𝑘)
21

,

𝑄
(𝑘)

12 = ](𝑘)12 𝑄
(𝑘)

22 , 𝑄
(𝑘)

33 = 𝐺
(𝑘)

12 ,

𝑄
(𝑘)

44 = 𝐺
(𝑘)

23 , 𝑄
(𝑘)

55 = 𝐺
(𝑘)

31 ,

](𝑘)21 = ](𝑘)12
𝐸
(𝑘)
2

𝐸
(𝑘)
1

,

(12)

in which 𝐸(𝑘)1 , 𝐸(𝑘)2 , ](𝑘)12 , 𝐺
(𝑘)
12 , 𝐺

(𝑘)
23 , and 𝐺

(𝑘)
31 are material

properties of the lamina 𝑘. Note that shear correction factors
are not considered in the stress-strain laws, as they must be
done in the first-order shear deformation theories [21].

The stress-strain relations in the global 𝑥-𝑦-𝑧 coordinate
system can be obtained by coordinate transformation as

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝜎
(𝑘)
𝑥𝑥

𝜎
(𝑘)
𝑦𝑦

𝜏
(𝑘)
𝑥𝑦

𝜏
(𝑘)
𝑦𝑧

𝜏
(𝑘)
𝑧𝑥

}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}

}

=

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑄

(𝑘)

11 𝑄

(𝑘)

12 𝑄

(𝑘)

16 0 0

𝑄

(𝑘)

12 𝑄

(𝑘)

22 𝑄

(𝑘)

26 0 0

𝑄

(𝑘)

16 𝑄

(𝑘)

26 𝑄

(𝑘)

66 0 0

0 0 0 𝑄

(𝑘)

44 𝑄

(𝑘)

45

0 0 0 𝑄

(𝑘)

45 𝑄

(𝑘)

55

]

]

]

]

]

]

]

]

]

]

]

]

]

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝜀
(𝑘)
𝑥𝑥

𝜀
(𝑘)
𝑦𝑦

𝛾
(𝑘)
𝑥𝑦

𝛾
(𝑘)
𝑦𝑧

𝛾
(𝑘)
𝑧𝑥

}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}

}

. (13)

By considering 𝜃 as the angle between 𝑥-axis and 1-axis,
with 1-axis being the first principal material axis, connected
usually with fiber direction, the components 𝑄(𝑘)𝑖𝑗 can be
computed by coordinate transformation (see [13] for details).

The equations of motion of this layer-wise theory are
derived from the dynamic version of the principle of virtual
displacements. In the present work, only symmetric lam-
inates are considered; therefore, 𝑢0, V0, and related stress
resultants can be discarded. The virtual strain energy (𝛿𝑈),
the virtual kinetic energy (𝛿𝐾), and the virtual work done
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by applied forces (𝛿𝑉), assuming a three-layer laminate, are
given by

𝛿𝑈 = ∫

Ω0

3

∑

𝑘=1

{∫

ℎ𝑘/2

−ℎ𝑘/2

[𝜎𝑥𝑥 (𝑧𝛿𝜖
𝑓(𝑘)

𝑥𝑥 + 𝛿𝜖
𝑚𝑓(𝑘)

𝑥𝑥 )

+ 𝜎𝑦𝑦 (𝑧𝛿𝜖
𝑓(𝑘)

𝑦𝑦 + 𝛿𝜖
𝑚𝑓(𝑘)

𝑦𝑦 )

+ 𝜏𝑥𝑦 (𝑧𝛿𝛾
𝑓(𝑘)

𝑥𝑦 + 𝛿𝛾
𝑚𝑓(𝑘)

𝑥𝑦 )

+ 𝜏𝑥𝑧𝛿𝛾
(𝑘)

𝑥𝑧 + 𝜏𝑦𝑧𝛿𝛾
(𝑘)

𝑦𝑧 ] 𝑑𝑧}𝑑𝑥𝑑𝑦

= ∫

Ω0

3

∑

𝑘=1

(𝑁
(𝑘)

𝑥𝑥 𝛿𝜖
𝑚𝑓(𝑘)

𝑥𝑥 +𝑀
(𝑘)

𝑥𝑥 𝛿𝜖
𝑓(𝑘)

𝑥𝑥 + 𝑁
(𝑘)

𝑦𝑦 𝛿𝜖
𝑚𝑓(𝑘)

𝑦𝑦

+𝑀
(𝑘)

𝑦𝑦 𝛿𝜖
𝑓(𝑘)

𝑦𝑦 + 𝑁
(𝑘)

𝑥𝑦 𝛿𝛾
𝑚𝑓(𝑘)

𝑥𝑦 +𝑀
(𝑘)

𝑥𝑦 𝛿𝛾
𝑓(𝑘)

𝑥𝑦

+𝑄
(𝑘)

𝑥 𝛿𝛾
(𝑘)

𝑥𝑧 + 𝑄
(𝑘)

𝑦 𝛿𝛾
(𝑘)

𝑦𝑧 ) 𝑑𝑥 𝑑𝑦.

