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This study proposes a slack-diversifying fuzzy-neural rule to improve job dispatching in a wafer fabrication factory. Several soft
computing techniques, including fuzzy classification and artificial neural network prediction, have been applied in the proposed
methodology. A highly effective fuzzy-neural approach is applied to estimate the remaining cycle time of a job. This research
presents empirical evidence of the relationship between the estimation accuracy and the scheduling performance. Because dynamic
maximization of the standard deviation of schedule slack has been shown to improve performance, this work applies such
maximization to a slack-diversifying fuzzy-neural rule derived from a two-factor tailored nonlinear fluctuation smoothing rule
for mean cycle time (2f-TNFSMCT). The effectiveness of the proposed rule was checked with a simulated case, which provided
evidence of the rule’s effectiveness. The findings in this research point to several directions that can be exploited in the future.

1. Introduction

Wafer fabrication is one of the most important steps in
semiconductormanufacturing [1].Wafer fabrication factories
exist all over the world; many are in Taiwan. The production
operations of a wafer fabrication factory are very expensive,
and the factory must be fully utilized to stay in business.
If the factory is to remain in operation, its capacity must
not substantially exceed the demand. Factory managers must
plan the use of the existing capacity to shorten the cycle time.
To maximize the product turnover rate is an important goal.
In this regard, scheduling is undoubtedly a very useful tool.
Kim et al. [2] simultaneously considered three issues: release
control, mask scheduling, and batch scheduling. However,
Chen et al. [3–5] noted that job dispatching is very difficult
task in a wafer fabrication factory. Traditionally, a scheduling
problem is formulated as amathematical programming prob-
lem.The optimal solution of the mathematical programming
problem gives the optimal scheduling of the manufacturing
system.However, themathematical programming problemof

scheduling a wafer fabrication factory is large and effectively
intractable. In practice, many wafer fabrication factories
suffer from lengthy cycle times and cannot speed up their
deliveries to their customers.

Semiconductor manufacturing can be divided into four
stages: wafer fabrication, wafer probing, packaging, and final
testing. The most important and most time-consuming stage
is wafer fabrication. This study investigates job dispatching
for this stage.

An effective scheduling and dispatching algorithm is an
urgent necessity for wafer fabrication. This field includes
many different methods, including dispatching rules, heuris-
tics, data mining-based approaches [6, 7], agent technologies
[6, 8–10], and simulation.The prevalentmethods for practical
applications include dispatching rules (e.g., first-in first out
(FIFO), earliest due date (EDD), least slack (LS), shortest
processing time (SPT), shortest remaining processing time
(SRPT), critical ratio (CR), the fluctuation smoothing rule
for the mean cycle time (FSMCT), the fluctuation smoothing
rule for cycle time variation (FSVCT), FIFO+, SRPT+, and
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Table 1: The differences between the proposed methodology and
Wang et al.’s method.

Method Rule base
Degree

of
freedom

Exclude
extreme
values

Considering
the range of

SK𝑗𝑢
Wang et al.’s
method 1f-TNFSVCT 1 No No

The proposed
methodology 2f-TNFSMCT 2 Yes Yes

SRPT++), all of which have received a lot of attention over
the last few years [6–8]. For details on traditional dispatching
rules, please refer to Lu et al. [11].

Recently, Chen proposed the one-factor tailored non-
linear fluctuation smoothing rule for mean cycle time (1f-
TNFSMCT). This rule contains an adjustable parameter that
allows it to be customized for a target wafer fabrication
factory. Chen et al. [12] proposed the two-factor tailored
nonlinear fluctuation smoothing rule for mean cycle time
(2f-TNFSMCT), which outperformed four existing rules in
scheduling a wafer fabrication factory.

Magnifying the difference in the slack seems to improve
scheduling performance, especially with respect to the aver-
age cycle time. To exploit this advantage, Wang et al. [13]
derived the slack-diversifying nonlinear fluctuation smooth-
ing rule by diversifying the slack in the 1f-TNFSVCT rule.
To extend this advantage and to enhance the scheduling of
wafer fabrication factories, a slack-diversifying fuzzy-neural
rule is proposed in this study.The objective function includes
the average and standard deviation of the cycle time, and
therefore the problem can be denoted by 𝐽/𝑟𝑗, 𝑑𝑗/𝐶𝑇𝑗, and
𝜎𝐶𝑇𝑗.

The proposed methodology applies several soft comput-
ing techniques, including fuzzy classification and artificial
neural network prediction. First, the remaining cycle time
of a job needs to be estimated by the slack-diversifying
fuzzy-neural rule. In this research, an innovative and highly
effective fuzzy-neural method estimates the remaining cycle
time of a job. The fuzzy-neural approach is based on the
fuzzy c-means and back propagation network (FCM-BPN)
approach [14]. According to Chen and Wang [4], improve-
ments to the accuracy of remaining cycle time estimation
can significantly improve the scheduling performance of a
fluctuation smoothing rule. In the original study, Chen and
Wang used a time-consuming and not very accurate gradient
search algorithm to train the BPN. In this study, we use
the Levenberg-Marquardt algorithm [15] to achieve the same
purpose; it is more efficient and more accurate than the algo-
rithm in Chen and Wang’s study. In addition, we also found
some empirical evidence regarding the relationship between
the estimation accuracy and the scheduling performance.

The slack-diversifying nonlinear fluctuation smoothing
rule is modified from 2f-TNFSMCT [12]; the new rule
maximizes the difference in the slack, as measured by the
standard deviation of the slack. Slack is a fuzzy concept,
and in this study it is defined in a way that is conducive
to scheduling performance. The factor values for achieving

this must be determined, and that calculation turns out to be
a complex optimization problem. We applied a polynomial
fitting technique to convert it into a more tractable form for
which several optimal solutions can be found. After screening
some values out of the specified range, we used the remaining
values to construct an optimized 2f-TNFSMCT rule. It is
possible that some jobs have very large or small slacks, which
will distort the optimization results. For this reason, such jobs
are excluded. Further, the values of parameters influence the
range of the slack. For a fair comparison, the range of the slack
should be considered to determine the optimal parameter
values. The differences between the proposed methodology
and Wang et al.’s method are summarized in Table 1.

This paper is arranged as follows. Section 2 reviews the
existing approaches to scheduling a wafer fabrication factory.
Section 3 provides the details of the proposed methodol-
ogy. In Section 4, a simulated case is used to validate the
effectiveness of the slack-diversifying fuzzy-neural rule. The
performance levels of some of the existing rules in this field
are also tested with the simulated data. Finally, we draw our
conclusions in Section 5 and discuss some worthwhile topics
for future work.

2. Related Work

Some earlier work in this field is relevant. Mönch et al.
[16] classified the scheduling problems in a semiconductor
manufacturing factory into six categories: batch scheduling
problems, parallel machine scheduling problems, job shop
scheduling problems, scheduling problems with auxiliary
resources, multiple orders per job scheduling problems, and
scheduling problems related to cluster tools. In Yao et al.
[17], a decentralised multiobjective scheduling methodology
was presented for semiconductor manufacturing, in which
global objectives were decentralised into local ones of work
stations. Lee et al. [18] adopted the Petri nets to accurately
model the semiconductor manufacturing activities. Through
representing the token movements in a Petri net with the
well-established scheduling model for batch chemical pro-
cesses, the optimal schedule of the given semiconductor
process could be determined accordingly. Yugma et al. [19]
proposed an efficient heuristic algorithm based on iterative
sampling and simulated annealing for solving a complex
batching and scheduling problem in a diffusion area of a
semiconductor plant. Altendorfer et al. [20] proposed the
work in parallel queue (WIPQ) rule to maximize throughput
with a low level of work in process (WIP). Zhang et al. [21]
proposed the dynamic bottleneck detection (DBD) approach
that classifies workstations into several categories and then
applies different dispatching rules to these categories. They
used three dispatching rules including FIFO, the shortest
processing time until the next bottleneck (SPNB), and CR. In
view of the uncertainty in the classification of workstations,
Chen [22] proposed the fuzzy DBD approach.

