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A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints
in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global
search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE) is
presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator
is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling
problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively
solve the practical lot splitting problems with equipment capacity constraints.

1. Introduction

In a practical production system, with much change of
market and diversification of customer needs, variety and
small batch production mode has gradually become the
main way of manufacturing. In this mode, batch splitting
scheduling problem has become an urgent issue addressed
in the actual production. Batch splitting, also called lot
streaming inmany researches, is the process of splitting given
jobs, each consisting of a batch of identical parts, into many
smaller subbatches to allow their overlapping processing
on alternative machines to get a better performance. An
overview of the models and methods for batch splitting has
been reported in the literature [1–3]. Job shop scheduling
problemwith batch splitting is commonlymore complex than
traditional job shop scheduling problem and usually more
close to the actual manufacturing system.

In recent years, a growing body of literature suggests
the research of job shop scheduling problems with batch
splitting” for the sake of correctness. Low et al. [4] and
Buscher and Shen [5] adopted integer programmingmethods
to solve the batch splitting in job shop scheduling problem.
Buscher and Shen (2009) presented consistent-sized batch

splitting strategy under the conditions of given subbatches
and put forward three-phase algorithm to solve lot streaming
problem in job shops, which consists of predetermination of
sublot sizes, the determination of schedules based on tabu
search, and the variation of sublot sizes [6].

To minimize makespan of a batch splitting scheduling
problem with setup time and alternative machines, Pan and
Zhu (2004) split an original batch into equal sized subbatches,
with the batch size for each subbatch fixed in advance, and
used genetic algorithm to find the optimal sequence in which
operations have to be machined [7]. Sun et al. [8] and An
[9] put forward a batch splitting algorithm and a sublot
scheduling algorithm based on genetic algorithm, optimized
the number of subbatches of each job, and determined the
size of each subbatch based on splitting strategy of equal-sized
subbatches. Considering the production batch and the setup
time of machine, Lin et al. (2007) proposed a hybrid genetic
algorithm and combined the heuristic rules with simulated
annealing algorithm to solve the flexible job shop scheduling
problem by fixing the number of subbatches [10]. Ju and Zhu
(2007) regarded each job as a batch, merged the same type of
jobs sorted which are adjacent to each other into a subbatch
in the evolution, combined particle swarm optimization and
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genetic algorithm, and proposed the strategy of job shop
scheduling optimization of batch production [11].

Bai et al. [12] proposed a flexible size lot splitting approach
based on “cursors,” designed a novel particle coding scheme
combining the lot splitting with the sublot scheduling in
particle swarm algorithm to solve the multiobjective flexible
job shop scheduling with lot splitting. Huang [13] dis-
cussed multiobjective job shop scheduling with lot splitting
production when the number of lots split is 1, 2, 3, and
4, in which subbatches are equal, and used ant colony
algorithm to optimize the processing sequences. However,
these recent researches focused on that the batch sizes of
subbatch and sub-subbatches are determined in advance, and
these research results have provided an important basis for
intensive study solving the lot splitting problem in job shop
scheduling.

Differential evolution algorithm (DE) [14] introduced by
Storn and Price (1995) is a novel and efficient parallel direct
search method, which has good robustness as well as fast
convergence. Consequently, over the past few years, several
researchers have demonstrated the applicability of DE in
job shop scheduling problem [15–20]. In particular, Sang
et al. (2010) gave an equal-sized batch scheme in advance
and used DE to optimize the sequence of nonintermingling
subbatches for the flow shop problems with the objective to
minimize the total weighted earliness and tardiness [17]. Zhao
et al. (2010) used the strategy of small production batch to
shorten the production cycle. Consideringmutation operator
with the characteristics of the same sum of the individual
values to meet the batch splitting constraints, DE was firstly
applied in the lot splitting scheduling problem, and job shop
scheduling problemwith consistent-sized batch splitting [18],
variable-sized batch splitting [19], and lot streaming under
multiple-resource constraints [20] were, respectively, studied.
However, the above researches did not involve the constraints
of equipment capacity.