(14)

It should be noted that the integrals in the thickness direction
are now in the layer 𝑘 domain, from −ℎ𝑘/2 to ℎ𝑘/2. Consider

𝛿𝐾 = ∫

Ω0

3

∑

𝑘=1

∫

ℎ𝑘/2

−ℎ𝑘/2

𝜌
(𝑘)

× (u̇(𝑘)𝛿u̇(𝑘) + v̇(𝑘)𝛿v̇(𝑘) + ẇ(𝑘)𝛿ẇ(𝑘)) 𝑑𝑧 𝑑𝑥 𝑑𝑦,
(15)

where boldface quantities are vectors and (⋅) denotes time
differentiation. Finally, the virtual work is given as

𝛿𝑉 = −∫

Ω0

𝑞𝛿𝑤0𝑑𝑥 𝑑𝑦, (16)

where 𝛿 quantities are virtual,Ω0 denotes themidplane of the
laminate, 𝑞 is the external distributed load, and

(𝑁
(𝑘)

𝛼𝛽
,𝑀
(𝑘)

𝛼𝛽
) = ∫

ℎ𝑘/2

−ℎ𝑘/2

𝜎
(𝑘)

𝛼𝛽
(1, 𝑧) 𝑑𝑧𝑘,

𝑄
(𝑘)

𝛼 = ∫

ℎ𝑘/2

−ℎ𝑘/2

𝜏
(𝑘)

𝛼𝑧 𝑑𝑧𝑘,

(17)

where 𝛼, 𝛽 take the symbols 𝑥, 𝑦.
Substituting 𝛿𝑈, 𝛿𝐾, and 𝛿𝑉 into the virtual work

statement, using the fundamental lemma of the calculus
of variations, and integrating by parts to relieve from any
derivatives of the generalized displacements (see [13] for
details), the equations of motion with respect to 7 degrees of

freedom (𝑤0, 𝜃
(1)
𝑥 , 𝜃(1)𝑦 , 𝜃(2)𝑥 , 𝜃(2)𝑦 , 𝜃(3)𝑥 , and 𝜃(3)𝑦 ) are obtained.

Consider

𝛿𝑤0:
3

∑

𝑘=1

(

𝜕𝑄
(𝑘)
𝑥

𝜕𝑥

+

𝜕𝑄
(𝑘)
𝑦

𝜕𝑦

) − 𝑞 =

3

∑

𝑘=1

𝐼
(𝑘)

0 𝑤̈0,

𝛿𝜃
(1)

𝑥 :ℎ1
2

𝜕𝑁
(1)
𝑥𝑥

𝜕𝑥

−

𝜕𝑀
(1)
𝑥𝑥

𝜕𝑥

+

ℎ1

2

𝜕𝑁
(1)
𝑥𝑦

𝜕𝑦

−

𝜕𝑀
(1)
𝑥𝑦

𝜕𝑦

+ 𝑄
(1)

𝑥

= 𝐼
(1)

0 (
ℎ1ℎ2

4

̈
𝜃𝑥2 +

ℎ
2
1

4

̈
𝜃𝑥1) + 𝐼

(1)

2
̈
𝜃𝑥1,

𝛿𝜃
(1)

𝑦 :ℎ1
2

𝜕𝑁
(1)
𝑦𝑦

𝜕𝑦

−

𝜕𝑀
(1)
𝑦𝑦

𝜕𝑦

+

ℎ1

2

𝜕𝑁
(1)
𝑥𝑦

𝜕𝑥

−

𝜕𝑀
(1)
𝑥𝑦

𝜕𝑥

+ 𝑄
(1)

𝑦

= 𝐼
(1)

0 (
ℎ1ℎ2

4

̈
𝜃𝑦2 +

ℎ
2
1

4

̈
𝜃𝑦1) + 𝐼

(1)

2
̈
𝜃𝑦1,

𝛿𝜃
(2)

𝑥 :
ℎ2

2

𝜕𝑁
(1)
𝑥𝑥

𝜕𝑥

−

ℎ2

2

𝜕𝑁
(3)
𝑥𝑥

𝜕𝑥

−

𝜕𝑀
(2)
𝑥𝑥

𝜕𝑥

+

ℎ2

2

𝜕𝑁
(1)
𝑥𝑦

𝜕𝑦

−

ℎ2

2

𝜕𝑁
(3)
𝑥𝑦

𝜕𝑦

−

𝜕𝑀
(2)
𝑥𝑦

𝜕𝑦

+ 𝑄
(2)

𝑥

= 𝐼
(1)

0 (
ℎ
2
2

4

̈
𝜃𝑥2 +

ℎ1ℎ2

4

̈
𝜃𝑥1) + 𝐼

(3)

0 (
ℎ
2
2

4

̈
𝜃𝑥2 +

ℎ2ℎ3

4

̈
𝜃𝑥3)

+ 𝐼
(2)

2
̈
𝜃𝑥2,

𝛿𝜃
(2)