Considering the current conditions in a wafer fabrication
factory, Hsieh et al. [7] chose one approach from FSMCT,
FSVCT, largest deviation first (LDF), one step ahead (OSA),
or FIFO. Chen [23] modified FSMCT and proposed the
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nonlinear FSMCT (NFSMCT) rule, in which he smoothed
the fluctuation in the estimated remaining cycle time and
balanced it with that of the release time or the mean release
rate. To diversify the slack, he applied the “division” operator.
This was followed by Chen [24], in which he proposed the
one-factor tailored NFSMCT (1f-TNFSMCT) rule and the
one-factor tailored nonlinear FSVCT (1f-TNFSVCT) rule.
Both rules contain adjustable parameters that allow them to
be customized for a target wafer fabrication factory. Dabbas
and Fowler [25] and Dabbas et al. [26] combined some
dispatching rules into a single rule by forming their linear
combination with relative weights. However, that research
lacked a systematic procedure to determine the weights of
those rules. In a multiple-objective study, Chen and Wang
[27] proposed a biobjective nonlinear fluctuation smoothing
rule with an adjustable factor (1f-biNFS) to optimize both
the average cycle time and the cycle time variation at the
same time. More degrees of freedom seem to enhance the
performance of customizable rules. For this reason, Chen
et al. [14] extended 1f-biNFS to a bi-objective fluctuation
smoothing rule with four adjustable factors (4f-biNFS). One
drawback of these rules is that only static factors are used,
and they must be determined in advance. To this end, most
studies (e.g., [14, 23, 24, 27]) performed extensive simulations.
This is not only time-consuming, but it also fails to consider
a sufficient number of factor combinations.

Chen [28] established amechanism that was able to adjust
the values of the factor in 1f-biNFS dynamically (dynamic
1f-biNFS). However, even though satisfactory results were
obtained in his experiment, there was no theoretical basis
supporting the proposedmechanism. Chen [29] attempted to
relate the scheduling performance to the factor values using
a back propagation network (BPN). If that had worked, then
the factor values contributing to the optimal scheduling per-
formance could have been found. However, the explanatory
ability of the BPN was not sufficient.

At the same time, Chen [28] stated that a nonlinear fluctu-
ation smoothing rule uses the divisor operator instead of the
subtraction operator, which diversifies the slack and makes
the nonlinear fluctuation smoothing rule more responsive to
changes in the parameters. Chen and Wang [27] proved that
the effects of the parameters are balanced better in a nonlinear
fluctuation smoothing rule than in a traditional one if the
variation in the parameters is large.

3. Methodology

The variables and parameters that will be used in the
proposed methodology are defined as follows:

(1) 𝑅𝑗: the release time of job𝑗, 𝑗 = 1 ∼ 𝑛;
(2) RCTE𝑗𝑢: the estimated remaining cycle time of job 𝑗

from step 𝑢;
(3) SK𝑗𝑢: the slack of job 𝑗 at step 𝑢;
(4) 𝜆: the mean release rate;
(5) 𝑥𝑗𝑝: inputs to the three-layer BPN of job 𝑗, 𝑝 = 1 ∼ 𝑃;
(6) ℎ𝑙: the output from hidden-layer node 𝑙, 𝑙 = 1 ∼ 𝐿;

(7) 𝑤𝑜𝑙 : the connection weight between hidden-layer
node 𝑙 and the output node;

(8) 𝑤ℎ𝑝𝑙: the connection weight between input node 𝑝 and
hidden-layer node 𝑙, 𝑝 = 1 ∼ 𝑃; 𝑙 = 1 ∼ 𝐿;

(9) 𝜃ℎ𝑙 : the threshold on hidden-layer node 𝑙;
(10) 𝜃𝑜: the threshold on the output node.

The proposed methodology includes the following six
steps.

Step 1. Normalize the collected data [30].

Step 2. Use FCM to classify jobs. The required inputs for this
step are job attributes. To determine the optimal number of
categories, we use the 𝑆 test [31]. The output of this step is the
category of each job.

Step 3. Use the BPN approach to estimate the remaining cycle
time of each job. Jobs of different categories will be sent
to different three-layer BPNs. The inputs to the three-layer
BPN include the attributes of a job, while the output is the
estimated remaining cycle time of the job.

Step 4. Derive the 2f-TNFSMCT rule.

Step 5. Diversify the slack in the 2f-TNFSMCT rule.

Step 6. Incorporate the estimated remaining cycle time into
the new rule.

The flowchart of the proposed methodology is shown in
Figure 1.

Table 2 is used to compare the proposed methodology
with the existing methods.

The remaining cycle time of a job being produced in a
wafer fabrication factory is the time still needed to complete
the job (see Figure 2). If the job has just been released into
the wafer fabrication factory, then the remaining cycle time
of the job is its cycle time [32–38]. Tai et al. [32] provided a
statistical approach to calculate the cycle time for multilayer
semiconductor final testing involving the sum of multiple
Weibull-distributed waiting times. The remaining cycle time
is an important attribute (or performance measure) for the
WIP in the wafer fabrication factory. We need to estimate the
remaining cycle time for each job because the remaining cycle
time is an important input to the scheduling rule. Past studies
(e.g., [12]) have shown that the accuracy of remaining cycle
time estimation can be improved by job classification. Soft
computing methods (e.g., [4, 12, 37, 38]) have received much
attention in this regard.

3.1. Step 1: Normalize the Collected Data. First, in order to
facilitate the subsequent calculations and problem solving, all
collected data xj = [𝑥𝑗𝑝] are normalized into [0.1 0.9] [38] as
follows:

𝑧𝑗𝑝 = 𝑁𝐿 +
𝑥𝑗𝑝 −min (𝑥𝑗𝑝)

max (𝑥𝑗𝑝) −min (𝑥𝑗𝑝)
⋅ (𝑁𝑈 − 𝑁𝐿) , (1)
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Table 2: Comparison of the proposed methodology and some existing methods.

Method Static or dynamic Number of objectives Number of adjustable parameters Optimized
1f-TNFSMCT Static 1 1 No
1f-TNFSVCT Static 1 1 No
1f-biNFS Static 2 1 No
2f-TNFSMCT Static 1 2 No
4f-biNFS Static 2 4 No
Dynamic 1f-biNFS Dynamic 2 1 No
The proposed methodology Dynamic 2 2 Yes

Classify jobs using FCM

Diversify the slack

Normalize the collected data

Estimate the remaining cycle 
time with a BPN

Derive the 2f-TNFSMCT rule

to sequence jobs
Use the slack-diversifying rule 

Figure 1: The flowchart of the proposed methodology.

