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We develop the expansion method of singular integral equation (SIE) for hypersingular integral equation (HSIE). Relating the
hypersingular integrals to Cauchy principal-value integrals, we interpolate the kernel and the density functions to the truncated
Chebyshev series of the second kind. The corresponding convergence results for the functions 𝑓 ∈ 𝐶ℓ([−1, 1]) and 𝐾(𝑡, 𝑥) ∈
𝐶ℓ([−1, 1] × [−1, 1]), ℓ ≥ 1, are derived in an appropriate 𝐿

2
[−1, 1] norm to the true solution of the weight function. Numerical

examples are also presented to validate the theoretical findings.

1. Introduction

The integral equation is defined as an equation with an
unknown function that appears under the integral sign.These
equations could be classified by the order of singularity [1].
Singular integral has been widely used and well developed
[2–4]. A wealth of the literature on applications related to
the numerical evaluation of hypersingular integral equations
HSIEs could be found in [5–10]. This paper focuses on one-
dimensional singular integral equations (SIEs) found in vari-
ousmixed boundary value problems of mathematical physics
and engineering such as isotropic elastic bodies involving
cracks, aerodynamics, hydrodynamics, elasticity, and other
related areas.

Let us consider the hypersingular integral equation of the
following form:

1

𝜋
=∫
1

−1

𝑄 (𝑡)

(𝑡 − 𝑥)2
𝑑𝑡 + ∫

1

−1

𝐾 (𝑡, 𝑥)𝑄 (𝑡) 𝑑𝑡 = 𝑓 (𝑥) ,

𝑥 ∈ (−1, 1) ,

(1)

where 𝑓(𝑥) is a given function, the unknown function 𝑄
satisfies the boundary conditions 𝑄(±1) = 0, and the kernel
function𝐾(𝑡, 𝑥) satisfies a Hölder continuous first-derivative
condition. The improper integral in the left side =∫ is defined

as the finite part of the strongly singular integral in the sense
of Hadamard which is defined as [11]

=∫
1

−1

𝑓 (𝑡) 𝑑𝑡

(𝑡 − 𝑥)2
= lim
𝜀→0

[(∫
𝑥−𝜀

−1

+∫
1

𝑥+𝜀

)
𝑓 (𝑡) 𝑑𝑡

(𝑡 − 𝑥)2
−
2𝑓 (𝑥)

𝜀
] .

(2)

One of the main concepts in the derivations is that the higher
order singularity could be obtained from a lower order sin-
gularity by the accepted exchangeability of integration and
differentiation [12]:

=∫
1

−1

𝑓 (𝑡)

(𝑡 − 𝑥)2
𝑑𝑥 =

𝑑

𝑑𝑥
−∫
1

−1

𝑓 (𝑡)

(𝑡 − 𝑥)
𝑑𝑡, 𝑥 ∈ (−1, 1) . (3)

The objective of this paper is to develop an expansionmethod
of HSIE in (1), for an effective error estimate, that is simple
and easy to use. The numerical solution of HSIE of the first
kind is given in Section 2. Section 3 presents the convergence
of the numerical method in the class of function𝐻𝛼([−1, 1])
and 𝐿

2
([−1, 1]). Moreover, the numerical results in Section 4

show that the constructed technique is fast and provides
excellent accuracy where the error is almost zero. Section 5
presents the conclusion of this paper.
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2. Description of the General Method

Direct numerical treatment of (1) is not simple. Many re-
searchers applied the classical method by approximating the
unknown function 𝑄 using the finite sum of Chebyshev
polynomial of the second kind of the form:

𝑄
𝑛 (𝑡) = √(1 − 𝑡

2)
𝑛

∑
𝑖=0

𝐶
𝑖
𝑈
𝑖 (𝑡) , |𝑡| < 1, (4)

where 𝐶
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑛, are the unknown coefficients and

𝑈
𝑛
(𝑡) is the Chebyshev polynomial of the second kind:

𝑈
𝑛 (𝑡) =

sin (𝑛 + 1) 𝜃
sin 𝜃

, 𝑡 = cos 𝜃, 0 ≤ 𝜃 ≤ 𝜋. (5)

The second kind Chebyshev polynomial is orthogonal on
[−1, 1] with the weight 𝑤(𝑡) = √1 − 𝑡2 means

∫
1

−1

√1 − 𝑡2𝑈
𝑖 (𝑡) 𝑈𝑗 (𝑡) 𝑑𝑡 =

𝜋

2
𝛿
𝑖𝑗
, (6)

where 𝛿
𝑖𝑗
is the Kronecker delta and the recurrence relation

is defined as follows:
𝑈
𝑛 (𝑡) = 2𝑡𝑈𝑛−1 (𝑡) − 𝑈𝑛−2 (𝑡) , (7)

with the initial values 𝑈
0
(𝑡) = 1 and 𝑈

1
(𝑡) = 2𝑡.