𝑦 :ℎ2
2

𝜕𝑁
(1)
𝑦𝑦

𝜕𝑦

−

ℎ2

2

𝜕𝑁
(3)
𝑦𝑦

𝜕𝑦

−

𝜕𝑀
(2)
𝑦𝑦

𝜕𝑦

+

ℎ2

2

𝜕𝑁
(1)
𝑥𝑦

𝜕𝑥

−

ℎ2

2

𝜕𝑁
(3)
𝑥𝑦

𝜕𝑥

−

𝜕𝑀
(2)
𝑥𝑦

𝜕𝑥

+ 𝑄
(2)

𝑦

= 𝐼
(1)

0 (
ℎ
2
2

4

̈
𝜃𝑦2 +

ℎ1ℎ2

4

̈
𝜃𝑦1) + 𝐼

(3)

0 (
ℎ
2
2

4

̈
𝜃𝑦2 +

ℎ2ℎ3

4

̈
𝜃𝑦3)

+ 𝐼
(2)

2
̈
𝜃𝑦2,

𝛿𝜃
(3)

𝑥 : −
ℎ3

2

𝜕𝑁
(3)
𝑥𝑥

𝜕𝑥

−

𝜕𝑀
(3)
𝑥𝑥

𝜕𝑥

−

ℎ3

2

𝜕𝑁
(3)
𝑥𝑦

𝜕𝑦

−

𝜕𝑀
(3)
𝑥𝑦

𝜕𝑦

+ 𝑄
(3)

𝑥

= 𝐼
(3)

0 (
ℎ2ℎ3

4

̈
𝜃𝑥2 +

ℎ
2
3

4

̈
𝜃𝑥3) + 𝐼

(3)

2
̈
𝜃𝑥3,

𝛿𝜃
(3)

𝑦 :
ℎ3

2

𝜕𝑁
(3)
𝑦𝑦

𝜕𝑦

−

𝜕𝑀
(3)
𝑦𝑦

𝜕𝑦

−

ℎ3

2

𝜕𝑁
(3)
𝑥𝑦

𝜕𝑥

−

𝜕𝑀
(3)
𝑥𝑦

𝜕𝑥

+ 𝑄
(3)

𝑦

= 𝐼
(3)

0 (
ℎ2ℎ3

4

̈
𝜃𝑦2 +

ℎ
2
3

4

̈
𝜃𝑦3) + 𝐼

(3)

2
̈
𝜃𝑦3,

(18)

where

(𝐼
(𝑘)

0 , 𝐼
(𝑘)

2 ) = ∫

ℎ𝑘/2

−ℎ𝑘/2

𝜌
(𝑘)
(1, 𝑧
2
) 𝑑𝑧, (19)
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where 𝜌𝑘, the specificmass of thematerial of the 𝑘 is layer and
ℎ𝑘 is the thickness of the 𝑘th layer.

3. The Generalized Differential
Quadrature Method

The differential quadrature (DQ) method was presented by
Bellman and his associates in the early 1970s [28]. It is a
numerical discretization technique for the approximation of
derivatives. The DQ method was initiated from the idea
of conventional integral quadrature. In fact, one problem
which arises frequently in structural mechanics and in many
other engineering problems is the evaluation of the integral
∫

𝑏

𝑎
𝑓(𝑥)𝑑𝑥. If 𝐹 is a function such that 𝑑𝐹/𝑑𝑥 = 𝑓, then the

value of the given integral is 𝐹(𝑏) − 𝐹(𝑎). Unfortunately, in
practical problems, it is extremely difficult, and most of the
times impossible, to obtain an explicit expression for 𝐹. The
values of 𝑓, perhaps, can be known at a discrete set of points,
and, in this situation, a numerical approach is essential.

Following the idea of integral quadrature, Bellman et al.
[28] suggested that the first-order derivative of the function
𝑓(𝑥) with respect to 𝑥 at a grid point 𝑥𝑖 is approximated by a
linear sum of all the functional values in the whole domain as

𝑑𝑓 (𝑥)

𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖

=

𝑁

∑

𝑗=1

𝑎
𝑥,(1)

𝑖𝑗 𝑓 (𝑥𝑗) for 𝑖 = 1, 2, . . . , 𝑁, (20)

where 𝑎𝑥,(1)
𝑖𝑗

represent the weighting coefficients,𝑁 is the total
number of grid points 𝑥1, 𝑥2, . . . , 𝑥𝑁 in the whole domain,
and 𝑓(𝑥𝑗) is the calculated value of 𝑓(𝑥) at the point 𝑥 = 𝑥𝑗.
However, the weighting coefficients which were used depend,
in the Bellman approach, on the number of grid points and
the type of discretization that was used. Some years later the
DQ approach has been extended by Shu [29], who introduced
the generalized differential quadrature (GDQ) method. In
[29], the weighting coefficients calculation is performed
through recursive formulae, and they are independent of the
number of grid points 𝑁 and the discretization type. The
interested reader can find a brief review onGDQ applications
in [30–40].