For solving the lot splitting with equipment capacity
constraints in flexible job shop scheduling, it needs to split
an original lot into many appropriate smaller processing
subbatches, find the optimal sequence of those subbatches,
and also consider equipment processing capacity constraints.
It is a more complex NP hard problem which is motivated by
practical engineering applications. In this paper, we proposed
a hybrid discrete differential evolution algorithm for lot
splitting with equipment capacity constraints in flexible job
shop scheduling problem and used a two-level coding scheme
to map the solution space into the chromosome space. To
improve the performance of DE and avoid its trapping into
local optimal solution, a local search strategy with dynamic
random searching based on the critical path and random
mutation operator is developed. The simulation results indi-
cated that the algorithm has strong global search capability
and can effectively solve the practical batch scheduling
problem with the equipment capacity constraints.

The remainder of this paper is organized as follows.
Section 2 provides the formulation of lot splitting with equip-
ment capacity constraints in job shop scheduling problem,
including subbatch size constraints, product and requirement
constraints, setup costs, and setup time constraints and

delivery duration constraints. Section 3 proposes a hybrid
parallel algorithm combiningwith a local search strategywith
dynamic random searching based on the critical path and
random mutation operator to solve both the batch splitting
problem and the batch scheduling problem. Section 4 gives
the computational experiments and analyzes the results, and
Section 5 makes the conclusion.

2. Problem Description and Formulation

2.1. ProblemDescription. Given a job shopproduction system
with 𝑁 kinds of products and 𝑅 kinds of machines, where
the capacity of each kind of machine is different, that is, each
kind of machine has minimum and maximum output, the
assumptions are that (1) any product can be divided into 𝑆
batches processed individually, (2) each product has several
operations that are waiting to be processed, (3) each machine
can process different operation of any type of product, and (4)
the setup time and costs for each operation cannot be omitted.
Lot splitting with equipment capacity constraints in job shop
scheduling problem is how tomerge and split orders received,
determine the number of sublots and sublot sizes of each
product, the operational sequencing and working equipment
of each batch, and minimize the objective function to satisfy
with the constraints.

2.2. Notations

𝑗: Machine index
𝑜: Order index
𝑝: Product type index
𝐿: Number of orders
𝑀: Number of machines
𝑁: Number of production types
𝑛𝑝: Number of operations of product 𝑝
𝐽: A set of machines
𝑂: A set of orders
𝑃: A set of products
𝐷𝑝: Demand of product 𝑝
𝐵𝐷𝑗,𝑝: Sublot size of product 𝑝 processed onmachine
𝑗

𝐵𝑁𝑝: Number of sublots of product 𝑝
min𝑉𝑗: Minimum lot size allowed on machine 𝑗, that
is, minimum output of machine 𝑗
max𝑉𝑗: Maximum lot size allowed onmachine 𝑗, that
is, maximum output of machine 𝑗
maxCost𝑗,𝑝: Processing cost of product 𝑝 onmachine
𝑗 with the maximum output
conCost𝑗,𝑝: Constant cost of product 𝑝 processed on
machine 𝑗
unitCost𝑗,𝑝: Unit cost of product 𝑝 processed on
machine 𝑗
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maxTime𝑗,𝑝: Processing time of product 𝑝 processed
on machine 𝑗 with the maximum output
conTime𝑗,𝑝: Constant time of product 𝑝 processed on
machine 𝑗
unitTime𝑗,𝑝: Unit Time of product 𝑝 processed on
machine 𝑗
trCost𝑗,𝑝,𝑝󸀠 : Setup costs of product 𝑝 and 𝑝󸀠 succes-
sively processed on machine 𝑗
trTime𝑗,𝑝,𝑝󸀠 : Setup time of product 𝑝 and 𝑝󸀠 succes-
sively processed on machine 𝑗
𝛽𝑝,𝑜: Tardiness penalty coefficient of product 𝑝 in
order 𝑜
𝑑𝑝,𝑜: Due date of product 𝑝 in order 𝑜
𝑇𝑆𝑗,𝑝: Start time of product 𝑝 processed on machine
𝑗

𝑇𝐸𝑗,𝑝: Finishing time of product 𝑝 processed on
machine 𝑗
𝑃𝑒𝑝,𝑜: Completion time of product 𝑝 in order 𝑜
poCost

𝑝,𝑜
: Tardiness penalty cost of product 𝑝 in

order 𝑜.

2.3. Formulation. Lot splitting with equipment capacity con-
straints in job shop scheduling problem has the following
constraints.