Step number 1 2 3 4

Released Outputted

Cycle time

Remaining cycle timeStep cycle time

𝑗 𝑚
· · ·

Figure 2: The concept of the remaining cycle time.

where 𝑧𝑗𝑝 is the normalized value of 𝑥𝑗𝑝 and 𝑁𝐿 and 𝑁𝑈
indicate the lower and upper bounds of the range of the
normalized value, respectively. min(𝑥𝑗𝑝) and max(𝑥𝑗𝑝) are

the minimum and maximum of 𝑥𝑗, respectively. The formula
can be written as

𝑥𝑗𝑝 =
𝑧𝑗𝑝 − 𝑁𝐿

𝑁𝑈 − 𝑁𝐿
⋅ (max (𝑥𝑗𝑝) −min (𝑥𝑗𝑝)) +min (𝑥𝑗𝑝) ,

(2)
if the unnormalized value is to be obtained. Then, we place
the (normalized) attributes of a job in vector zj = [𝑧𝑗𝑝]. To
illustrate the proposed methodology, a real case containing
the data of 35 jobs was used. For each job, twelve attributes
were collected from the reports and databases of a production
management information system (PROMIS). After a back-
ward elimination by regression analysis, six attributes that
were the most influential to the job cycle time were chosen
(see Table 3).

The results of partial normalization are shown in Table 4.

3.2. Step 2: Classify JobsUsing FCM. In the proposedmethod-
ology, jobs are classified into 𝐾 categories using FCM. If
a crisp clustering methods were applied, then it would be
possible that some clusters would have very few examples. By
contrast, in a fuzzy clustering method, an example belongs
to multiple clusters to different degrees, which provides a
solution to this problem. Similarly, in probability theory the
näıve Bayesmethod provides the probability that a given item
belongs to each class. However, the application of FCM can
consider subjective issues in job classification.

FCM classifies jobs byminimizing the following objective
function:

Min
𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚
𝑗(𝑘)𝑒
2
𝑗(𝑘), (3)

where𝐾 is the required number of categories; 𝑛 is the number
of jobs; 𝜇𝑗(𝑘) indicates the degree of membership with which
job 𝑗 belongs to category 𝑘; 𝑒𝑗(𝑘) measures the distance from
job 𝑗 to the centroid of category 𝑘;𝑚 ∈ [1,∞) is a parameter
to adjust the fuzziness and is usually set to 2. The procedure
of FCM is as follows:

(1) produce a preliminary clustering result;
(2) (for some number of iterations) calculate the centroid

of each category as

𝑧(𝑘) = {𝑧(𝑘)𝑝} , 𝑘 = 1 ∼ 𝐾,

𝑧(𝑘)𝑝 =
∑
𝑛
𝑗=1 𝜇
𝑚
𝑗(𝑘)𝑧𝑗𝑝

∑
𝑛
𝑗=1 𝜇
𝑚
𝑗(𝑘)

, 𝑘 = 1 ∼ 𝐾, 𝑝 = 1 ∼ 𝑃,
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𝜇𝑗(𝑘) =
1

∑
𝐾
𝑔=1 (𝑒𝑗(𝑘)/𝑒𝑗(𝑔))

2/(𝑚−1)
, 𝑗 = 1 ∼ 𝑛, 𝑘 = 1 ∼ 𝐾,

𝑒𝑗(𝑘) = √

𝑃

∑

𝑝=1

(𝑧𝑗𝑝 − 𝑧(𝑘)𝑝)
2
, 𝑗 = 1 ∼ 𝑛, 𝑘 = 1 ∼ 𝐾,

(4)

where 𝑧(𝑘) is the centroid of category 𝑘. 𝜇(𝑡)
𝑗(𝑘)

is the
degree of membership that job 𝑗 holds in category 𝑘
after the 𝑡th iteration;

(3) remeasure the distance from each job to the centroid
of each category and then recalculate the correspond-
ing membership;

(4) stop if the following condition is met. Otherwise,
return to step (3) as follows:

max
𝑘

max
𝑗


𝜇
(𝑡)

𝑗(𝑘)
− 𝜇
(𝑡−1)

𝑗(𝑘)


< 𝑑, (5)

where 𝑑 is a real number representing the threshold
for the convergence of membership.

Finally, the separate distance test (𝑆 test) proposed by Xie and
Beni [31] can be applied to determine the optimal number of
categories 𝐾 as follows:

min 𝑆

subject to 𝐽𝑚 =

𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚
𝑗(𝑘)𝑒
2
𝑗(𝑘),

𝑒
2
min = min

𝑘1 ̸= 𝑘2
(

𝑃

∑

𝑝=1

(𝑧(𝑘1)𝑝 − 𝑧(𝑘2)𝑝)
2
) ,

𝑆 =
𝐽𝑚

𝑛 × 𝑒2min
,

𝐾 ∈ 𝑍
+
.

(6)

The Fuzzy Logic Toolbox of MATLAB is used to imple-
ment the FCM approach. The FCM program code for the
illustrative example is shown in Algorithm 1. The 𝑆 value can
also be obtained using this program.

The results of the 𝑆 test are summarized in Table 5. In
this case, the optimal number of job categories was 3. The
threshold for the convergence of membership (𝑑) was set to
0.01. A common practice is to set a threshold of membership
𝜇𝐿 to determine whether a job belongs to each category. For
example, the classification results for the assumption that
𝜇𝐿 = 0.5 are shown in Table 6. With each decrease in the
threshold, each category will containmore jobs. For example,
the classification results for the assumption that 𝜇𝐿 = 0.1 are
shown inTable 7.This can solve the problemof an insufficient
number of examples. In addition, a job may be classified
under more than one category, which makes FCM different
from crisp classification methods. The disadvantage of this
approach is that some jobs do not belong to any category,

Table 3: An illustrative example.

Job
number 𝑢 𝑥𝑗1 𝑥𝑗2 𝑥𝑗3 𝑥𝑗4 𝑥𝑗5 𝑥𝑗6 RCTE𝑗𝑢

1 197 96% 22 9 35 63 98 1181
2 192 97% 26 9 35 63 257 1194
3 188 96% 14 8 36 65 99 1260
4 202 97% 11 9 32 61 131 1240
5 187 97% 26 8 37 66 247 1180
6 184 97% 19 9 39 68 191 1227
7 197 96% 20 9 38 63 219 1236
8 184 96% 25 9 40 66 219 1215
9 178 97% 33 9 41 67 219 1228
10 212 96% 31 9 38 66 54 1266
11 177 96% 36 9 39 67 54 1285
12 186 96% 20 9 37 65 54 1272
13 199 96% 19 9 36 66 54 1310
14 195 96% 11 9 37 66 49 1265
15 223 97% 12 8 34 63 201 1308
16 223 96% 32 8 36 62 103 1331
17 206 95% 30 9 33 59 53 1294
18 212 95% 18 9 35 64 53 1314
19 168 97% 24 9 34 60 248 1321
20 200 97% 20 9 34 60 248 1353
21 140 95% 34 9 35 60 82 1226
22 156 96% 10 8 36 60 98 1301
23 206 96% 19 9 38 67 67 1280
24 152 96% 23 9 40 69 67 1286
25 187 95% 24 8 39 68 67 1252
26 185 97% 32 9 39 64 223 1214
27 137 97% 28 9 39 66 176 1251
28 151 98% 19 9 40 67 462 1222
29 148 97% 9 9 39 66 168 1187
30 173 96% 20 9 39 68 141 1205
31 161 96% 16 9 39 69 95 1120
32 108 97% 19 9 40 68 179 1133
33 115 96% 35 9 41 71 209 1130
34 100 96% 22 9 38 67 237 1113
35 97 99% 19 9 41 67 684 1107

that is, the outliers. Another way is to assign a job to the
category for which it has the highest degree of membership.
The disadvantage of this approach is that some categories will
have very few jobs.