To compute the first-order weighting coefficients 𝑎𝑥,(1)
𝑖𝑗

,
the following algebraic formulae are derived:

𝑎
𝑥,(1)

𝑖𝑗 =

𝐿
(1)
(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝐿
(1)
(𝑥𝑗)

for 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗

𝑎
𝑥,(1)

𝑖𝑖 = −

𝑁

∑

𝑘=1,𝑘 ̸= 𝑖

𝑎
(1)

𝑖𝑘
for 𝑖 = 𝑗,

(21)

where 𝐿(1)(𝑥𝑘) = ∏
𝑁

𝑗=1,𝑗 ̸= 𝑘(𝑥𝑘 −𝑥𝑗), which are the derivatives
of the Lagrange polynomials 𝐿(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) ⋅ ⋅ ⋅ (𝑥 −
𝑥𝑁) = ∏

𝑁

𝑗=1(𝑥 − 𝑥𝑗). As reported above, Shu [29] found
out a recurrence formulation for the weighting coefficients

calculation of the second- and higher-order derivatives.
Consider

𝑎
𝑥,(𝑛)

𝑖𝑗 = 𝑛(𝑎
𝑥,(𝑛−1)

𝑖𝑖 𝑎
𝑥,(1)

𝑖𝑗 −

𝑎
𝑥,(𝑛−1)

𝑖𝑗

𝑥𝑖 − 𝑥𝑗

)

for 𝑖 ̸= 𝑗, 𝑛 = 2, 3, . . . , 𝑁 − 1,

𝑎
𝑥,(𝑛)

𝑖𝑖 = −

𝑁

∑

𝑘=1,𝑘 ̸= 𝑖

𝑎
𝑥,(𝑛)

𝑖𝑘
for 𝑖 = 𝑗.

(22)

So any derivative of an order greater than the first can be
written as

𝑑
(𝑛)
𝑓 (𝑥)

𝑑𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖

=

𝑁

∑

𝑗=1

𝑎
𝑥,(𝑛)

𝑖𝑗 𝑓 (𝑥𝑗)

for 𝑖 = 1, 2, . . . , 𝑁, 𝑛 = 2, 3, . . . , 𝑁 − 1.

(23)

The previous derivative discretization was presented for the
one-dimension problems only. Nevertheless, the simple one-
dimensional case can be directly extended to the multidi-
mensional one for any regular shape, such as a rectangular
or circular. Given a two-dimensional physical system, in
Cartesian coordinates, described by a function 𝑓(𝑥, 𝑦), the
problem values depend on the nodal coordinates 𝑥 and
𝑦. Since GDQ works with regular grid along the main
axes, 𝑁 and 𝑀 will indicate the points along 𝑥 and 𝑦,
respectively. Using the discretization of the derivatives in the
one-dimensional case (23), a generic higher-order derivative
along 𝑥 and 𝑦 for the two-dimensional case can be reported.
Consider

𝜕
(𝑛)
𝑓 (𝑥, 𝑦)

𝜕𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖 , 𝑦=𝑦𝑗

=

𝑁

∑

𝑘=1

𝑎
𝑥,(𝑛)

𝑖𝑘
𝑓 (𝑥𝑘, 𝑦𝑗)

for 𝑖 = 1, 2, . . . , 𝑁, 𝑛 = 1, 2, . . . , 𝑁 − 1,

𝜕
(𝑚)
𝑓 (𝑥, 𝑦)

𝜕𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖 , 𝑦=𝑦𝑗

=

𝑀

∑

𝑙=1

𝑎
𝑦,(𝑚)

𝑗𝑙
𝑓 (𝑥𝑖, 𝑦𝑙)

for 𝑗 = 1, 2, . . . ,𝑀, 𝑚 = 1, 2, . . . ,𝑀 − 1,

(24)

where 𝑎𝑥,(𝑛)
𝑖𝑘

and 𝑎𝑦,(𝑚)
𝑗𝑙

are the weighting coefficients of order
𝑛 and 𝑚 along 𝑥 and 𝑦, respectively. Moreover, the mixed
derivative can be written in the same way as (24). Consider

𝜕
(𝑛+𝑚)

𝑓 (𝑥, 𝑦)

𝜕𝑥
𝑛
𝜕𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖 , 𝑦=𝑦𝑗

=

𝑁

∑

𝑘=1

𝑎
𝑥,(𝑛)

𝑖𝑘
(

𝑀

∑

𝑙=1

𝑎
𝑦,(𝑚)

𝑗𝑙
𝑓 (𝑥𝑘, 𝑦𝑙))

for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀, 𝑛 = 1, 2, . . . , 𝑁 − 1,

𝑚 = 1, 2, . . . ,𝑀 − 1,

(25)

where 𝑎𝑥,(𝑛)
𝑖𝑘

and 𝑎𝑦,(𝑚)
𝑗𝑙

have the same meaning in (24).
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Figure 2: First 4modes of vibration of four-layer [0∘/90∘/90∘/0∘] simply supported laminated plate (𝑤 = (𝑤𝑎2/ℎ)√𝜌/𝐸2, ℎ/𝑎 = 0.2),𝐸1/𝐸2 =
30, grid 19 × 19 points.

