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Combined heat and power dynamic economic dispatch (CHPDED) plays a key role in economic operation of power systems.
CHPDED determines the optimal heat and power schedule of committed generating units by minimizing the fuel cost under ramp
rate constraints and other constraints. Due to complex characteristics, heuristic and evolutionary based optimization approaches
have became effective tools to solve the CHPDED problem. This paper proposes hybrid differential evolution (DE) and sequential
quadratic programming (SQP) to solve the CHPDED problem with nonsmooth and nonconvex cost function due to valve point
effects. DE is used as a global optimizer and SQP is used as a fine tuning to determine the optimal solution at the final.The proposed
hybrid DE-SQP method has been tested and compared to demonstrate its effectiveness.

1. Introduction

In the past decades, increasing demand for power and heat
resulted in the existence of combined heat and power (CHP)
units, known as cogeneration or distributed generation. It
produces electricity and useful heat simultaneously. While
the efficiency of the normal power generation is between
50% and 60%, the power and heat cogeneration increases the
efficiency around 90% [1]. Utilization of CHP units besides
conventional thermal power generating units and heat-only
units to satisfy heat and power load demands in an economi-
cal manner emphasizes the need to combined heat and power
economic dispatch (CHPED). The objective of the CHPED
problem is to determine both power generation and heat
production from units by minimizing the fuel cost such that
both heat and power demands are met while the combined
heat and power units are operated in a bounded heat versus
power plane. For most CHP units, the heat production
capacities depend on the power generation. This mutual
dependency of the CHP units introduce a complication to
the problem [2]. In addition, considering valve point effects
in the CHPED problem makes the problem nonsmooth with

multiple local optimal point which makes finding the global
optimal challenging.

Over the past few years, a number of approaches have
been developed for solving the CHPED problem with com-
plex objective functions or constraints such as Lagrangian
Relaxation (LR) [3, 4], Semidefinite Programming (SDP)
[5], augmented Lagrange combined with Hopfield neural
network [6], Harmony Search (HS) algorithm [1, 7], Genetic
Algorithm (GA) [8], Ant Colony Search Algorithm (ACSA)
[9], Mesh Adaptive Direct Search (MADS) algorithm [10],
Self Adaptive Real-Coded Genetic Algorithm (SARGA)
[2], Particle Swarm Optimization (PSO) [11, 12], Artificial
Immune System (AIS) [13], and Evolutionary Programming
(EP) [14]. In [11, 13], the valve point effects and the transmis-
sion line losses are incorporated into the CHPED problem.

The main drawbacks of the CHPED is that it may fail
to deal with the large variations of the heat and power load
demands due to the ramp rate limits of the units; moreover, it
does not have the look-ahead capability. To overcome these
drawbacks, combined heat and power dynamic economic
dispatch (CHPDED) problem is formulated with the objec-
tive to determine the optimal heat and power schedule of
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the committed units so as to meet the predicted heat and
power load demands over a time horizon at minimum
operating cost under ramp rate constraints and other con-
straints [15]. CHPDED has a look-ahead capability which
is necessary to schedule the load beforehand so that the
system can anticipate sudden changes in power and heat
demands in the near future. The ramp rate constraint is
a dynamic constraint which is important to maintain the
life of the generators [16]. Since the ramp rate constraint
couples the time intervals, the CHPDEDproblem is a difficult
optimization problem. If the ramp rate constraint is not
included in the optimization problem, theCHPDEDproblem
is reduced to a set of uncoupled CHPED problems that can
easily be solved. The traditional dynamic economic dispatch
(DED) problem which considers only conventional thermal
units that provide only electric power has been studied by
several authors (see e.g., [17, 18] and the review paper [16]).
However, the CHPDED problem has only been considered
in [15, 19].

Differential Evolution (DE) algorithm, which was pro-
posed by Storn andPrice [20] is a population-based stochastic
parallel search technique. DE uses a rather greedy and less
stochastic approach to problem solving compared to other
evolutionary algorithms. DE has the ability to handle opti-
mization problems with nonsmooth/nonconvex objective
functions [20]. Moreover, it has a simple structure and a good
convergence property, and it requires a few robust control
parameters [20]. DE has been applied to the CHPEDproblem
with nonsmooth and nonconvex cost functions in [21].