The application of FCM has the following problems:

(1) how to determine the membership threshold 𝜇𝐿.
In theory, setting 𝜇𝐿 to 1/𝐾 ensures that each job
can be classified under some category with absolute
certainty. Conversely, if 𝜇𝐿 is set to a large value, it is
possible that some jobs cannot be classified under any
category with absolute certainty;
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A = [0.300 0.485 0.900 0.367 0.367 0.162; . . .; 0.900 0.396 0.900 0.900 0.633 0.900]
K = 4

[center, U, obj fun] = fcm(A, K);
Jm = min(obj fun)
e2 min = 9999;
for i = 1: K

for j = i + 1 : K
e2 sum = 0;
for p = 1: 3

e2 sum = e2 sum + (center(i, p) − center(j, p))∧ 2;
end

if e2 sum < e2 min

e2 min = e2 sum;
end

end

end

e2 min

S = min(Jm)/(35∗e2 min)

Algorithm 1: The FCM program code in MATLAB.

(2) whether to consider the degree of membership in the
remaining cycle time estimation. If two jobs belong
to the same category but have different degrees of
membership, how can one guarantee that the BPN
of this category has the same predictive power for
the two jobs? To address this issue, the degree of
membership can be considered when estimating the
remaining cycle time with the BPN.

3.3. Step 3: Estimate the Remaining Cycle Time with a BPN.
After clustering, for each category, a three-layer BPN is built
to estimate the remaining cycle times of jobs in the category.
Some of the jobs in the category are input as “training
examples” to the BPN to determine the parameter values.
The configuration of the three-layer BPN is as follows. First,
the inputs are the 𝑃 parameters associated with the 𝑗th job.
These parameters have to be normalized before they are fed
into the three-layer BPN. Subsequently, there is only a single
hidden layer with neurons that are twice as many as the
input layer. Finally, the output from the three-layer BPN is
the (normalized) remaining cycle time estimate (RCTE𝑗) of
the example. The activation function used in each layer is the
Sigmoid function,

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
. (7)

The procedure for determining the parameter values is
now described. Two phases are involved at the training stage.
At first, in the forward phase, inputs are multiplied with
weights, summed, and transferred to the hidden layer. Then
activated signals are output from the hidden layer as

ℎ𝑙 =
1

1 + 𝑒−𝑛
ℎ

𝑙

, (8)

where

𝑛
ℎ
𝑙 = 𝐼
ℎ
𝑙 − 𝜃
ℎ
𝑙 ,

𝐼
ℎ
𝑙 =

𝑃

∑

𝑝=1

𝑤
ℎ
𝑝𝑙𝑥𝑝,

(9)

where ℎ𝑙 values are also transferred to the output layer
with the same procedure. Finally, the output of the BPN is
generated as

𝑜 =
1

1 + 𝑒−𝑛
𝑜 , (10)

where
𝑛
𝑜
= 𝐼
𝑜
− 𝜃
𝑜
,

𝐼
𝑜
=

𝐿

∑

𝑙=1

𝑤
𝑜
𝑙 ℎ𝑙.

(11)

Some algorithms are applicable for training a BPN in the
backward phase, such as gradient descent algorithms, con-
jugate gradient algorithms, the Levenberg-Marquardt algo-
rithm, and others. In this study, the Levenberg-Marquardt
algorithm is applied. The Levenberg-Marquardt algorithm
was designed for training with second-order speed without
having to compute the Hessian matrix. It uses approximation
and updates the network parameters in a Newton-like way, as
described in the following.

The network parameters are placed in vector 𝛽 =

[𝑤
ℎ
11, . . . , 𝑤

ℎ
𝑃𝐿, 𝜃
ℎ
1 , . . . , 𝜃

ℎ
𝐿, 𝑤
𝑜
1, . . . , 𝑤

𝑜
𝐿, 𝜃
𝑜
]. The network output

𝑜𝑗 can be represented with 𝑓(xj,𝛽). The objective function
of the BPN is to minimize RMSE or equivalently the sum of
squared error (SSE) as follows:

SSE (𝛽) =
𝑛

∑

𝑗=1

(𝑁 (RCTE𝑗𝑢) − 𝑓 (xj,𝛽))
2
. (12)
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Table 4: The results of partial normalization.

Job
number 𝑧𝑗1 𝑧𝑗2 𝑧𝑗3 𝑧𝑗4 𝑧𝑗5 𝑧𝑗6

1 0.300 0.485 0.900 0.367 0.367 0.162
2 0.500 0.604 0.900 0.367 0.367 0.362
3 0.300 0.248 0.100 0.456 0.500 0.163
4 0.500 0.159 0.900 0.100 0.233 0.203
5 0.500 0.604 0.100 0.544 0.567 0.349
6 0.500 0.396 0.900 0.722 0.700 0.279
7 0.300 0.426 0.900 0.633 0.367 0.314
8 0.300 0.574 0.900 0.811 0.567 0.314
9 0.500 0.811 0.900 0.900 0.633 0.314
10 0.300 0.752 0.900 0.633 0.567 0.106
11 0.300 0.900 0.900 0.722 0.633 0.106
12 0.300 0.426 0.900 0.544 0.500 0.106
13 0.300 0.396 0.900 0.456 0.567 0.106
14 0.300 0.159 0.900 0.544 0.567 0.100
15 0.500 0.189 0.100 0.278 0.367 0.291
16 0.300 0.781 0.100 0.456 0.300 0.168
17 0.100 0.722 0.900 0.189 0.100 0.105
18 0.100 0.367 0.900 0.367 0.433 0.105
19 0.500 0.544 0.900 0.278 0.167 0.351
20 0.500 0.426 0.900 0.278 0.167 0.351
21 0.100 0.841 0.900 0.367 0.167 0.142
22 0.300 0.130 0.100 0.456 0.167 0.162
23 0.300 0.396 0.900 0.633 0.633 0.123
24 0.300 0.515 0.900 0.811 0.767 0.123
25 0.100 0.544 0.100 0.722 0.700 0.123
26 0.500 0.781 0.900 0.722 0.433 0.319
27 0.500 0.663 0.900 0.722 0.567 0.260
28 0.700 0.396 0.900 0.811 0.633 0.620
29 0.500 0.100 0.900 0.722 0.567 0.250
30 0.300 0.426 0.900 0.722 0.700 0.216
31 0.300 0.307 0.900 0.722 0.767 0.158
32 0.500 0.396 0.900 0.811 0.700 0.264
33 0.300 0.870 0.900 0.900 0.900 0.302
34 0.300 0.485 0.900 0.633 0.633 0.337
35 0.900 0.396 0.900 0.900 0.633 0.900

The Levenberg-Marquardt algorithm is an iterative pro-
cedure. At the beginning, the user should specify the initial
values of the network parameters 𝛽. It is common practice
to set 𝛽T = (1, 1, . . . , 1). At each step, the parameter
vector 𝛽 is replaced by a new estimate 𝛽 + 𝛿, where
𝛿 = [Δ𝑤

ℎ
11, . . . , Δ𝑤

ℎ
𝑃𝐿, Δ𝜃

ℎ
1 , . . . , Δ𝜃

ℎ
𝐿, Δ𝑤
𝑜
1, . . . , Δ𝑤

𝑜
𝐿, Δ𝜃
𝑜
]. The

network output becomes 𝑓(xj,𝛽 + 𝛿); it is approximated by
its linearization as

𝑓 (xj,𝛽 + 𝛿) ≈ 𝑓 (xj,𝛽) + Jj𝛿, (13)

Table 5: The results of the 𝑆 test.