(1) Subbatch Size Constraint. In general, several products
are taken in a batch as a unit to be processed during
batch production. For the problems with equipment capacity
constraints, each machine has its minimum output (min𝑉𝑗)
and maximum output (max𝑉𝑗). The subbatch size (𝐵𝐷𝑗,𝑝) of
product 𝑝 processed on machine 𝑗 must satisfy the formula
(1) and achieve the maximum output as much as possible

min 𝑉𝑗 ≤ 𝐵𝐷𝑗,𝑝 ≤ max 𝑉𝑗, ∀𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃. (1)

(2) Product Requirement Constraint. The number of the 𝑝th
type of product processed on all machines should be equal to
the total number of its requirement (𝐷𝑝)

∑

𝑗∈𝐽

𝐵𝐷𝑗,𝑝 = 𝐷𝑝, ∀𝑝 ∈ 𝑃. (2)

(3) Setup Costs and Setup Time Constraint. In batch produc-
tion, each machine is a flexible production line as it can
process any type of product. Setup between two different
products on the same machine usually generates setup costs.
For example, the dye vat commonly must be cleaned in order
to guarantee the quality of the next product, so it results in
setup costs, that is, cleaning costs

𝑇𝑆𝑗,𝑝󸀠 − 𝑇𝑆𝑗,𝑝 ≥ trTime𝑗,𝑝,𝑝󸀠 , ∀𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 𝑝
󸀠
∈ 𝑃. (3)

Formula (3) represents that the start time difference
(𝑇𝑆𝑗,𝑝󸀠 − 𝑇𝑆𝑗,𝑝) between the earlier product 𝑝 and the later
product 𝑝󸀠 processed on machine 𝑗 should be bigger than
the setup time (trTime𝑗,𝑝,𝑝󸀠 ). Setup costs are affected by two

successive products processed and equipment capacity; that
is, there are the setup costs between the earlier task and the
later task on the same equipment.

(4) Delivery Duration Constraint. Delivery dates of the orders
from different customers always are different. In the same
order, the customer sometimes even may have different
requirements that some productions need to be processed
urgently, so the tardiness penalty coefficient (𝛽𝑝,𝑜) of produc-
tion 𝑝 is different. Generally, 𝛽𝑝,𝑜 of important customers is
bigger than that of general customers. If the completion time
(𝑃𝑒𝑝,𝑜) is beyond the delivery time (𝑑𝑝,𝑜), there will be the
tardiness penalty costs (poCost𝑝,𝑜) just like the following:

poCost𝑝,𝑜 = 𝛽𝑝,𝑜 ×max (0, 𝑃𝑒𝑝,𝑜 − 𝑑𝑝,𝑜) , ∀𝑝 ∈ 𝑃, 𝑜 ∈ 𝑂.

(4)

Based on above constraints, the batches splitting of all
products must be determined according to the received
orders, moreover the number of sublots and sublot sizes
of each procedure for each product must be arranged on
different machine to minimize the total production costs of
enterprises under the precondition of meeting the orders
requirements as far as possible. Objective function of the lot
splitting with equipment capacity constraints in flexible job
shop scheduling problem can be seen as follows:

minimize

𝑓 = ∑

𝑗∈𝐽, 𝑝∈𝑃

(conCost𝑗,𝑝 + unitCost𝑗,𝑝 × 𝐵𝐷𝑗,𝑝)

+ ∑

𝑗∈𝐽, 𝑝∈𝑃, 𝑝󸀠∈𝑃

trCost𝑗,𝑝,𝑝󸀠

+ 𝛾 ∑

𝑝∈𝑃, 𝑜∈𝑂

𝛽𝑝,𝑜 ×max (0, 𝑃𝑒𝑝,𝑜 − 𝑑𝑝,𝑜) .