One could look for the hypersingular kernel in (1) in the
form of the series approximation of the form [5]

1

(𝑡 − 𝑥)2
≈ −2
𝑚

∑
𝑗=0

(𝑗 + 1)𝑈
𝑗 (𝑥)𝑈𝑗 (𝑡) , (8)

while the regular kernel

𝐾 (𝑡, 𝑥) =

𝑝

∑
𝑟=0

𝜌
𝑟 (𝑥)𝑈𝑟 (𝑡) , (9)

substituting (4), (8), and (9) into (1) and using the orthogonal
property in (6) yield

𝑛

∑
𝑖=0

𝐶
𝑖
[− (𝑖 + 1)𝑈𝑖 (𝑥) +

𝜋

2
𝜌
𝑖 (𝑥)] = 𝑓 (𝑥) . (10)

From the approximation (9) and by applying the scalar prod-
uct to the functions 𝑈

𝑗
(𝑡) (𝑗 = 0, 1, . . . , 𝑛) and integrating

both sides with respect to 𝑡, we obtain the linear system

𝜌
𝑗 (𝑥) =

2

𝜋
∫
1

−1

√1 − 𝑡2𝐾 (𝑡, 𝑥)𝑈𝑗 (𝑡) 𝑑𝑡. (11)

Choosing the roots of 𝑇
𝑛+1
(𝑥) as the collocation points 𝑥

𝑗

along the interval [−1, 1], which are

𝑥
𝑗
= cos(

2𝑗 − 1

2 (𝑛 + 1)
𝜋) , 𝑗 = 0, 1, . . . , 𝑛, (12)

one could reduce initial integral equation (1) to the finite
linear algebraic system of 𝑛 + 1 linear equations with 𝑛 + 1
unknown coefficients 𝐶

𝑖
of the form

𝑛

∑
𝑖=0

𝐶
𝑖
[− (𝑖 + 1)𝑈𝑖 (𝑥𝑗) +

𝜋

2
𝜌
𝑖
(𝑥
𝑗
)] = 𝑓 (𝑥

𝑗
) , (13)

where the calculation of 𝐶
𝑖
endorses the evaluation of 𝑄

𝑛
(𝑡)

in (4).

3. Convergence Rates

In this section, we illustrate the steps of the error estimate for
the approximate solution of our interest in HSIE of the form
in (1). First, we recap the equation concerning the following
operators:

𝐻𝑄(𝑥) =
1

𝜋
=∫
1

−1

√1 − 𝑡2𝑄 (𝑡)

(𝑡 − 𝑥)2
𝑑𝑡,

𝐾𝑄 (𝑥) = ∫
1

−1

√1 − 𝑡2𝐾 (𝑡, 𝑥)𝑄 (𝑡) 𝑑𝑡.

(14)

Taking into consideration (14), the operator equation of (1)
could be rewritten as

(𝐻 + 𝐾)𝑄 (𝑥) = 𝑓 (𝑥) . (15)

To solve a convergence problem of 𝑄
𝑛
(𝑡), we should prove

that 𝑄
𝑛
(𝑡) satisfies the operator equation in (15).

Theorem 1. If 𝑓(𝑥) ∈ 𝐶ℓ[−1, 1] and 𝑘(𝑡, 𝑥) ∈ 𝐶ℓ([−1, 1] ×
[−1, 1]), ℓ ≥ 1, then

󵄩󵄩󵄩󵄩𝑄 − 𝑄𝑛
󵄩󵄩󵄩󵄩𝐿
2
,√1−𝑡

2 = 𝑂 (𝑛
−ℓ) . (16)

Proof. Using the relation [12, 13]

∫
1

−1

√(1 − 𝑡2)𝑈
𝑘 (𝑡)