3.1. Grid Distributions. As it has been widely proven [34–
37], the GDQ numerical accuracy strongly depends on the
grid distribution choice for a certain numerical problem. On
the one hand, the natural and simplest choice of uniform
grids does not lead to stable and accurate results for any
GDQcomputation; on the other hand, theChebyshev-Gauss-
Lobatto (C-G-L) grid point distribution gives accurate results
in most of cases. In the numerical results proposed in

this paper a C-G-L grid distribution is considered for both
directions 𝑥 and 𝑦. Consider

𝑥𝑖 =
1

2

(1 − cos( 𝑖 − 1
𝑁 − 1

)𝜋) ,

𝑦𝑗 =
1

2

(1 − cos(
𝑗 − 1

𝑀 − 1

)𝜋) ,

(26)
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where𝑁,𝑀 are the total number of points in the given direc-
tions 𝑥, 𝑦, respectively.

3.2. The Static Problem. The partial differential system of
equations developed in Section 2 has been discretised and
numerically solved using the GDQ method. Since GDQ
allows turning any derivative in an algebraic expression, the
fundamental system of equations is solved in its strong form
directly, within its boundary conditions. A static boundary
problem can be indicated as follows:

ℓ (𝑢 (x)) + 𝑞 (x) = 0 in Ω,

ℓ𝐵 (𝑢 (x)) = g on 𝜕Ω,
(27)

where ℓ is a partial differential operator and contains all the
spatial derivatives of the problem with respect to a Cartesian
coordinate system x. The model degrees of freedom are 𝑢(x),
and the external forces acting on the domainΩ are indicated
by 𝑞(x). It is obvious that the differential problem cannot
be solved without its boundary conditions, where ℓ𝐵 is the
differential operator related to the boundary conditions of the
given system of equations and g are the boundary loads.

Once the boundary-value problem (27) is discretised by
GDQ the following set of algebraic equations is obtained:

LU +Q = 0,

L𝐵U = G,
(28)

whereU is a vector representing a set of unknown functional
values at all the interior points,L is amatrix carried out from
the GDQ method, and Q, G are the known vectors arising
from the functions 𝑞(x) and g.

In order to obtain the global stiffness matrix of the
physical problem under study, the discretised boundary
conditions must be embedded into the discrete fundamental
system of equations. For the sake of conciseness, the global
static system (28) is reported in matrix form as follows:

KU = Q, (29)

where Q is the external boundary and domain forces and K
is the global stiffness matrix which can be inverted leading
to the problem solution. The interested reader can refer to
the paper by Viola et al. [39] for further details about static
problem resolutions of plates and shells.

3.3. The Eigenproblem. Given a generic set of equations
of motion, the linear eigenvalue problem can be achieved
eliminating the external forces, as it is shown in the following:

ℓ (𝑢 (x, 𝑡)) = 𝜌𝑢̈ (x, 𝑡) , (30)

where the right-hand term represents the inertia term, given
by the product of density 𝜌 and the acceleration term 𝑢̈(x, 𝑡).
It is noted that the symbol ̈ stands for the second derivative
respect to time of a given variable. In general, an eigen-
problem seeks particular numbers, called eigenvalues (𝜆),
and certain vectors, called eigenvectors𝑈(x). Mathematically

speaking, the eigenvalue problem is obtained from (30)
setting as follows:

𝑢 (x, 𝑡) = 𝑈 (x) 𝑒𝑖𝜆𝑡. (31)

Equation (31) indicates that variable separation technique is
employed. In fact, the problem degree of freedom 𝑢 which
is function of space and time is given by the product of two
functions, which are functions of space and time separately.
Hence, substituting relation (31) into (30), a generalized
eigenvalue problem can be achieved. For the sake of com-
pleteness, it is presented with its boundary conditions as

ℓ (𝑈 (x)) + 𝜌𝜆2𝑈 (x) = 0 in Ω,

ℓ𝐵𝑈 (x) = 0 on 𝜕Ω.
(32)

Applying GDQ rule, the eigenvalue problem (32) can be writ-
ten in discretised form as follows:

LU + 𝜆2MU = 0,

L𝐵U = 0,

(33)

where M indicates the mass matrix of the structural system
under study. Solving the discretised system (33), the eigenval-
ues 𝜆 and eigenvectorsU of the given system can be obtained.
Finally, the reader can refer to [38] for solutions of eigenvalue
problems regarding plates and shells.

4. Numerical examples

4.1. Static Problems of Cross-Ply Laminated Plates. A simply
supported square laminated plate of side 𝑎 and thickness ℎ
is composed of four equal layers oriented at [0∘/90∘/90∘/0∘].
The plate is subjected to a sinusoidal vertical pressure of
the form 𝑝𝑧 = 𝑃 sin(𝜋𝑥/𝑎) sin(𝜋𝑦/𝑎) with the origin of the
coordinate system located at the lower left corner on the
midplane and 𝑃 the maximum load (at the plate center).