(5)

In the above formula, the total production costs include
processing costs (∑𝑗∈𝐽,𝑝∈𝑃(conCost𝑗,𝑝+unitCost𝑗,𝑝×𝐵𝐷𝑗,𝑝)),
setup costs (∑𝑗∈𝐽,𝑝∈𝑃,𝑝󸀠∈𝑃 trCost𝑗,𝑝,𝑝󸀠), and tardiness
penalty costs (∑𝑝∈𝑃,𝑜∈𝑂 𝛽𝑝,𝑜 × max(0, 𝑃𝑒𝑝,𝑜 − 𝑑𝑝,𝑜)). 𝛾
is the ratio coefficient between tardiness penalty costs
and the other two costs. Processing costs are made up
of constant costs (∑𝑗∈𝐽,𝑝∈𝑃 conCost𝑗,𝑝) and variable costs
(∑𝑗∈𝐽,𝑝∈𝑃 unitCost𝑗,𝑝 × 𝐵𝐷𝑗,𝑝). In the practical production,
processing costs and processing time of product 𝑝 processed
on machine 𝑗 with maximum output can be obtained by
experience.

3. A Hybrid Discrete Differential
Evolution Algorithm

3.1. Encoding and Decoding. In the lot splitting scheduling
problem, the number of sublots and sublot sizes of each
product must be determined, and the working machine and
operational sequencing of each sublot must be also arranged.
In this paper, a two-level coding scheme is developed to
map the solution space into the chromosome space, where
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the first level code represents lot splitting chromosome
(chrome1), and the second level code denotes lot scheduling
chromosome (chrome2). chrome1 is used to determine the
number of subbatches and subbatch sizes of each product,
and chrome2 is used to prioritize the operational sequencing
arrangement of each subbatch.

For the problem with equipment constraints, a new
coding scheme is proposed to describe chrome1 considering
the requirements of maximum output as far as possible.
chrome1 is divided into two parts, where the first part is the
lot splitting scheme number of product 𝑝, the second part
describes sublot sizes of product 𝑝, and the meaningless “0”
is as the interval between them. The number of lot splitting
scheme for product 𝑝 (𝐾𝑝) is less than or equal to the
smaller one between its demand (𝐷𝑝) and the number of
machines (𝑀). For example, there are two products divided
into two subbatches. The batch size of each product is 8,
and it can be divided into four schemes such as (1,7), (2,6),
(3,5), and (4,4). So one of the lot splitting chromosomes may
be [3, 1|0|3, 5, 1, 7]. As shown in Figure 1, 𝐵𝑃𝑃,𝐵𝑁

𝑃

represents
sublot size of the 𝐵𝑁𝑝th batch of product 𝑝.

Based on the coding scheme of processing procedure,
chrome2 represents the operational sequencing of each pro-
cedure in each batch and the length of each chromosome
len1 = ∑

𝑁

𝑝=1
𝐵𝑁𝑝×𝑛𝑝. For example, chrome2 is [21, 11, 22, 12,

12, 21, 22, 11, 11, 22, 21, 12], where “21” means the first batch
of the second product and three “21” indicate three different
successive procedures of the second product.

Based on chrome1 and chrome2, the decoding scheme is
as follows.

Step 1. Set 𝑙 = 1 and the allowed start time of each machine
𝑀𝑆𝑇𝑗 = 0, where 𝑗 = 1, . . . ,𝑀.

Step 2. Select the 𝑙th gene of chrome2 from left to right,
acquire the processing product number 𝑝 and the subbatch
number 𝑘, and then obtain the subbatch size (𝐵𝑃𝑝,𝑘) of the
𝑘th batch of production 𝑝 combining with chrome1 based on
the gene location.

Step 3. Allocate working machines for the unscheduled tasks
according to Substeps 3.1 and 3.2 and execute preparation and
processing operation.

Substep 3.1. Fully considering the utilization of equipments,
select the appropriate type of machine according to the
subbatch size (𝐵𝑃𝑝,𝑘). If 𝐵𝑃𝑝,𝑘 equals the maximum output of
machine, then arrange the 𝑘th batch of production 𝑝 to the
type of equipment. Otherwise, arrange the task to process on
the type of equipment whose maximum output is the nearest
to 𝐵𝑃𝑝,𝑘.

Substep 3.2. After confirming the type of equipment, select
a specific equipment according to the dispatching rules that
first completed equipment is firstly arranged.

Firstly calculate the processing operation number 𝑠 corre-
sponding to the 𝑙th gene of chrome2 and compare the finish
time of the preceding operation with the earliest allowed start
time of the processing equipment to obtain the start time of

the 𝑘th batch of production 𝑝. According to the operation
of the production 𝑝 and the preceding task processed on the
machine, determine whether they need setup. If this type of
machine is the only one, then directly arrange the 𝑘th batch
of production 𝑝 to process on this machine. Otherwise, select
the machine which can earliest complete the other tasks.
Finally, calculate start time and finish time of the 𝑘th batch
of production 𝑝.