(𝑡 − 𝑥)2
𝑑𝑡 = −𝜋 (𝑘 + 1)𝑈𝑘 (𝑡) ,

(17)

along with the approximation in (4), yields

𝐻𝑈
𝑘
= − (𝑘 + 1)𝑈𝑘. (18)

Let us denote the space 𝐿
2,𝑤

of real valued functions square
integrable with respect to the weight function 𝑤 = √1 − 𝑥2
as

𝐿
2,𝑤
= {ℎ (𝑥) | ∫

1

−1

𝑤 (𝑥) |ℎ (𝑥)|
2𝑑𝑥 < ∞} . (19)

Based on (19), the inner product might be defined as follows:

⟨𝑄, 𝑔⟩
𝑤
= ∫
1

−1

𝑄 (𝑥) 𝑔 (𝑥)𝑤 (𝑥) 𝑑𝑥, ∀𝑄, 𝑔 ∈ 𝐿
2,𝑤
. (20)

The set {𝑈
𝑘
}∞
𝑘=0

is the orthogonal basis in 𝐿
2,𝑤

, so that if 𝑢 ∈
𝐿
2,𝑤

then

𝑢 =
∞

∑
𝑛=0

⟨𝑢, 𝑈
𝑛
⟩
𝑤
𝑈
𝑛
, (21)

where the sum converge in 𝐿
2,𝑤

. Then we would need to use
a subspace of 𝐿

2,𝑤
which contains all 𝑢, such that

∞

∑
𝑛=0

(𝑛 + 1)
2⟨𝑢, 𝑈

𝑛
⟩
2

𝑤
< ∞. (22)



Mathematical Problems in Engineering 3

We define this set by 𝐿
1,𝑤

, and it is made into Hilbert space
by the following inner product:

⟨𝑢, V⟩1 =
∞

∑
𝑛=0

(𝑛 + 1)
2⟨𝑢, 𝑈

𝑛
⟩
𝑤
⟨V, 𝑈
𝑛
⟩
𝑤
, (23)

where the norm of V ∈ 𝐿
1,𝑤

is defined by

‖𝑢‖
2

1
=
∞

∑
𝑛=0

(𝑛 + 1)
2⟨𝑢, 𝑈

𝑛
⟩
2

𝑤
. (24)

Assume that V
𝑛
= (𝑈
𝑛
/(𝑛 + 1)) and note that ‖V

𝑛
‖
1
= 1,

therefore {V
𝑛
}∞
𝑛
= 0 from an orthonormal basis of 𝐿

1,𝑤
, and

if 𝑢 ∈ 𝐿
1,𝑤

then

𝑢 =
∞

∑
𝑛=0

⟨𝑢, V
𝑛
⟩
1
V
𝑛
. (25)

To show that𝐻−1 : 𝐿
2,𝑤
→ 𝐿
1,𝑤

is unitary, let us consider ex-
pansions of𝑓 ∈ 𝐿

2,𝑤
and 𝑔 ∈ 𝐿

1,𝑤
. It is not difficult to see that

𝐻𝑓 (𝑥) =
∞

∑
𝑛=0

− (𝑛 + 1) 𝐶𝑛𝑈𝑛 (𝑥) = 𝑔 (𝑥) , (26)

where 𝐶
𝑛
= ⟨𝑓,𝑈

𝑛
⟩, and we use the expansion of 𝑔, such that

𝑔 (𝑥) =
∞

∑
𝑛=0

𝑏
𝑛
𝑈
𝑛 (𝑥) . (27)

Then −(𝑛 + 1)𝐶
𝑛
= 𝑏
𝑛
which gives

𝐶
𝑛
= −

𝑏
𝑛

𝑛 + 1
. (28)

So,

𝑓 (𝑥) =
∞

∑
𝑛=0

−
𝑏
𝑛

𝑛 + 1
𝑈
𝑛 (𝑥) . (29)

We have 𝑓 = 𝐻−1𝑔, and by using (29), becomes

𝑓 = 𝐻−1𝑔 (𝑥) =
∞

∑
𝑛=0

−
𝑏
𝑛

𝑛 + 1
𝑈
𝑛 (𝑥) . (30)

For the approximation in (4), the coefficients {𝐶
𝑖
}𝑛
𝑖=0

satisfy

⟨𝐻𝑄
𝑛
+ 𝐾𝑄

𝑛
− 𝑓,𝑄

𝑘 (𝑥)⟩ = 0, 𝑘 = 0, 1, 2, . . . . (31)