The DE shares many similarities with evolutionary com-
putation techniques such as Genetic Algorithms (GA) tech-
niques.The system is initialized with a population of random
solutions and searches for optima by updating generations.
DE has evolution operators such as crossover and mutation.
Although DE seems to be a good method to solve the
CHPDED problem with nonsmooth and nonconvex cost
functions, solutions obtained are just near global optimum
with long computation time.Therefore, hybrid methods such
as DE-SQP can be effective in solving the CHPDED problem
with valve-point effects. Hybrid DE-SQP method has been
used for solving the DED problem in [22, 23].

The aim of this paper is to propose a hybrid DE-SQP
method for solving the CHPDED problem with nonsmooth
and nonconvex objective function. DE is used as a base level
search for global exploration and SQP is used as a local search
to fine-tune the solution obtained fromDE.The effectiveness
of the proposed method is shown for test system.

2. Problem Formulation

In this section, we formulate the CHPDED problem. The
system under consideration has three types of generating
units, conventional thermal units (TU), CHP units, and
heat-only units (𝐻). The power is generated by conventional
thermal units and CHP units, while the heat is generated
by CHP units and heat-only units. The objective of the
CHPDED problem is to minimize the system’s production
cost so as tomeet the predicted heat and power load demands

over a time horizon under ramp rate and other constraints.
The following objectives and constraints are taken into
account in the formulation of the CHPDED problem.

2.1. Objective Functions. In this section, we introduce the
cost function of three types of generating units, conventional
thermal units, CHP units, and heat-only units.

ConventionalThermalUnits.The cost function curve of a con-
ventional thermal unit can be approximated by a quadratic
function [24, 25]. Power plants commonly have multiple
valves which are used to control the power output of the
unit. When steam admission valves in conventional thermal
units are first open, a sudden increase in losses is registered
which results in ripples in the cost function [16, 26]. This
phenomenon is called as valve-point effects. The generator
with valve-point effects has very different input-output curve
compared with smooth cost function. Taking the valve-point
effects into consideration, the fuel cost is expressed as the sum
of a quadratic and sinusoidal functions [17, 19, 27].Therefore,
the fuel cost function of the conventional thermal units is
given by
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CHP Units. A CHP unit has a convex cost function in both
power and heat. The form of the fuel cost function of CHP
units can be given by [5, 19]
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Heat-Only Units. Cost: The cost function of heat-only units
can take the following form [5, 19]:
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where 𝑎
𝑘
, �̃�
𝑘
, and 𝑐

𝑘
, are the fuel cost coefficients of heat-only

unit 𝑘 and they are constants.
Let 𝑁 be the number of dispatch intervals and let 𝑁

𝑝
+

𝑁
𝑐
+ 𝑁
ℎ
be the number of committed units, where𝑁

𝑝
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number of conventional thermal units, 𝑁
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the CHP units, and𝑁
ℎ
is the number of the heat-only units.

Then the total fuel cost over the dispatch period [0,𝑁] is given
by
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The CHPDED problem can be mathematically formu-
lated as a nonlinear constrained optimization problem as

min
PH
𝐶 (PH) (5)

subject to the constraints.
Power production and demand balance:
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where 𝑃
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and Loss
𝑡
are the system power demand and

transmission line losses at time 𝑡 (i.e., the 𝑡th time interval),
respectively. The B-coefficient method is one of the most
commonly used methods by power utility industry to calcu-
late the network losses. In this method, the network losses are
expressed as a quadratic function of the unit’s power outputs
that can be approximated in the following:
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3. Differential Evolution Method

DE is a simple yet powerful heuristicmethod for solving non-
linear, nonconvex, and nonsmooth optimization problems.
DE algorithm is a population-based algorithm using three
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randomly generated initial population to final individual
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Table 1: Data of the CHP units and heat-only unit of the eleven-unit system.

CHP units 𝑎
𝑗

𝑏
𝑗

𝑐
𝑗

𝑑
𝑗

𝑒
𝑗

𝑓
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𝑗

= URCHP
𝑗

𝑗 = 1 2650 14.5 0.0345 4.2 0.030 0.031 70

𝑗 = 2 1250 36 0.0435 0.6 0.027 0.011 50

Heat-only units 𝐻
𝐻

𝑘,max 𝐻
𝐻

𝑘,min 𝑎
𝑘

�̃�
𝑘

𝑐
𝑘

𝑘 = 1 2695.2 0 950 2.0109 0.038

Table 2: Heat load demand of the eleven-unit system.