The orthotropic material properties are given by 𝐸1 =
25.0𝐸2, 𝐺12 = 𝐺13 = 0.5𝐸2, 𝐺23 = 0.2𝐸2, and ]12 = 0.25.

The in-plane displacements, the transverse displace-
ments, the normal stresses, and the in-plane and transverse
shear stresses are presented in normalized form as

𝑤 =

10
2
𝑤 (𝑎/2, 𝑎/2, 0) ℎ

3
𝐸2

𝑃𝑎
4

,

𝜎𝑥𝑥 =
𝜎𝑥𝑥 (𝑎/2, 𝑎/2, ℎ/2) ℎ

2

𝑃𝑎
2

,

𝜎𝑦𝑦 =

𝜎𝑦𝑦 (𝑎/2, 𝑎/2, ℎ/4) ℎ
2

𝑃𝑎
2

, 𝜏𝑥𝑧 =

𝜏𝑥𝑧(0,𝑎/2,0)ℎ

𝑃𝑎

.

(34)

In Table 1 for the present layer-wise theory, using 7×7 up
to 19 × 19 grid points, the results with higher-order solutions
by Akhras et al. [41] and Reddy [11], FSDT solutions by Reddy
and Chao [42], and an exact solution by Pagano [43] are
compared. Furthermore, the numerical computations by the
authors using radial basis functions (RBFs) collocation, by the
authors with Reddy’s theory [44], and a layer-wise theory [45]
are compared too. The present layer-wise displacements are
in excellent agreement for thinner or thicker plates. Highly
accurate normal stresses and transverse shear stresses are
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Table 1: [0∘/90∘/90∘/0∘] square laminated plate under sinusoidal load, applied at (𝑧 = ℎ/2).

𝑎/ℎ Method 𝑤 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏𝑧𝑥

4

HSDT finite strip method [41] 1.8939 0.6806 0.6463 0.2109
HSDT [11] 1.8937 0.6651 0.6322 0.2064
FSDT [42] 1.7100 0.4059 0.5765 0.1398

Elasticity [43] 1.954 0.720 0.666 0.270
Ferreira et al. [44] (𝑁 = 21) 1.8864 0.6659 0.6313 0.1352

Ferreira (layer-wise) [45] (𝑁 = 21) 1.9075 0.6432 0.6228 0.2166
Present (7 × 7 grid) 1.9087 0.6423 0.6258 0.2173
Present (11 × 11 grid) 1.9091 0.6429 0.6265 0.2173
Present (15 × 15 grid) 1.9091 0.6429 0.6265 0.2173
Present (19 × 19 grid) 1.9091 0.6429 0.6265 0.2173

10

HSDT finite strip method [41] 0.7149 0.5589 0.3974 0.2697
HSDT [11] 0.7147 0.5456 0.3888 0.2640
FSDT [42] 0.6628 0.4989 0.3615 0.1667

Elasticity [43] 0.743 0.559 0.403 0.301
Ferreira et al. [44] (𝑁 = 21) 0.7153 0.5466 0.4383 0.3347

Ferreira (layer-wise) [45] (𝑁 = 21) 0.7309 0.5496 0.3956 0.2888
Present (7 × 7 grid) 0.7300 0.5481 0.3963 0.2993
Present (11 × 11 grid) 0.7303 0.5487 0.3966 0.2993
Present (15 × 15 grid) 0.7303 0.5487 0.3966 0.2993
Present (19 × 19 grid) 0.7303 0.5487 0.3966 0.2993

100

HSDT finite strip method [41] 0.4343 0.5507 0.2769 0.2948
HSDT [11] 0.4343 0.5387 0.2708 0.2897
FSDT [42] 0.4337 0.5382 0.2705 0.1780

Elasticity [43] 0.4347 0.539 0.271 0.339
Ferreira et al. [44] (𝑁 = 21) 0.4365 0.5413 0.3359 0.4106

Ferreira (layer-wise) [45] (𝑁 = 21) 0.4374 0.5420 0.2697 0.3232
Present (7 × 7 grid) 0.4345 0.5385 0.2708 0.3359
Present (11 × 11 grid) 0.4348 0.5391 0.2711 0.3359
Present (15 × 15 grid) 0.4348 0.5391 0.2711 0.3359
Present (19 × 19 grid) 0.4348 0.5391 0.2711 0.3359

Table 2: Square laminated plate under uniform load for 𝑅 = 5.