To show that {𝑄
𝑛
} converges, it should verify the operator

equation in (15).
Let 𝑃

𝑛
be the projection operator to the span of

{𝑈
0
, 𝑈
1
, . . . , 𝑈

𝑛
}; then, the orthogonal projection space 𝑃

𝑛
:

𝐿
2,𝑤
→ 𝐿
2,𝑤

, satisfies [14]

𝑃
𝑛
(𝐻𝑄
𝑛
+ 𝐾𝑄

𝑛
− 𝑓) = 0. (32)

Since 𝑃
𝑛
𝐻𝑄
𝑛
= 𝐻𝑄

𝑛
, (32) becomes

𝐻𝑄
𝑛
+ 𝑃
𝑛
𝐾𝑄
𝑛
= 𝑃
𝑛
𝑓,

𝐻𝑄 + 𝑃
𝑛
𝐾𝑄 = 𝑓 − 𝐾𝑄 + 𝑃

𝑛
𝐾𝑄,

(𝐻 + 𝑃
𝑛
𝐾)𝑄 = 𝑓 − 𝐾𝑄 + 𝑃

𝑛
𝐾𝑄.

(33)

We know that

(𝐻 + 𝑃
𝑛
𝐾)𝑄
𝑛
= 𝑃
𝑛
𝑓, (34)

which gives

(𝐻 + 𝑃
𝑛
𝐾) (𝑄 − 𝑄

𝑛
) = 𝑓 − 𝐾𝑄 + 𝑃

𝑛
𝐾𝑄 − 𝑃

𝑛
𝑓

= 𝐻𝑄 − 𝑃
𝑛
𝐻𝑄.

(35)

𝑃
𝑛
: 𝐿
2,𝑤

→ Ω = span{𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
}. Let 𝑔 ∈ 𝐿

2,𝑤
, then

𝑃
𝑛
𝑔 = ℎ = 𝐶

1
𝜙
1
+ 𝐶
2
𝜙
2
+ ⋅ ⋅ ⋅ + 𝐶

𝑛
𝜙
𝑛
. From (18), we could

extend 𝐻 as a bounded operator from 𝐿
2
(𝑝) to 𝐿

1,𝑤
; then

using (20),

𝑃
𝑛
((𝐻 + 𝐾)𝑄𝑛 − 𝑓) = 0. (36)

Since

𝑃
𝑛
((𝐻 + 𝐾)𝑄𝑛 − 𝑓) =

𝑛

∑
𝑘=0

𝛼
𝑘
𝜙
𝑘
, 𝛼
𝑘
̸= 0, (37)

then

⟨(𝐻 + 𝐾)𝑄𝑛 − 𝑓, 𝜙𝑘⟩ = 0, 𝑘 = 0, 1, 2, . . . , 𝑛. (38)

Applying the approximate solution in (4) to the inner product
in (20), so that

⟨𝐻𝑄
𝑛
+ 𝐾𝑄

𝑛
− 𝑓,𝑈

𝑘
⟩ = 0, (39)

then the bounded operator𝐻 could be written as

𝑛

∑
𝑘=0

− (𝑘 + 1) 𝐶𝑘𝑈𝑘 (𝑥) +
𝑛

∑
𝑘=0

𝑔
𝑘 (𝑡) 𝑈𝑘 (𝑥) = ⟨𝑓,𝑈𝑘⟩,

⟨𝑓, 𝜙
𝑘
⟩ =
𝑛

∑
𝑘=0

(𝑔
𝑘 (𝑡) − (𝑘 + 1) 𝐶𝑘) 𝑈𝑘 (𝑥) ,

⟨ℎ, 𝑈
𝑘
⟩ = 0.

(40)

We define the projectionΩ
𝑛
such that

Ω
𝑛
= {ℎ | ℎ ⊥ 𝑈

𝑘
, 𝑘 = 0, 1, . . . , 𝑛} ,

𝐿
2,𝑤
= Ω
1
⊕ Ω
2
󳨀→ ℎ = ℎ

1
+ ℎ
2
,

Ω
1
= {ℎ
1
∈ 𝐿
2,𝑤
| ℎ
1
=
𝑛

∑
𝑘=0

𝐶
𝑘
𝜙
𝑘
} = span {𝑄

1
, . . . , 𝑄

𝑛
} ,

Ω
2
= {ℎ
2
| ℎ
2
⊥ ℎ
1
; ℎ
1
∈ Ω
1
} ,

𝑃
𝑛
: 𝐿
2,𝑤
󳨀→ Ω

1
,

(41)

then

𝐻𝑄
𝑛
=
𝑛

∑
𝑘=0

− (𝑘 + 1) 𝐶𝑘𝑈𝑘 (𝑥) ∈ Ω1. (42)