Time (h) Demand (MWth)
1 390
2 400
3 410
4 420
5 440
6 450
7 450
8 455
9 460
10 460
11 470
12 480
13 470
14 460
15 450
16 450
17 420
18 435
19 445
20 450
21 445
22 435
23 400
24 400
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3
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where 𝑗 = 1, 2, . . . , 𝐷, 𝑖 = 1, 2, . . . , 𝑁𝑃, and rand(𝑗) is the
𝑗th evaluation of a uniform random number between [0, 1].

𝐶𝑅 ∈ [0, 1] is the crossover constant which has to be
determined by the user. 𝑟𝑛𝑏(𝑖) is a randomly chosen index
from 1, 2, . . . , 𝐷 which ensures that 𝑈𝐺+1

𝑖
gets at least one

parameter from 𝑉𝐺+1
𝑖

[20].
The selection process determines which of the vectors

will be chosen for the next generation by implementing
one-to-one competition between the offsprings and their
corresponding parents. If 𝑓 denotes the function to be
minimized, then
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where 𝑖 = 1, 2, . . . , 𝑁𝑃. The value of 𝑓 of each trial vector
𝑈
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𝑖
is compared with that of its parent target vector 𝑋𝐺

𝑖
.

The above iteration process of reproduction and selectionwill
continue until a user-specified stopping criteria is met.

In this paper, we define the evaluation function for
evaluating the fitness of each individual in the population in
DE algorithm as follows:
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where 𝜆
1
and 𝜆

2
are penalty values. Then the objective is to

find𝑓min, theminimumevaluation value of all the individuals
in all iterations. The penalty term reflects the violation of the
equality constraints. Once the minimum of 𝑓 is reached, the
equality constraints are satisfied.

4. Sequential Quadratic Programming Method

SQP method can be considered as one of the best nonlinear
programming method for constrained optimization prob-
lems [28]. It outperforms every other nonlinear program-
mingmethod in terms of efficiency, accuracy, and percentage
of successful solutions over a large number of test prob-
lems. The method closely resembles Newton’s method for
constrained optimization, just as is done for unconstrained
optimization. At each iteration, an approximation is made
of the Hessian of the Lagrangian function using Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton updating
method. The result of the approximation is then used to
generate a Quadratic Programming (QP) subproblem whose
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Table 3: Hourly heat and power schedule obtained from CHPDED using DE-SQP for eleven-unit system.