Step 4. Refresh the earliest allowed start time of each
machine.

Step 5. Set 𝑙 = 𝑙 + 1. If 𝑙 ≤ len1, then go to Step 2. Otherwise,
quit.

3.2. Global Evolution Procedure. DE is a parallel evolutionary
algorithm based on population, which utilizes𝑁𝑝 parameter
vectors as a population𝑋𝑡 = [𝑋𝑡

1
, 𝑋
𝑡

2
, . . . , 𝑋

𝑡

𝑁
𝑝

] for each gen-
eration 𝑡. Each vector called each individual of the population
represents potential solution for the optimization problem.
DE generates a mutant vector 𝑉𝑡+1

𝑖
for each vector 𝑋𝑡

𝑖
in the

population by adding the weighted difference between two
randomly selected vectors (𝑋𝑡

𝑟
2

and 𝑋𝑡
𝑟
3

) to a third one 𝑋𝑡
𝑟
1

.
A trial vector 𝑈𝑡+1

𝑖
is then generated by using the crossover

operator which mixes the components of the mutant vector
𝑉
𝑡+1

𝑖
and the original one𝑋𝑡

𝑖
. In the last step of each iteration,

the selection operator with greedy strategy chooses the better
one for the next generation by comparing 𝑈𝑡+1

𝑖
with𝑋𝑡

𝑖
.

Since the DE algorithm was originally designed to work
with continuous variables, rather most engineering problems
have either an integer objective function or discrete objective
function. Here, we adopt the following method as the global
search strategy of a hybrid discrete differential evolution
algorithm (HDDE) in this paper, whichmakes the individuals
evolve directly in the discrete domain and can effectively
speed up the algorithm.
(1) Consider

𝑉
𝑡+1

𝑖
= 𝐹 ⊗ 𝐺 (𝐹 ⊗ 𝐺 (𝑋

𝑡

𝑟
2

, 𝑋
𝑡

𝑟
3

) , 𝑋
𝑡

𝑟
1

) , (6)

where 𝑖, 𝑟1, 𝑟2, 𝑟3 ∈ [1,𝑁𝑝], randomly selected; expect 𝑟1 ̸=
𝑟2 ̸= 𝑟3 ̸= 𝑖. 𝑋

𝑡

𝑟
1

, 𝑋𝑡
𝑟
2

, and 𝑋𝑡
𝑟
3

are three different randomly
selected individuals, 𝑉𝑡+1

𝑖
is a mutant individual, and 𝐹 ∈

[0, 1]. Formula (6) consists of two parts as follows.

(a) Consider

𝑌
𝑡+1

𝑖
= 𝐹 ⊗ 𝐺 (𝑋

𝑡

𝑟
2

, 𝑋
𝑡

𝑟
3

)

= {
𝐺 (𝑋
𝑡

𝑟
2

, 𝑋
𝑡

𝑟
3

) , if rand < 𝐹
𝑋
𝑡

𝑟
2

, else.

(7)

In formula (7), rand represents a uniformly dis-
tributed random value that ranges from zero to one.
Here generate a random number (rand), if rand
< 𝐹, then set the subsequent individual 𝑌𝑡+1

𝑖
=

𝐺(𝑋
𝑡

𝑟
2

, 𝑋
𝑡

𝑟
3

). Otherwise, 𝑌𝑡+1
𝑖

= 𝑋
𝑡

𝑟
2

. For the lot
scheduling chromosome, 𝑌𝑡+1

𝑖
= 𝐺(𝑋

𝑡

𝑟
2

, 𝑋
𝑡

𝑟
3

) means
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chrome1 𝐾1, · · · , 𝐾𝑝, · · · , 𝐾𝑁|0|𝐵𝑃1,1, · · · , 𝐵𝑃1,𝐵𝑁1 , · · · , 𝐵𝑃𝑝,1, · · · , 𝐵𝑃𝑝,𝐵𝑁𝑝 , · · · , 𝐵𝑃𝑁,1, · · · , 𝐵𝑃𝑁,𝐵𝑁𝑁

Figure 1: Lot splitting chromosome example of two products (𝑁 = 2).

to use POX crossover operator [21] that only crosses
the processing sequence of the operations of parent
chromosomes. For the lot splitting chromosome,
𝑌
𝑡+1

𝑖
= 𝐺(𝑋

𝑡

𝑟
2

, 𝑋
𝑡

𝑟
3

) indicates a simple two-point
crossover that only operates the first part of the lot
splitting chromosome.