Number of categories (K) 𝐽𝑚 𝑒
2
min 𝑆

2 0.0739 0.0027 0.7946
3 0.0444 0.0028 0.4586
4 0.0316 0.0014 0.6298
5 0.0247 0.0014 0.4882
6 0.0205 0.0009 0.6336
7 0.0175 0.0005 1.1102
8 0.0154 0.0003 1.2577

Table 6: The classifying results (𝜇𝐿 = 0.5).

Category Jobs
1 6, 8, 9, 10, 11, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34
2 3, 5, 15, 16, 22, 25
3 1, 2, 4, 7, 12, 13, 17, 18, 19, 20, 21

Table 7: The classifying results (𝜇𝐿 = 0.1).

Category Jobs

1 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

2 3, 4, 5, 11, 14, 15, 16, 17, 20, 21, 22, 25, 28, 29, 33, 35

3 1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35

Table 8: Training algorithm performance (convergence criterion:
MSE < 10−4).

Algorithm Number of epochs MAE MAPE RMSE
Gradient descent 10000 79 6.7% 98
Levenberg-Marquardt <100 47 4.1% 70

where

Jj =
𝜕𝑓 (xj,𝛽)

𝜕𝛽
(14)

is the gradient vector of 𝑓 with respect to 𝛽. Substituting (13)
into (12),

SSE (𝛽 + 𝛿) ≈
𝑛

∑

𝑗=1

(𝑁 (RCTE𝑗𝑢) − 𝑓 (xj,𝛽) − Jj𝛿)
2
. (15)

When the network reaches the optimal solution, the gradient
of SSE with respect to 𝛿 will be zero. Taking the derivative of
SSE(𝛽+𝛿)with respect to 𝛿 and setting the result to zero give

(JTJ) 𝛿 = JT (𝑁 (RCTE𝑗𝑢) − 𝑓 (xj,𝛽)) , (16)

where J is the Jacobian matrix containing the first derivative
of network error with respect to the weights and biases.
Equation (16) includes a set of linear equations that can be
solved for 𝛿.

Finally, the three-layer BPN can be applied to estimate the
remaining cycle time of a job.When a new job is released into
the factory, the parameters associated with the new job are
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Figure 3: The estimation results by FCM-BPN.

400
500
600
700
800
900

1000
1100
1200

0 0.1 0.2 0.3 0.4
Estimation accuracy

(RMSE, normalized value)

Sc
he

du
lin

g 
pe

rfo
rm

an
ce

(a
ve

ra
ge

 cy
cle

 ti
m

e, 
hr

s)

Figure 4:The relationship between the scheduling performance and
the estimation accuracy.

recorded. Then the new job is classified into a category, and
the three-layer BPN of the category can be applied to estimate
the remaining cycle time of the new job.

Consider category 1 of the previous example. When 𝜇𝐿 =
0.5, there are 16 jobs in this category. These jobs are split into
two parts: the training data (the first 12 jobs) and the testing
data (the remaining jobs). A three-layer BPN estimates the
remaining cycle time of jobs in this category according to
their six attributes with the following settings:

single hidden layer,

the number of neurons in the hidden layer: 12,

convergence criterion: mean squared error (MSE) <
10
−4.

The Neural Network Toolbox of MATLAB is used to
implement the BPN approach.TheBPNprogram code for the
illustrative example is shown in Algorithm 2. The estimation
results are shown in Figure 3.

The following indexes evaluate the estimation accuracy of
both training and testing data:

mean absolute error (MAE) = 43 (hrs),

mean absolute percentage error (MAPE) = 3.7%,

RMSE = 62 (hrs).

In contrast, if the remaining cycle times of these jobs are
predicted in association with those of the other unclassified
jobs, then the estimation performance will be

mean absolute error (MAE) = 47 (hrs),

mean absolute percentage error (MAPE) = 4.1%,

root mean squared error (RMSE) = 70 (hrs)

which is much poorer. Table 8 compares the performance
levels of the gradient descent algorithm and the Levenberg-
Marquardt algorithm.

How does the accuracy of remaining cycle time estima-
tion affect the performance of the dispatching rule? To answer
this question, we add a noise factor to the remaining cycle
time before feeding it to the dispatching rule as follows:

RCTE𝑗𝑢 + 𝜀𝑗𝑢, 𝜀𝑗𝑢 ∈ 𝑁 (0 ∼ 200, 0 ∼ 50) , (17)

where 𝜀𝑗𝑢 follows the normal distribution. After a simulation
study using FSMCT, the estimated remaining cycle time was
compared with the actual value to evaluate the estimation
accuracy. The relationship between the scheduling perfor-
mance and the estimation accuracy is shown in Figure 4.
Forty (40) replications of a simulation experiment were run
with FSMCT. The scheduling performance and the estima-
tion accuracy were evaluated with the average cycle time
and RMSE, respectively. Obviously, the more accurately the
remaining cycle time can be estimated, the better the schedule
will perform. Therefore, the efforts made in this paper to
improve the accuracy of remaining cycle time estimation
make sense.

3.4. The Slack-Diversifying Fuzzy-Neural Rule. In traditional
fluctuation smoothing (FS) there are two different formula-
tion methods with two separate strengths [11]. One method
is aimed at minimizing the mean cycle time with FSMCT as
follows:

SK𝑗𝑢 (FSMCT) =
𝑗

𝜆
− RCTE𝑗𝑢. (18)

The other method is aimed at minimizing the variance of
cycle time with FSVCT as follows:

SK𝑗𝑢 (FSVCT) = 𝑅𝑗 − RCTE𝑗𝑢. (19)

Jobs with the smallest slack values are given high priority.
These two rules and their variants have been proven to be very
effective in shortening the cycle times of wafer fabrication
factories [11, 14, 24, 27]. In the traditional FSMCT rule,
RCTE𝑗𝑢 might be much greater than 𝑗/𝜆. As a result, the
slack of a job is determined solely by RCTE𝑗𝑢. To tackle this
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tn input = [0.500 0.300 0.500. . .; 0.396 0.574 0.811. . .; 0.900 0.900 0.900. . .; 0.722
0.811 0.900. . .; 0.700 0.567 0.633. . .; 0.279 0.314 0.314. . .]
tn target = [0.341 0.383 0.598⋅ ⋅ ⋅ 0.100]
net = newff([0 1; 0 1; 0 1; 0 1; 0 1; 0 1],[12, 1],{“logsig”, “logsig”}, “trainlm”);
net = init(net);
net.trainParam.show = 10;
net.trainParam.lr = 0.1;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e − 4;
[net, tr] = train(net, tn input, tn target);
tn output = sim(net, tn input)
te input = [0.300 0.500 0.300. . .; 0.307 0.396 0.870. . .; 0.900 0.900 0.900. . .;
0.722 0.811 0.900. . .; 0.767 0.700 0.900. . .; 0.158 0.264 0.302. . .]
te output = sim(net, te input)

Algorithm 2: The BPN code in MATLAB (category 1).

problem, both terms in the FSMCT rule are normalized as
follows:

Nor (RCTE𝑗𝑢) =
(RCTE𝑗𝑢 −min (RCTE𝑗𝑢))

(max (RCTE𝑗𝑢) −min (RCTE𝑗𝑢))
,

Nor(
𝑗

𝜆
) =

(𝑗/𝜆 −min (𝑗/𝜆))
(max (𝑗/𝜆) −min (𝑗/𝜆))

=
(𝑗/𝜆 − 1/𝜆)

(𝑛/𝜆 − 1/𝜆)

=
(𝑗 − 1)

(𝑛 − 1)
.