H 𝑃
TU
1

𝑃
TU
2

𝑃
TU
3

𝑃
TU
4

𝑃
TU
5

𝑃
TU
6

𝑃
TU
7

𝑃
TU
8

𝑃
CHP
1

𝑃
CHP
2

Loss 𝐻
CHP
1

𝐻
CHP
2

𝐻
𝐻

1

1 150.0000 135.0000 74.5372 72.0784 124.5129 124.4302 20.0000 10.0000 236.8041 110.1974 21.5630 57.3450 135.5994 197.0556
2 150.0000 135.0000 98.1135 122.0784 122.2113 101.6179 48.2025 10.0000 236.8011 110.1974 24.2248 57.3614 135.5994 207.0392
3 150.0000 135.0000 178.1135 172.0784 120.7640 98.7468 78.2025 10.0000 235.3275 110.1974 30.4319 65.6496 135.5994 208.7509
4 150.0000 135.0000 188.0106 218.5077 160.0000 126.3142 80.0000 40.0000 235.2182 110.1974 37.2496 66.2643 135.5994 218.1363
5 150.0000 135.0000 268.0106 244.7145 128.0292 129.9179 80.0000 42.2707 233.2313 110.1974 41.3736 77.4390 135.5994 226.9616
6 150.0000 135.0000 334.4706 294.7145 160.0000 130.0000 80.0000 48.0931 235.6609 110.1974 50.1383 63.7746 135.5994 250.6260
7 150.0000 199.1593 340.0000 300.0000 160.0000 130.0000 80.0000 49.7990 238.0991 110.1974 55.2549 50.0614 135.5994 264.3392
8 189.7336 229.5497 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 242.2569 110.1974 60.7377 26.6766 135.5994 292.7240
9 265.3596 309.5497 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 73.1068 0.0 135.5994 324.4006
10 303.6024 378.5162 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 246.9410 110.1974 82.2580 0.3317 135.5994 324.0689
11 368.8317 405.6648 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 90.6945 0.0 135.5994 334.4006
12 367.7179 455.4472 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 95.3624 0.0 135.5994 344.4006
13 352.0071 385.0034 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 110.1974 87.2079 0.0 135.5994 334.4006
14 272.0071 305.0034 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 244.9090 110.1974 73.1169 11.7604 135.5994 312.6402
15 193.6233 225.0034 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 242.9121 110.1974 60.7362 22.9917 135.5994 291.4089
16 150.0000 145.0034 296.8330 250.8703 160.0000 129.9573 80.0000 43.4626 233.2660 110.1974 45.5900 77.2439 135.5994 237.1567
17 150.0000 135.0000 260.0109 250.0000 160.0000 100.0000 80.0000 40.9143 235.3888 110.1974 41.5121 65.3046 135.5994 219.0959
18 150.0000 151.0646 319.4485 300.0000 160.0000 130.0000 80.0000 40.0577 237.4722 110.1974 50.2419 53.5869 135.5994 245.8137
19 229.4141 231.0646 313.3779 300.0000 160.0000 130.0000 80.0000 46.0360 237.0065 110.1974 61.0988 56.2062 135.5994 253.1943
20 309.4141 311.0646 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 116.9757 77.4552 0.0 90.7694 359.2306
21 272.4577 300.8037 340.0000 300.0000 160.0000 130.0000 80.0000 55.0000 247.0000 111.8344 73.0959 0.0 124.7723 320.2277
22 192.4577 220.8037 260.6669 250.0000 160.0000 124.1397 80.0000 45.9763 234.6724 110.1974 50.9154 69.3338 135.5994 230.0668
23 150.0000 140.8037 180.6669 200.0000 127.6584 130.0000 50.0000 40.0000 236.4213 110.1974 33.7482 59.4980 135.5994 204.9026
24 150.0000 135.0000 100.6669 177.0362 123.2649 128.6636 42.3316 10.0000 234.6572 109.5624 27.1834 69.4196 135.0513 195.5291
Cost ($) = 2.5257 × 106; total loss (MW) = 1.3443 × 103.

solution is used to form a search direction for a line search
procedure. Since the objective function of the CHPDED
problem is nonconvex and nonsmooth, SQP ensures a local
minimum for an initial solution. In this paper, DE is used as a
global search and finally the best solution obtained from DE
is given as initial condition for SQP method as a local search
to fine-tune the solution. SQP simulations can be computed
by the fmincon code of the MATLAB Optimization Toolbox.

5. Simulation Results

In this section, we present an eleven-unit test system. The
hybrid DE-SQPmethod is applied to the CHPDED problem,
where three types of generating units, conventional thermal
units, CHP units, and heat-only units, are considered. In DE-
SQP method, the control parameters are chosen as 𝑁𝑃 =

80, F = 0.423, and 𝐶𝑅 = 0.885. The maximum number
of iterations is selected as 20, 000. The results represent the
average of 30 runs of the proposedmethod. All computations
are carried out by MATLAB program.

Eleven-Unit System. This system consists of eight conven-
tional thermal units, two CHP units, and one heat-only unit.
The CHPDED problem is solved by hybrid DE-SQPmethod.
The technical data of conventional thermal units, the matrix
𝐵, and the power demand are taken from the ten-unit system
presented in [27]. The 5th and 8th conventional units in [27]
were replaced by twoCHPunits.The technical data of the two
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Figure 1: Heat-power feasible operating region for CHP unit 1 of the
eleven-unit system.

CHP units and the heat-only unit are taken from [19] and are
given in Table 1. The heat demand for 24 hours is given in
Table 2. The feasible operating regions of the two CHP units
are taken from [3] and are given in Figures 1 and 2.

The best solution of the CHPDED problem obtained by
DE-SQP algorithm is given in Table 3. The best cost and
transmission line losses are also given in Table 3.
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Figure 2: Heat-power feasible operating region for CHP unit 2 of
the eleven-unit system.

6. Conclusion

This paper presents a hybrid method combining DE and SQP
for solving the CHPDED problem with valve-point effects.
In this paper, DE is first applied to find the best solution.
This best solution is given to SQP as an initial condition to
fine-tune the optimal solution at the final. The feasibility and
efficiency of the DE-SQP were illustrated by conducting case
study with eleven-unit test system.
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