(b) Consider

𝑉
𝑡+1

𝑖
= 𝐹 ⊗ 𝐺 (𝑌

𝑡+1

𝑖
, 𝑋
𝑡

𝑟
1

)

= {
𝐺 (𝑌
𝑡+1

𝑖
, 𝑋
𝑡

𝑟
1

) , if rand < 𝐹
𝑌
𝑡

𝑖
, else.

(8)

Formula (8) describes that a mutant individual 𝑉𝑡+1
𝑖

is generated by the randomly selected individual 𝑋𝑡
𝑟
1

and the above individual𝑌𝑡+1
𝑖

. Operation𝐺(𝑌𝑡+1
𝑖
, 𝑋
𝑡

𝑟
1

)

is the same as 𝐺(𝑋𝑡
𝑟
2

, 𝑋
𝑡

𝑟
3

).

(2) Consider

𝑈
𝑡+1

𝑖
= 𝐶𝑟 ⊗ 𝐺 (𝑉

𝑡+1

𝑖
, 𝑋
𝑡

𝑖
)

= {
𝐺 (𝑉
𝑡+1

𝑖
, 𝑋
𝑡

𝑖
) , if rand < 𝐶𝑟

𝑉
𝑡+1

𝑖
, else.

(9)

Formula (9) means that a trial individual 𝑈𝑡+1
𝑖

is gener-
ated by the crossover of the original individual 𝑋𝑡

𝑖
and the

mutant individual𝑉𝑡+1
𝑖

, where𝐶𝑟 is the crossover probability
ranged in [0, 1]. Operation 𝐺(𝑉𝑡+1

𝑖
, 𝑋
𝑡

𝑖
) is the same as above.

3.3. Local Search Strategy. The above operators of global
evolution procedure are directly carried out in discrete
domain, which can effectively improve the search efficiency
of the algorithm, but it is easy to fall into local extremum. In
this paper, the local search strategy is developed to enhance
the local exploration ability of the algorithm, which includes
dynamic random search strategy based on the critical path
used to adjust the lot scheduling chromosome and search
neighborhood solutions of the operational sequencing in the
case of the same subbatch divided and random mutation
operator used to adjust the lot splitting chromosome and
change the subbatch sizes again under the condition of the
unchanged operational sequence of the sublots.

Dynamic random search [26] (DRS) is appropriate for
continuous optimization problems and cannot be directly
applied to the problem in this paper. So we improve DRS
strategy to make it applicable for discrete operators. Further-
more, DRS involves the selection of the neighborhood, which
has a larger influence on search quality and efficiency of the
algorithm.Here the longest path of no time intervals between
the operations is called the critical path of a feasible schedul-
ing. The change of any operation on the critical path is the

key to the change of the maximum finish time, and it is also
an important part of the neighborhood structure constructed.
Neighborhood based on the critical path can effectively
avoid unnecessary search and improve the performance of
algorithm.Therefore, the local searchwith two neighborhood
structures including INTERCHANGE and INSERT based on
the critical path is embedded in the framework of HDDE,
which can adjust the operational sequencing under the
condition of the lot splitting chromosome unchanged. The
procedure of DRS is as follows.

Step 1. Set the initial values: epoch = 0 and Xcurrent = X,
where Xcurrent and X are the current individual and the
candidate individual, respectively.

Step 2. Reset the iteration counter, 𝑛 = 0.

Step 3. Generate a new individual Xnew = INTERCHANGE
(Xcurrent); that is, Xnew is generated by using exchange
between the 𝑘th component and the 𝑞th component of
Xcurrent and keeping the else components unchanged.

Step 4. Calculate the objective value of Xnew. Judge the
dominance relation among Xnew, X, and Xcurrent. If Xnew
dominates X, then update X = Xnew and go to Step 7. Oth-
erwise, if Xnew dominates Xcurrent, then update Xcurrent =
Xnew and go to Step 7.