Since𝐻𝑄 ∈ Ω
1
, 𝑃
𝑛
is a linear operator that gives (35).
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For𝐻−1,

𝐻𝑔 = −
𝑛

∑
𝑘=0

(𝑘 + 1) 𝑔𝑘𝑈𝑘 (𝑥)

󳨐⇒ 𝐻−1ℎ =
𝑛

∑
𝑘=0

1

− (𝑘 + 1)
ℎ
𝑘
𝑈
𝑘 (𝑥) .

(43)

It is known that𝐻 ∗𝐻−1 = 𝐼.
Let 𝜙 ∈ 𝐿

2,𝑤
and 𝜙 = ℎ

1
+ℎ
2
; then the projection operator

𝑃
𝑛
is as follows:

𝑃
𝑛
𝜙 = ℎ
1
⊂ Ω
1
. (44)

It is well known that 𝑃
𝑛
is bounded operator:

󵄩󵄩󵄩󵄩𝑃𝑛𝜙
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 , ∀𝜙 ∈ 𝐿

2,𝑤
. (45)

Let us consider𝐻 + 𝑃
𝑛
𝐾 operator in 𝐿

2,𝑤
:

󵄩󵄩󵄩󵄩𝑃𝑛𝐾
󵄩󵄩󵄩󵄩 < 1. (46)

We choose 𝑛
0
, such that for all 𝑛 ≥ 𝑛

0
, one has

󵄩󵄩󵄩󵄩𝑃𝑛𝜙
󵄩󵄩󵄩󵄩 < 1. (47)

Let us fix the element, 𝜙 ∈ 𝐿
2,𝑤

, and by considering the
operator:

𝐵𝑔 = 𝐻−1 (𝜙 − 𝑃
𝑛
𝐾𝑔) . (48)

This operator is contraction:
󵄩󵄩󵄩󵄩𝐵𝑔1 − 𝐵𝑔2

󵄩󵄩󵄩󵄩 < 𝛼
󵄩󵄩󵄩󵄩𝑔1 − 𝑔2

󵄩󵄩󵄩󵄩 , 0 < 𝛼 < 1. (49)

Since
󵄩󵄩󵄩󵄩󵄩𝐻
−1𝜙 − 𝐻−1𝑃

𝑛
𝐾𝑔
1
− 𝐻−1𝜙 + 𝐻−1𝑃

𝑛
𝐾𝑔
2

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾(𝑔
2
− 𝑔
1
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾
󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔2 − 𝑔1

󵄩󵄩󵄩󵄩 ,

𝛼 =
󵄩󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾
󵄩󵄩󵄩󵄩󵄩 < 1.

(50)

Since 𝐵-contraction operator, then it has an unique fixed
point 𝑔:

𝑔 = 𝐻−1 (𝜙 − 𝑃
𝑛
𝐾𝑔) . (51)

By applying𝐻 to both sides, we obtain

𝐻𝑔 = 𝜙 − 𝑃
𝑛
𝐾𝑔 (52)

or

𝜙 = 𝐻𝑔 + 𝑃
𝑛
𝐾𝑔 = (𝐻 + 𝑃

𝑛
𝐾)𝑔. (53)

For any 𝜙 ∈ 𝐿
2,𝑤

, there exists an unique 𝑔 ∈ 𝐿
2,𝑤

, such that
𝜙 = (𝐻 + 𝑃

𝑛
𝐾)𝑔, which means that (𝐻 + 𝑃

𝑛
𝐾)−1 exists:

(𝐻 + 𝑃
𝑛
𝐾) (𝑄 − 𝑄

𝑛
) = 𝐻𝑄 − 𝑃

𝑛
𝐻𝑄,

𝑄 − 𝑄
𝑛
= (𝐻 + 𝑃

𝑛
𝐾)
−1
(𝐻𝑄 − 𝑃

𝑛
𝐻𝑄) .

(54)

To show that our operator𝐻+𝑃
𝑛
𝐾 is bounded, we apply the

following theorem [15].