(20)

After normalization, both terms now range from 0 to 1.
Subsequently, to improve the responsiveness of the FSMCT
rule, the division operator is applied instead of the traditional
subtraction operator as follows:

nonlinear FSMCT rule : SK𝑗𝑢 =
Nor (𝑗/𝜆)

Nor (RCTE𝑗𝑢)
. (21)

However, this rule cannot be tailored to the wafer fabrication
factory that is to be scheduled. To address this problem, the
transition from a traditional FSMCT rule to its nonlinear
form is analyzed as follows. The nonlinear form can be
rewritten as

SK𝑗𝑢

=
Nor (𝑗/𝜆)

Nor (RCTE𝑗𝑢)

=
(𝑗 − 1) / (𝑛 − 1)

(RCTE𝑗𝑢−min (RCTE𝑗𝑢))/(max (RCTE𝑗𝑢)−min (RCTE𝑗𝑢))

=
𝛽

𝛾
⋅

𝑗 − 1

RCTE𝑗𝑢 −min (RCTE𝑗𝑢)

=
𝛽𝜆

𝛾
⋅

(𝑗/𝜆) − (1/𝜆)

RCTE𝑗𝑢 −min (RCTE𝑗𝑢)

=
𝛽𝜆

𝛾 (RCTE𝑗𝑢 −min (RCTE𝑗𝑢))

⋅ (
𝑗

𝜆
− RCTE𝑗𝑢 + RCTE𝑗𝑢 −

1

𝜆
)

= (
𝛾 (RCTE𝑗𝑢 −min (RCTE𝑗𝑢))

𝛽𝜆
)

−1

⋅ (
𝑗

𝜆
− RCTE𝑗𝑢 + (RCTE𝑗𝑢 −min(

𝑗

𝜆
)) ⋅ 1) ,

(22)

where 𝛽 = max(RCTE𝑗𝑢) − min(RCTE𝑗𝑢) and 𝛾 = 𝑛 − 1.
Conversely, the linear form can also be rewritten as

SK𝑗𝑢 = 𝑅𝑗 − RCTE𝑗𝑢

= (
𝛾 (RCTE𝑗𝑢 −min (RCTE𝑗𝑢))

𝛽𝜆
)

−0

⋅ (
𝑗

𝜆
− RCTE𝑗𝑢 + (RCTE𝑗𝑢 −min(

𝑗

𝜆
)) ⋅ 0) .

(23)

These two formulas can be generalized into the following
form:

SK𝑗𝑢 = (
𝛾 (RCTE𝑗𝑢 −min (RCTE𝑗𝑢))

𝛽𝜆
)

−𝜉

⋅ (
𝑗

𝜆
− RCTE𝑗𝑢 + (RCTE𝑗𝑢 −min(

𝑗

𝜆
)) ⋅ 𝜁) .

(24)
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Wang et al. derived [13] the slack-diversifying nonlinear
fluctuation smoothing rule by diversifying the slack in the 1f-
TNFSVCT rule. In this study, we diversify the slack in the 2f-
TNFSMCT rule as follows:

SK𝑗𝑢 = (
𝛽𝜆

𝛾 (RCTE𝑗𝑢 −min (RCTE𝑗𝑢))
)

𝜉

⋅ (
𝑗

𝜆
− RCTE𝑗𝑢 + 𝜁 (RCTE𝑗𝑢 −

1

𝜆
))

= 𝑎
𝜉
𝑗𝑢 (𝑏𝑗𝑢 + 𝑐𝑗𝑢𝜁)

= 𝑏𝑗𝑢𝑎
𝜉
𝑗𝑢 + 𝑐𝑗𝑢𝜁𝑎

𝜉
𝑗𝑢,

(25)

where

𝑎𝑗𝑢 =
𝛽𝜆

𝛾 (RCTE𝑗𝑢 −min (RCTE𝑗𝑢))
,

𝑏𝑗𝑢 =
𝑗

𝜆
− RCTE𝑗𝑢,

𝑐𝑗𝑢 = RCTE𝑗𝑢 −
1

𝜆
.

(26)

There are many possible models that can form the combina-
tion of 𝜉 and 𝜁. For example,

(Linear model) 𝜉 = 𝜁, (27)

(Nonlinear model) 𝜉 = 𝜁
𝑘
, 𝑘 ≥ 0, (28)

(Logarithmic model) 𝜉 = ln (1 + 𝜁)
ln 2

. (29)

However, (25) is difficult to deal with. For this reason, the
following polynomial fitting techniques are used to convert
it into a more tractable form:

𝑥
𝜉
≅ (1.15 − 0.11𝜉) + (−0.07 + 0.57𝜉) 𝑥. (30)

The mean absolute percentage error (RMSE) of (30) is less
than 9% when 𝑥 ≤ 10. RMSE will not be a serious problem,
since it is the 𝜉 value associated with the maximum 𝜎SK𝑗𝑢 that
is to be found, not the SK𝑗𝑢 value. These polynomial fitting
techniques are especially effective when 𝑥 exceeds 1.

Applying (30) to (25) gives

SK𝑗𝑢 ≅ 𝑏𝑗𝑢 (1.15 − 0.11𝜉 + (−0.07 + 0.57𝜉) 𝑎𝑗𝑢)

+ 𝑐𝑗𝑢𝜁 (1.15 − 0.11𝜉 + (−0.07 + 0.57𝜉) 𝑎𝑗𝑢)

= (1.15𝑏𝑗𝑢 − 0.07𝑎𝑗𝑢𝑏𝑗𝑢)

+ (−0.11𝑏𝑗𝑢 + 0.57𝑎𝑗𝑢𝑏𝑗𝑢) 𝜉

+ (1.15𝑐𝑗𝑢 − 0.07𝑎𝑗𝑢𝑐𝑗𝑢) 𝜁

+ (−0.11𝑐𝑗𝑢 + 0.57𝑎𝑗𝑢𝑐𝑗𝑢) 𝜉𝜁

= 𝑑𝑗𝑢 + 𝑒𝑗𝑢𝜉 + 𝑓𝑗𝑢𝜁 + 𝑔𝑗𝑢𝜉𝜁,

(31)

where

𝑑𝑗𝑢 = 1.15𝑏𝑗𝑢 − 0.07𝑎𝑗𝑢𝑏𝑗𝑢,

𝑒𝑗𝑢 = −0.11𝑏𝑗𝑢 + 0.57𝑎𝑗𝑢𝑏𝑗𝑢,

𝑓𝑗𝑢 = 1.15𝑐𝑗𝑢 − 0.07𝑎𝑗𝑢𝑐𝑗𝑢,

𝑔𝑗𝑢 = −0.11𝑐𝑗𝑢 + 0.57𝑎𝑗𝑢𝑐𝑗𝑢.