Step 5. Generate a new individual, Xnew =
INSERT(Xcurrent); that is, Xnew is generated by shifting one
of the components from the 𝑘th component to the 𝑞 − 1th
component of Xcurrent in turn backward, and moving the
𝑞th component to the 𝑘th component.

Step 6. Calculate the objective value of Xnew. Judge the
dominance relation among Xnew, X, and Xcurrent. If Xnew
dominates X, then update X = Xnew and go to Step 7. Oth-
erwise, if Xnew dominates Xcurrent, then update Xcurrent =
Xnew and go to Step 7.

Step 7. Increase iteration number by one, 𝑛 = 𝑛+1. If iteration
counter is less than its maximum value (𝑛 < 𝑁𝑠), then go to
Step 3.

Step 8. Update epoch, epoch = epoch + 1. If local search stop
criterion is not reached (epoch < Epoch), then go to Step 2.
Otherwise, quit.

At the same time, random mutation operator is intro-
duced in the local search of lot splitting chromosome, which
is used to search the neighborhood solution of the subbatches
splitting under the unchanged operational sequence of the
subbatches. The specific procedure is as follows: randomly
select a chromosome and its mutant bit and then divide the
subbatch sizes again.
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Table 1: Results of HDDE and the other algorithms.

Problem HDDE KBACO [22] PVNS [23] hGA [24] eGA [25]
𝐶
∗

𝐶max dev (%) 𝐶max dev (%) 𝐶max dev (%) 𝐶max dev (%)
𝐶1 14 14 0 14 0 14 0 - - - -
𝐶2 11 11 0 - - - - - - - - - - 0
𝐶3 7 7 0 7 0 7 0 - - - -
𝐶4 11 11 0 12 8.33 - - - - - - - -
𝐶5 40 39 −2.56 40 0 40 0 40 0
𝐶6 26 29 10.34 26 0 26 0 26 0
𝐶7 204 204 0 204 0 204 0 204 0
𝐶8 60 65 7.69 60 0 60 0 60 0
𝐶9 173 173 0 173 0 173 0 173 0
𝐶10 63 67 5.97 60 −5.00 60 −5.00 58 −8.62
𝐶11 139 144 3.47 141 1.42 140 0.71 144 3.47
𝐶12 523 523 0 523 0 523 0 523 0
𝐶13 311 311 0 307 −1.30 307 −1.30 307 −1.30
𝐶14 221 229 3.49 208 −6.25 205 −7.80 198 −11.62

3.4. Algorithm Procedure. In this paper, the HDDE algorithm
is presented based on the combination of the DE algorithm
and the local search strategy. For simplicity, population
evolution of DE is denoted as operation Oper1, and the local
search strategy is denoted as operation Oper2. The procedure
of HDDE solving the lot splitting with equipment capacity
constraints in flexible job shop scheduling problem is as
follows.

Step 1. Set parameters, such as 𝑁𝑝, 𝐹, 𝐶𝑟, 𝐺max, Epoch, and
𝑁𝑠.

Step 2. Population initialization. Use random initialization to
generate each individual including the lot splitting chromo-
some and the lot scheduling chromosome in the population.
Moreover set generation 𝑡 = 0.

Step 3. Operation Oper1. Execute mutation operator and
crossover operator on the lot splitting chromosome and the
lot scheduling chromosome successively and then generate
the mutant individual (𝑉𝑡+1

𝑖
) and the trial individual (𝑈𝑡+1

𝑖
),

respectively.

Step 4. Calculate the fitness values, select to generate the
next population (𝑋𝑡+1), and update the optimal value and the
optimal individual.

Step 5. Operation Oper2. Carry out the local search of 10%
individuals in the population𝑋𝑡+1 to find their neighborhood
solution. Then calculate the fitness function and update the
optimal value and the optimal individual.

Step 6. If the optimal value of the population has no con-
tinuous change for the appointed iterations, then reinitialize
10% individuals of the population and have the global optimal
solution instead of one solution in the population.

Table 2: Information of orders received.