Theorem 2. Let 𝐿 be a Banach space, and let 𝐼 be the identity
operator on 𝐿. Suppose that 𝐴 is a bounded linear operator
mapping 𝐿 into itself, such that

‖𝐴‖ < 1. (55)

Then the operator (𝐼−𝐴)−1 that exists is bounded and could be
represented in the form

(𝐼 − 𝐴)
−1 =
∞

∑
𝑘=0

𝐴𝑘. (56)

For the details of Theorem 2, see [15].
Let us consider that

𝐻 + 𝑃
𝑛
𝐾 = 𝐻(𝐼 + 𝐻−1𝑃

𝑛
𝐾) . (57)

Obviously we have
󵄩󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾
󵄩󵄩󵄩󵄩󵄩 < 1. (58)

It follows that

(𝐻 + 𝑃
𝑛
𝐾)
−1
= (𝐻(𝐼 + 𝐻−1𝑃

𝑛
𝐾))
−1

= (𝐼 + 𝐻−1𝑃
𝑛
𝐾)
−1

𝐻−1

= (
∞

∑
𝑗=0

(−1)
𝑗(𝐻−1𝑃

𝑛
𝐾)
𝑗

)𝐻−1.

(59)

ApplyingTheorem 2 yields

(𝐻 + 𝑃
𝑛
𝐾)
−1
=
∞

∑
𝑗=0

𝐻−𝑗−1(𝑃
𝑛
𝐾)
𝑗
. (60)

The norm would be

󵄩󵄩󵄩󵄩󵄩(𝐻 + 𝑃𝑛𝐾)
−1󵄩󵄩󵄩󵄩󵄩 ≤

∞

∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝐻
−𝑗−1(𝑃

𝑛
𝐾)
𝑗
𝜙
󵄩󵄩󵄩󵄩󵄩

≤
∞

∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝐻
−1󵄩󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾
󵄩󵄩󵄩󵄩󵄩
𝑗

.

(61)

Since
󵄩󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾
󵄩󵄩󵄩󵄩󵄩 = 𝑞 < 1, (62)

then

󵄩󵄩󵄩󵄩󵄩(𝐻 + 𝑃𝑛𝐾)
−1󵄩󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩𝐻
−1󵄩󵄩󵄩󵄩󵄩

∞

∑
𝑗=0

𝑞𝑗 =
󵄩󵄩󵄩󵄩󵄩𝐻
−1󵄩󵄩󵄩󵄩󵄩

1

1 − 𝑞
,

󵄩󵄩󵄩󵄩󵄩(𝐻 + 𝑃𝑛𝐾)
−1󵄩󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩𝐻
−1󵄩󵄩󵄩󵄩󵄩

1 −
󵄩󵄩󵄩󵄩𝐻
−1𝑃
𝑛
𝐾
󵄩󵄩󵄩󵄩

= 𝐶

󵄩󵄩󵄩󵄩𝑄 − 𝑄𝑛
󵄩󵄩󵄩󵄩2,𝑤 ≤

󵄩󵄩󵄩󵄩󵄩(𝐻 + 𝑃𝑛𝐾)
−1󵄩󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩𝐻𝑄 − 𝑃𝑛𝐻𝑄
󵄩󵄩󵄩󵄩2,𝑤

≤ 𝐶
󵄩󵄩󵄩󵄩𝐻𝑄 − 𝑃𝑛𝐻𝑄

󵄩󵄩󵄩󵄩2,𝑤.

(63)
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Applying (19) to (60) gives

󵄩󵄩󵄩󵄩𝑄 − 𝑄𝑛
󵄩󵄩󵄩󵄩2 = 𝐶(∫

1

−1

󵄨󵄨󵄨󵄨𝐻𝑄 − 𝑃𝑛𝐻𝑄
󵄨󵄨󵄨󵄨
2
𝑤 (𝑥) 𝑑𝑥)

1/2

≤ 𝐶(∫
1

−1

󵄨󵄨󵄨󵄨𝐻𝑄 (𝑥) − 𝜂𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2
𝑤 (𝑥) 𝑑𝑥)

1/2

≤ 𝐶
󵄩󵄩󵄩󵄩𝐻𝑄 (𝑥) − 𝜂𝑛 (𝑥)

󵄩󵄩󵄩󵄩𝐿
∞

(∫
1

−1

𝑤 (𝑥) 𝑑𝑥)

1/2

.