(32)

To diversify the slack, the standard deviation of the slack is to
be maximized as follows:

𝜎SK𝑗𝑢 =
√∑
𝑛
𝑗=1 (SK𝑗𝑢 − SK𝑗𝑢)

2

𝑛 − 1

= √
1

(𝑛 − 1)
√
𝑛

∑

𝑗=1

SK2𝑗𝑢 −
1

𝑛
(

𝑛

∑

𝑗=1

SK𝑗𝑢)
2

(33)

which is equivalent to maximizing the following term:

𝑛

∑

𝑗=1

SK2𝑖𝑗 −
1

𝑛
(

𝑛

∑

𝑗=1

SK𝑖𝑗)
2

=

𝑛

∑

𝑗=1

(𝑑𝑗𝑢 + 𝑒𝑗𝑢𝜉 + 𝑓𝑗𝑢𝜁 + 𝑔𝑗𝑢𝜉𝜁)
2

−
1

𝑛
(

𝑛

∑

𝑖=1

(𝑑𝑗𝑢 + 𝑒𝑗𝑢𝜉 + 𝑓𝑗𝑢𝜁 + 𝑔𝑗𝑢𝜉𝜁))

2

= 𝑤1 + 𝑤2𝜁 + 𝑤3𝜉 + 𝑤4𝜁
2
+ 𝑤5𝜉

2

+ 𝑤6𝜁𝜉 + 𝑤7𝜁𝜉
2
+ 𝑤8𝜁

2
𝜉.

(34)

By taking the derivatives of (34) with respect to 𝜁 and 𝜉 and
setting them equal to zero, we can obtain

𝑤2 + 2𝑤4𝜁 + 𝑤6𝜉 + 𝑤7𝜉
2
+ 2𝑤8𝜁𝜉 = 0, (35)

𝑤3 + 2𝑤5𝜉 + 𝑤6𝜁 + 2𝑤7𝜁𝜉 + 𝑤8𝜁
2
= 0. (36)

In addition, 𝜁 and 𝜉 must follow some model, for example,
(27), (28), or (29). For example, if the nonlinearmodel in (28)
is satisfied (𝑘 = 2), then according to (35),

𝑤2 + 2𝑤4𝜁 + 𝑤6𝜁
2
+ 2𝑤8𝜁

3
+ 𝑤7𝜁

4
= 0; 𝜉 = 𝜁

2
, (37)

while according to (36)

𝑤3 + 𝑤6𝜁 + (2𝑤5 + 𝑤8) 𝜁
2
+ 2𝑤7𝜁

3
= 0; 𝜉 = 𝜁

2
. (38)

The general solutions are too long to be presented here. Fur-
ther, to guarantee a maximum, the second-order derivative
must be negative as follows:

2𝑤4 + 2𝑤8𝜉 ≤ 0,

2𝑤5 + 2𝑤7𝜁 ≤ 0.
(39)
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Table 9: A demonstrative example.

𝑗 𝑅𝑗 RCTE𝑗𝑢
1 158 54
2 154 109
3 161 118
4 131 52
5 162 198
6 248 25
7 220 11
8 87 106
9 22 31
10 178 118
11 229 95
12 148 105
13 8 8
14 228 55
15 242 132
16 99 51
17 4 3
18 246 154
19 191 157
20 131 148

In addition, it is possible that some jobs have very large or
very small slacks, either of which will distort the calculation
of 𝜎SK𝑗𝑢 . For this reason, such jobs are excluded. Further,
the values of 𝜉 and 𝜁 influence the range of SK𝑗𝑢. For a fair
comparison, 𝜎SK𝑗𝑢 should be divided by the range of SK𝑗𝑢 to
determine the optimal values of 𝜉 and 𝜁.

An example is given in Table 9 to illustrate the procedure
mentioned above, in which 𝛼 = 244, 𝛽 = 195, and 𝜆 = 1.18.
Assume that the nonlinear model with 𝑘 = 2 is used for
the relationship between 𝜉 and 𝜁. The optimal solution is
𝜉
∗ = 0.53 and 𝜁

∗
= 0.28 with the maximum 𝜎SK𝑗𝑢 equal to

9.21. In Figure 5 the results of the proposed methodology are
compared with those of Wang et al.’s method. Obviously, the
proposed methodology performed better at diversifying the
slacks of jobs, which reduces the risk of misscheduling and
promotes scheduling performance.

4. Numerical Simulation and Results

To evaluate the effectiveness of the slack-diversifying fuzzy-
neural rule for job dispatching in a wafer fabrication factory,
simulated data were used to avoid disturbing the regular
operations of the wafer fabrication factory. Simulation is a
widely used technology that can assess the effectiveness of a
scheduling policy, especially when the proposed policy and
the current practice are very different. The actual production
environment is dedicated to make real products and is
not available for algorithm testing. Therefore, a real wafer
fabrication factory located in Taichung Scientific Park of
Taiwan with a monthly capacity of about 25,000 wafers was
simulated. That factory’s real time scheduling systems input

information very rapidly into its production management
information systems (PROMIS).The simulation program has
been validated and verified by comparing the actual cycle
times with the simulated values and by analyzing the trace
report, respectively. The wafer fabrication produces more
than 10 types of memory products and has more than 500
workstations for performing single wafer or batch operations
using 58 nm∼ 110 nm technologies. Each job released into the
fabrication factory is assigned one of three priorities, that is,
“normal,” “hot,” and “super hot.” Jobs with the highest prior-
ities will be processed first. The large scale of operations with
reentrant process flows makes job dispatching in the wafer
fabrication factory a very tough task. Currently, the longest
average cycle time exceeds three months with a variation
of more than 300 hours. The factory managers seek better
dispatching rules to replace first-in first-out (FIFO) and EDD,
in order to shorten the average cycle times and ensure on
time deliveries to customers. One hundred replications of the
simulation were successively run. The time required for each
simulation replication was about 30 minutes using a PC with
Intel Dual CPUE2200 2.2GHz and 1.99GRAM. A horizon of
twenty-four months was simulated.

To assess the effectiveness of the proposed methodology
and to make comparisons with some existing approaches—
FIFO, EDD, shortest remaining processing time (SRPT), CR,
FSVCT, FSMCT, and a nonlinear fluctuation smoothing rule
(NFS) [4]—all of these methods were applied to schedule
the simulated wafer fabrication factory with the data of 1000
jobs; the collected data were then separated by product types
and priorities. That is about the amount of work that can
be achieved with 100% of the monthly capacity. Some cases
produced insufficient data, so the present paper does not
discuss those cases.

The due date of each job was determined as follows. The
FCM-BPN approach was applied to estimate the cycle time;
the Levenberg-Marquardt algorithm, rather than the gradient
descent algorithm, was applied to speed up the network
convergence. Then, we added a constant allowance of three
days to the estimated cycle time, that is, 𝜅 = 72, to determine
the internal due date as follows:

DD𝑗 = CTE𝑗 + 72. (40)

Jobs with the highest priorities are usually processed first.
In FIFO, jobs were sequenced on each machine first by their
priorities, then by their arrival times at the machine. In EDD,
jobs were sequenced first by their priorities, then by their
due dates. With SRPT, the remaining processing time of each
job was calculated. Then, jobs were sequenced first by their
priorities, then by their remaining processing times. With
CR, jobs were sequenced first by their priorities, then by their
critical ratios as follows:

CR𝑗𝑢 =
(DD𝑗 − 𝑡)
RPT𝑗

. (41)

FSVCT and FSMCT consisted of two stages. The first stage
scheduled jobs by FIFO; the remaining cycle times of all
jobs were recorded and averaged at each step. The second
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Table 10: The performance of various approaches in the average cycle time.