𝑅 Method 𝑤 𝜎
1

𝑥 𝜎
2

𝑥 𝜎
3

𝑥 𝜏
1

𝑥𝑧 𝜏
2

𝑥𝑧

5

HSDT [47] 256.13 62.38 46.91 9.382 3.089 2.566
FSDT [47] 236.10 61.87 49.50 9.899 3.313 2.444

CLT 216.94 61.141 48.623 9.783 4.5899 3.386
Ferreira and Barbosa [48] 258.74 59.21 45.61 9.122 3.593 3.593
Ferreira (𝑁 = 15) [21] 257.38 58.725 46.980 9.396 3.848 2.839

Exact [46] 258.97 60.353 46.623 9.340 4.3641 3.2675
HSDT [44] (𝑁 = 11) 253.6710 59.6447 46.4292 9.2858 3.8449 1.9650
HSDT [44] (𝑁 = 15) 256.2387 60.1834 46.8581 9.3716 4.2768 2.2227
HSDT [44] (𝑁 = 21) 257.1100 60.3660 47.0028 9.4006 4.5481 2.3910
Present (7 × 7 grid) 257.3663 59.8307 46.4128 9.2826 3.8840 2.6959
Present (11 × 11 grid) 258.1305 60.0447 46.4237 9.2847 4.0603 2.1679
Present (15 × 15 grid) 258.1720 60.0772 46.4008 9.2802 4.0916 2.0593
Present (19 × 19 grid) 258.1794 60.0889 46.3925 9.2785 4.0979 2.0386
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Table 3: Square laminated plate under uniform load for 𝑅 = 10.

𝑅 Method 𝑤 𝜎
1

𝑥 𝜎
2

𝑥 𝜎
3

𝑥 𝜏
1

𝑥𝑧 𝜏
2

𝑥𝑧

10

HSDT [47] 152.33 64.65 51.31 5.131 3.147 2.587
FSDT [47] 131.095 67.80 54.24 4.424 3.152 2.676

CLT 118.87 65.332 48.857 5.356 4.3666 3.7075
Ferreira and Barbosa [48] 159.402 64.16 47.72 4.772 3.518 3.518
Ferreira (𝑁 = 15) [21] 158.55 62.723 50.16 5.01 3.596 3.053

Exact [46] 159.38 65.332 48.857 4.903 4.0959 3.5154
Third-order [44] (𝑁 = 11) 153.0084 64.7415 49.4716 4.9472 2.7780 1.8207
Third-order [44] (𝑁 = 15) 154.2490 65.2223 49.8488 4.9849 3.1925 2.1360
Third-order [44] (𝑁 = 21) 154.6581 65.3809 49.9729 4.9973 3.5280 2.3984

Present (7 × 7 grid) 158.1023 64.5969 48.7204 4.8720 3.7227 3.1570
Present (11 × 11 grid) 158.8400 64.9304 48.6523 4.8652 3.9394 2.4751
Present (15 × 15 grid) 158.8945 64.9907 48.6005 4.8601 3.9772 2.3470
Present (19 × 19 grid) 158.9036 65.0106 48.5834 4.8583 3.9841 2.3263

Table 4: Square laminated plate under uniform load for 𝑅 = 15.

𝑅 Method 𝑤 𝜎
1

𝑥 𝜎
2

𝑥 𝜎
3

𝑥 𝜏
1

𝑥𝑧 𝜏
2

𝑥𝑧

15

HSDT [47] 110.43 66.62 51.97 3.465 3.035 2.691
FSDT [47] 90.85 70.04 56.03 3.753 3.091 2.764

CLT 81.768 69.135 55.308 3.687 4.2825 3.8287
Ferreira and Barbosa [48] 121.821 65.650 47.09 3.140 3.466 3.466
Ferreira (𝑁 = 15) [21] 121.184 63.214 50.571 3.371 3.466 3.099

Exact [46] 121.72 66.787 48.299 3.238 3.9638 3.5768
Third-order [44] (𝑁 = 11) 113.5941 66.3646 49.8957 3.3264 2.1686 1.5578
Third-order [44] (𝑁 = 15) 114.3874 66.7830 50.2175 3.3478 2.6115 1.9271
Third-order [44] (𝑁 = 21) 114.6442 66.9196 50.3230 3.3549 3.0213 2.2750

Present (7 × 7 grid) 120.5292 65.8690 48.2620 3.2175 3.6285 3.3561
Present (11 × 11 grid) 121.2654 66.3110 48.1025 3.2068 3.8616 2.6168
Present (15 × 15 grid) 121.3247 66.3973 48.0221 3.2015 3.9001 2.4901
Present (19 × 19 grid) 121.3340 66.4233 47.9984 3.1999 3.9063 2.4731

Table 5: The normalized fundamental frequency of the simply supported cross-ply laminated square plate [0∘/90∘/90∘/0∘] (𝑤 =

(𝑤𝑎
2
/ℎ)√𝜌/𝐸2, ℎ/𝑎 = 0.2).

Method Grid 𝐸1/𝐸2

10 20 30 40
Liew et al. [50] 8.2924 9.5613 10.320 10.849
Exact (Khdeir and Librescu) [49] 8.2982 9.5671 10.326 10.854

Present
11 × 11 8.5846 9.8384 10.5695 11.0649
15 × 15 8.5846 9.8384 10.5696 10.0649
19 × 19 8.5846 9.8384 10.5695 10.0649

also obtained. It should be noted that the transverse shear
stresses are directly obtained by the constitutive relations, not
from the equations of equilibrium, so no recovery procedure
has been employed. The thickness-stretching approach is
important for thicker plates, as our approach produces
the best results for transverse displacements, without shear
correction.