(64)

Applying Jackson’s theorem [14] yields

󵄩󵄩󵄩󵄩𝑄 − 𝑄𝑛
󵄩󵄩󵄩󵄩2 = 𝐶 (𝑛

−ℓ) . (65)

From (64), Theorem 1 is proved.

4. Numerical Example

Here, we illustrate the above method to obtain approximate
numerical solution of Fredholm integral equation.

Example 1. We consider Fredholm full equation of the form

1

𝜋
=∫
1

−1

√1 − 𝑡2𝑔 (𝑡)

(𝑡 − 𝑥)2
𝑑𝑡

+
16

𝜋
∫
1

−1

√1 − 𝑡2𝑥3𝑡3𝑔 (𝑡) 𝑑𝑡 = 16𝑥 − 31𝑥
3.

(66)

The exact solution of (66) is

𝑔 (𝑡) = 8𝑡
3 − 4𝑡. (67)

By using the method in Section 2, if we approximate 𝑔(𝑡)
using Chebyshev polynomials of the second kind,

𝑔 (𝑡) =
𝑛

∑
𝑖=0

𝐶
𝑖
𝑈
𝑖 (𝑡) , (68)

and 𝐶
𝑖
satisfies the linear system in (10).

According to (11) and (7),

𝜌
𝑗 (𝑥) =

4𝑥3

𝜋2
∫
1

−1

√1 − 𝑡2 [𝑈
3 (𝑡) + 2𝑈1 (𝑡)] 𝑈𝑗 (𝑡) 𝑑𝑡.

(69)

Using the orthogonal property in (6), we obtain

𝜌
0 (𝑥) = 0, 𝜌

1 (𝑥) =
4𝑥3

𝜋
,

𝜌
2 (𝑥) = 0, 𝜌

3 (𝑥) =
2𝑥3

𝜋
,

𝜌
𝑗 (𝑥) = 0, 𝑗 ≥ 4.

(70)

Substituting the above result in the system of equations into
(13) for 𝑛 = 3 gives

3

∑
𝑖=0

𝐶
𝑖
[− (𝑖 + 1)𝑈𝑖 (𝑥𝑗)] + 2𝐶1𝑥

3

𝑗
+ 𝐶
3
𝑥3
𝑗

= 16𝑥
𝑗
− 31𝑥3

𝑗
, 𝑖 = 0, 1, 2, 3,

(−31𝐶
3
+ 2𝐶
1
) 𝑥3
𝑗
− 12𝐶

2
𝑥2
𝑗
+ (16𝐶

3
− 4𝐶
1
) 𝑥
𝑗

+ 3𝐶
2
− 𝐶
0
= 16𝑥

𝑗
− 31𝑥3

𝑗
, 𝑗 = 0, 1, 2, 3.

(71)

Using the comparison method for solving the above system
of equation leads to

−31𝐶
3
+ 2𝐶
1
= −31, −12𝐶

2
= 0,

16𝐶
3
− 4𝐶
1
= 16, 3𝐶

2
− 𝐶
0
= 0,

(72)

then the solution of the above system is

𝐶
0
= 𝐶
1
= 𝐶
2
= 0, 𝐶

3
= 1. (73)

Substituting the values of (73) into (68) gives the numerical
solution of (66) which is identical to the exact solution.

Example 2. We solve Fredholm HSIE of the form

1

𝜋
=∫
1

−1

𝑄 (𝑡)

(𝑡 − 𝑥)2
𝑑𝑡 + ∫

1

−1

𝑒𝑥

𝑡 − 𝑥
𝑄 (𝑡) 𝑑𝑡

= 𝜋𝑒𝑥 (𝑥 − 4𝑥3) − 12𝑥2 + 1.

(74)

Note that, by the help of (3), the exact solution of (74) is

𝑄 (𝑥) = √1 − 𝑥2 (4𝑥
2 + 1) . (75)

From (11),

𝜌
𝑖 (𝑥) =

2

𝜋
∫
1

−1

√1 − 𝑡2
𝑒𝑥

𝑡 − 𝑥
𝑈
𝑖 (𝑡) 𝑑𝑡. (76)

It is well known that [12, 13]

−∫
1

−1

√1 − 𝑡2𝑈
𝑖−1 (𝑡)