Avg. cycle time (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)
FIFO 1256 401 320 1278 457
EDD 1087 346 306 1433 478
SRPT 966 350 309 1737 483
CR 1143 356 301 1497 470
FSMCT 1401 405 320 1408 430
FSVCT 1046 385 317 1745 519
NFS 1456 407 321 1452 421
The proposed methodology 1134 295 278 1208 399

Table 11: The performance of various approaches in cycle time standard deviation.

Cycle time std. dev. (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)
FIFO 56 24 23 87 40
EDD 130 25 23 50 39
SRPT 246 32 23 106 30
CR 68 30 19 58 37
FSMCT 42 44 23 35 28
FSVCT 319 35 28 222 55
biNFS 87 49 19 44 47
The proposed methodology 89 26 15 55 20

stage applied FSVCT or FSMCT policy to schedule the jobs
based on the average remaining cycle times obtained earlier.
In other words, jobs were sequenced on each machine first
by their priorities, and then by their slack values, which were
determined by (18) and (19). In NFS, the slack of a job was
defined as follows:

SK𝑗𝑢 = (
𝑅𝑗 −min𝑅𝑗

max𝑅𝑗 −min𝑅𝑗
)

𝜉

⋅
((𝑗 − 1)/(𝑛 − 1))

1−𝜉

((RCTE𝑗𝑢 −min RCTE𝑗𝑢) / (max RCTE𝑗𝑢 −min RCTE𝑗𝑢))
,

(42)

where 𝜉 ∈ [0 1]. After a preliminary experiment, 𝜉was set to
0.8. In the proposed methodology, the nonlinear model with
𝑘 = 2 was used.

Subsequently, the average cycle time and cycle time
standard deviation of all cases were calculated to assess the
scheduling performance. Comparisons for the average cycle
time used FSMCT policy; comparisons for cycle time stan-
dard deviation used FSVCT. The results are summarized in
Tables 10 and 11. Both products A and B are dynamic random
access memory products. The main difference between the
two products is their storage capacities.

(1) For the average cycle time, the proposedmethodology
outperformed the baseline approach, FSMCT policy.
The average advantage was about 17%.

(2) In addition, the proposed methodology surpassed
the FSVCT policy in reducing cycle time standard
deviation. The most obvious advantage was 74%.

(3) As expected, SRPT performed well in reducing the
average cycle times, especially for product types with
short cycle times (e.g., product A) but sometimes
gave an exceedingly bad performance with respect
to cycle time standard deviation. If the cycle time is
long, the remaining cycle time will be much longer
than the remaining processing time; this makes SRPT
ineffective. SRPT is similar to FSMCT. Both try to
make all jobs equally early or late.

(4) The performance of EDDwas satisfactory for product
types with short cycle times. If the cycle time is long, it
is more likely to deviate from the prescribed internal
due date, whichmakes EDD ineffective.That becomes
serious if the percentage of the product type is high in
the productmix (e.g., product type A). CR has similar
problems.

(5) The Wilcoxon signed-rank test [39], a commonly
used nonparametric statistical hypothesis test for
comparisons of two related samples or repeated mea-
surements on a single sample, was used in this study to
assess whether population means differed or not. The
results are summarized in Table 12. The null hypoth-
esis𝐻𝑎 was rejected at 𝛼 = 0.025, which showed that
the slack-diversifying fluctuation-smoothing rule was
statistically superior to four existing approaches to
reduce the average cycle time. With regard to cycle
time standard deviation, the advantage of the slack-
diversifying fluctuation-smoothing rule over SRPT
and FSVCT was significant.

(6) The slack-diversifying 2f-TNFSMCT rule was also
compared with the traditional one without slack
diversification. Taking product type A with normal
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Figure 5: Comparison of the results by the two methods.
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priority as an example, the comparison results are
shown in Figure 6. Obviously, the slack-diversifying
rules dominated most of the traditional rules with-
out slack diversification. According to these results,
the treatments carried out in this study did indeed
improve on the performance levels of the traditional
policies.

(7) The proposed methodology can be decomposed into
two parts. In the first part, the remaining cycle time
of a new job is estimated using FCM-BPN, based
on the historical data retrieved from PROMIS. In
the experiment, it took less than 2 minutes to run
all MATLAB programs and generate the remaining
cycle time estimate. In contrast, Chen and Wang’s
method used the gradient search algorithm, and it
took about 15 minutes to train the BPN. In the second
part, the slacks of all jobs are calculated according to
the slack-diversifying 2f-TNFSMCT rule. That can be
done almost instantly.

The slack-diversifying 2f-TNFSMCT rule has been
proven effective in real world situations because it has been
applied to schedule a wafer fabrication factory. However, it
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Figure 7: The performances of various rules in the average cycle
time.

Table 12: Results of the Wilcoxon signed-rank test.

𝐻𝑎0 𝐻𝑏0

(the average cycle time) (cycle time standard deviation)
FIFO 2.02∗∗ 0.40
EDD 1.48 1.21
SRPT 0.94 2.02∗∗

CR 2.02∗∗ 0.54
FSMCT 2.02∗∗ −0.54

FSVCT 1.48 2.02∗∗

biNFS 2.02∗∗ 0.94
∗𝑃 < 0.05.
∗∗𝑃 < 0.025.
∗∗∗𝑃 < 0.01.

has not been possible to experiment with a large assortment
of scheduling policies in that wafer fabrication factory. In
the past, FIFO and EDD have been applied to this wafer
fabrication factory, and their performance statistics have
been analyzed. For these reasons, the performance level of
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Figure 8: The performances of various rules in cycle time standard
deviation.

the slack-diversifying 2f-TNFSMCT rule was compared with
those of FIFO and EDD. For example, consider the case
in which the majority of the factory’s capacity is occupied.
Figures 7 and 8 compare the performance levels of the three
approaches. With regard to the average cycle time, the slack-
diversifying 2f-TNFSMCT rule surpassed the two old rules.
The performance of the slack-diversifying 2f-TNFSMCT rule
was also comparable to that of FIFO for reducing cycle time
standard deviation. Both results supported the practicability
of the proposed slack-diversifying 2f-TNFSMCT rule.

5. Conclusions and Directions for
Future Research

To optimize job dispatching in a wafer fabrication factory
is a challenging but important task. This study attempts
to innovate by a slack-diversifying fuzzy neural rule that
optimizes the average cycle time and cycle time standard
deviation for job dispatching in a wafer fabrication factory.

The proposed methodology applies soft computing tech-
niques like fuzzy classification and artificial neural network
prediction. An effective fuzzy-neural approach is applied
to estimate the remaining cycle time of a job, which is
empirically shown to ameliorate scheduling performance.
This slack-diversifying fuzzy-neural rule is a modification of
the 2f-TNFSMCT rule.

After a simulation study, we observed the following
phenomena:

(1) through improving the accuracy of remaining cycle
time estimation, the performance of a scheduling rule
can indeed be strengthened;

(2) optimizing the adjustable factors in the 2f-TNFSMCT
rule appears to be an appropriate tool to enhance the
scheduling performance of the rule.

However, a complete assessment of the effectiveness
and efficiency of the proposed methodology requires actual
application in a real-world wafer fabrication factory. Future
studies can optimize other rules in the same way, taking into
account the great uncertainty inherent in wafer fabrication

systems [40] and possibly using a more effective data mining
approach [41].
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