4.2. Three-Layer Square Sandwich Plate in Bending, under
Uniform Load. A simply supported sandwich square plate,
under a uniform transverse load, is considered. This is the
classical sandwich example of Srinivas [46]. The material

properties of the sandwich core are expressed in the stiffness
matrix, 𝑄core, as

𝑄core

=

[

[

[

[

[

[

0.999781 0.231192 0 0 0

0.231192 0.524886 0 0 0

0 0 0.262931 0 0

0 0 0 0.266810 0

0 0 0 0 0.159914

]

]

]

]

]

]

.

(35)
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Skins material properties are related to core properties by a
factor 𝑅 as 𝑄skin = 𝑅𝑄core.

Transverse displacement and stresses are normalized
through factors

𝑤 = 𝑤(

𝑎

2

,

𝑎

2

, 0)

0.999781

ℎ𝑞

,

𝜎
1

𝑥 =
𝜎
(1)
𝑥 (𝑎/2, 𝑎/2, −ℎ/2)

𝑞

, 𝜎
2

𝑥 =
𝜎
(1)
𝑥 (𝑎/2, 𝑎/2, −2ℎ/5)

𝑞

,

𝜎
3

𝑥 =
𝜎
(2)
𝑥 (𝑎/2, 𝑎/2, −2ℎ/5)

𝑞

,

𝜎
1

𝑦 =

𝜎
(1)
𝑦 (𝑎/2, 𝑎/2, −ℎ/2)

𝑞

, 𝜎
2

𝑦 =

𝜎
(1)
𝑦 (𝑎/2, 𝑎/2, −2ℎ/5)

𝑞

,

𝜎
3

𝑦 =

𝜎
(2)
𝑦 (𝑎/2, 𝑎/2, −2ℎ/5)

𝑞

,

𝜏
1

𝑥𝑧 =
𝜏
(2)
𝑥𝑧 (0, 𝑎/2, 0)

𝑞

, 𝜏
2

𝑥𝑧 =
𝜏
(2)
𝑥𝑧 (0, 𝑎/2, −2ℎ/5)

𝑞

.

(36)

Transverse displacement and stresses for a sandwich plate are
indicated in Tables 2, 3, and 4 and compared with various
sources, for three 𝑅 ratios. This present approach results are
in excellent agreement both in transverse displacement and
transverse shear stresses. In particular for higher values of
𝑅, the present formulation computes more accurate results
than those of Pandya and kant [47]. Some other sources
such as laminated shell finite elements [48], multiquadrics
[21], and third-order formulation presented by Ferreira et al.
[44] are compared. In all cases, the lesson learned is that
layer-wise approach should be used instead of ESL theories
in the analysis of sandwich soft-core plates, where the skin
properties are much higher than core properties. The present
technique shows that the thickness-stretching approach is
important for thicker plates.

4.3. Free Vibration Problems of Cross-Ply Laminated Plates. In
this example, all layers of the laminate are assumed to be of
the same thickness and density andmade of the same linearly
elastic compositematerial.The followingmaterial parameters
of a layer are used: 𝐸1/𝐸2 = 10, 20, 30, or 40; 𝐺12 = 𝐺13 =
0.6𝐸2; 𝐺3 = 0.5𝐸2; ]12 = 0.25. The subscripts 1 and 2 denote
the directions normal and transverse to the fiber direction in
a lamina, which may be oriented at an angle to the plate axes.
The ply angle of each layer is measured from the global 𝑥-axis
to the fiber direction.

The example under consideration is a simply sup-
ported square plate with a cross-ply lamination scheme
[0
∘
/90
∘
/90
∘
/0
∘
]. The thickness and length of the plate are

denoted by ℎ and 𝑎, respectively. The thickness-to-span ratio
ℎ/𝑎 = 0.2 is employed in the computation. Table 5 lists
the fundamental frequency of the simply supported laminate
made of various modulus ratios of 𝐸1/𝐸2. Figure 2 illustrates
the modes of vibration for 𝐸1/𝐸2 = 40 with 15 × 15 grid

points. It is found that the present meshless results are in
very close agreement with the values of [49] and themeshfree
results of Liew et al. [50] based on the FSDT. The small
differences may be due to the consideration of the through-
the-thickness deformations in the present formulation.

5. Conclusions

The first-order and the third-order shear deformation the-
ories are laminate-wise, with laminate degrees of freedom,
where all layers have the same rotations. Layer-wise formula-
tions can better accommodate the deformation behaviour of
some laminates, in particular for sandwich laminates, where
core and skin materials are so different.

In this paper the static and free vibration analysis of com-
posite laminated plates by the use of generalized differential
quadrature and using a layer-wise theory with independent
rotations in each layer is performed.

The equations of motion were derived and interpolated;
moreover, boundary conditions interpolation was schemati-
cally formulated.

Finally, composite laminated plate and sandwich plate
were considered for testing the present methodology. The
obtained results show an excellent accuracy for all cases.
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