𝑡 − 𝑥
𝑑𝑥 = −𝜋𝑇

𝑖 (𝑥) , (77)

so that

𝜌
𝑖 (𝑥) = −2𝑒

𝑥𝑇
𝑖+1 (𝑥) , (78)

where 𝑇
𝑖
is the Chebyshev polynomial of the first kind

defined:

𝑇
𝑛 (𝑡) = cos 𝑛𝜃, 𝑡 = cos 𝜃, 0 ≤ 𝜃 ≤ 𝜋. (79)

This polynomial is orthogonal on [−1, 1] with respect to
𝑤(𝑡) = (1/√1 − 𝑡2), and the terms could be found using the
recurrence relation:

𝑇
𝑛 (𝑡) = 2𝑡𝑇𝑛−1 (𝑡) − 𝑇𝑛−2 (𝑡) , (80)
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Table 1: The error of the numerical solution of (74).

𝑁 = 4

𝑥 Error 𝑥 Error
−1 0 1 0
−0.998 4.7𝑒−013 0.998 4.7𝑒−013

−0.8 3.4𝑒−011 0.8 3.1𝑒−011

−0.7 2.1𝑒−011 0.7 2.1𝑒−011

−0.6 2.3𝑒−011 0.6 2.2𝑒−011

−0.5 2.6𝑒−011 0.5 2.6𝑒−011

−0.4 2.7𝑒−011 0.4 2.2𝑒−011

−0.3 3.1𝑒−011 0.3 3.2𝑒−011

−0.2 2.2𝑒−011 0.2 2.2𝑒−011

−0.1 3.3𝑒−011 0.1 3.3𝑒−011

0.0 2.8𝑒−011 0.0 2.8𝑒−011

where 𝑇
0
(𝑡) = 1 and 𝑇

1
(𝑡) = 𝑡 are the starting values of (80),

which provides the values of 𝜌
𝑖
(𝑥) for a certain 𝑖:

𝜌
0 (𝑥) = −2𝑥𝑒

𝑥, 𝜌
1 (𝑥) = −2 (2𝑥

2 − 1) 𝑒𝑥,

𝜌
2 (𝑥) = −2 (4𝑥

3 − 3𝑥) 𝑒𝑥,

𝜌
3 (𝑥) = −2 (8𝑥

4 − 8𝑥2 + 1) 𝑒𝑥, . . . .

(81)

Substituting the values of (81) into the system of (13) for 𝑛 = 4
gives

4

∑
𝑖=0

𝐶
𝑖
[− (𝑖 + 1)𝑈𝑖 (𝑥𝑗) +

𝜋

2
𝜌
𝑖
(𝑥
𝑗
)]

= 𝜋𝑒𝑥𝑗 (𝑥
𝑗
− 4𝑥3
𝑗
) − 12𝑥2

𝑗
+ 1, 𝑗 = 0, 1, 2, 3, 4.

(82)

Using (12) as a collocation points for 𝑗 = 4, give the required
system of unknown coefficients 𝐶

𝑖
, 𝑖 = 0, . . . , 4. The solution

of the system in (82) gives

𝐶
0
= 2, 𝐶

2
= 1, 𝐶

1
= 𝐶
3
= 𝐶
4
= 0. (83)

Substituting the above values into (4), we obtain the numeri-
cal solution of (74), which is identical to the exact solution.
The error of the numerical solution (4) of (74) is given in
Table 1.

5. Conclusion

Wehave investigated the numerical solutions for the bounded
hypersingular integral equation of the first kind using an
efficient expansion method. We are able to prove the con-
vergence of our method for the function 𝑓 ∈ 𝐶ℓ([−1, 1]) in
the class of functions𝐻𝛼([−1, 1]) and 𝐿

2
([−1, 1]). Moreover,

the error in (65) decreases very quickly and the convergence
is very fast to the exact solution even when 𝑥 is close to
the end points. In particular, if ℓ in the relation (65) can
be chosen to be any large positive number, then the error
decreases rapidly as 𝑛 increases. Then the sequence {𝑄

𝑛
}

converges uniformly in 𝐿
2,𝑤

norm to {𝑄}. The numerical
examples give the exact solution for different kernels 𝐾(𝑥, 𝑡)
and the unknown function 𝑄. Therefore, referring to the
computed numerical solution, we are able to obtain a very
good convergence for any singular point 𝑥 ∈ (−1, 1).
MATLAB codes are developed to obtain the numerical results
where the numerical experiments reaffirm the theoretical
results.
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