Order
number

Product
number

Color
depth

Demand
(kg)

Delivery
(hour)

Weight of
tardiness
penalty

1 24 90 26 2
𝑜1 2 60 40 30 1.5

3 89 100 27 1

𝑜2

1 24 50 26 1.1
3 89 90 35 1.6

𝑜3

1 24 130 48 1.3
3 89 90 40 1.2

𝑜4 2 60 110 60 1.9

𝑜5

4 25 60 9 8
5 62 120 16 8.5

𝑜6 6 88 500 48 1

𝑜7

7 98 60 18 1.4
8 100 80 36 1.2

𝑜8

7 98 88 50 2.3
8 100 100 48 2.1
9 120 135 64 1.8

𝑜9 10 145 90 72 3.5

Step 7. Set 𝑡 = 𝑡 + 1. If 𝑡 < 𝐺max, then go to Step 3. Otherwise,
quit.

3.5. Analysis of Complexity of the Proposed Algorithm. As
shown in the above procedure, the computation time of
HDDE spent is almost in the iterative process. Each individ-
ual in the population goes through main operators including
difference evolution, decoding, selection, and local search
every iteration. Considering a batch splitting scheduling
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Table 3: Cleaning time (unit: hour) while each product of different color depth is processed in the vat with the maximum output.

Dye vat
number/quantity

Minimum capacity,
maximum capacity (kg)

Color depth of each product
24 60 89 25 62 88 98 100 120 145

V1/3 1, 10 0.1 0.15 0.25 0.15 0.5 0.25 0.3 0.3 0.35 0.45
V2/1 5, 30 0.1 0.15 0.3 0.35 0.25 0.25 0.4 0.45 0.5 0.55
V3/5 5, 50 0.2 0.3 0.45 0.2 0.3 0.45 0.5 0.5 0.6 0.65
V4/1 10, 85 0.25 0.35 0.45 0.25 0.35 0.45 0.55 0.6 0.65 0.75
V5/1 10, 90 0.3 0.45 0.55 0.3 0.45 0.55 0.65 0.65 0.8 0.8
V6/7 20, 100 0.35 0.5 0.65 0.35 0.5 0.65 0.75 0.85 1.0 1.05
V7/2 50, 500 0.45 0.65 0.8 0.45 0.65 0.8 0.95 0.95 1.15 1.2

Table 4: Processing time (unit: hour) and cost of different product on different vat with its maximum output.

Dye vat Color depth of each product
p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

24 60 89 25 62
V1 1/10 1.9/25 1.2/12 1.5/18 2.8/30 1.6/20 2/20 4/42 2/22 1/10 1.9/25 1.2/12 1.5/18 2.8/30 1.6/20
V2 1/12 2/30 1.3/15 1.5/20 3.5/35 1.8/23 2.2/24 4.5/50 2/25 1/12 2/30 1.3/15 1.5/20 3.5/35 1.8/23
V3 1.5/15 2.5/35 1.8/19 1.8/23 3.5/40 2/28 2.5/28 4.8/55 2.3/30 1.5/15 2.5/35 1.8/19 1.8/23 3.5/40 2/28
V4 2/18 3/40 2.3/25 2.2/25 4/50 2.6/30 2.5/30 5.2/60 3/33 2/18 3/40 2.2/25 2.2/25 4/50 2.5/30
V5 2/20 3/45 2.3/28 2.2/30 4/55 2.6/35 2.5/35 5.2/68 3/38 2/20 3/45 2.3/28 2.2/30 4/55 2.6/35
V6 2.2/25 3.5/50 2.5/30 2.5/35 4.5/60 2.8/40 2.8/40 5.5/70 3.5/45 2.2/25 3.5/50 2.5/30 2.5/35 4.5/60 2.8/40
V7 2.5/25 4.5/60 3.5/40 3.5/45 5.5/70 3.8/50 3.8/50 6.5/80 4.5/55 2.7/25 4.7/60 3.7/40 3.6/45 5.7/70 3.9/50

88 98 100 120 145
V1 2.2/20 4/42 2/22 2.4/21 4.5/48 2.4/24 2.5/21 4.6/50 2.4/24 3/25 5/68 2.8/26 3.5/26 5.5/75 3.2/27
V2 2.2/24 4.5/50 2/25 2.5/25 4.7/55 2.5/26 2.6/25 4.8/58 2.5/27 3.2/28 5.5/75 3/30 3.8/30 6.2/82 3.5/32
V3 2.5/28 4.8/55 2.3/30 2.8/30 5/62 2.6/32 2.9/30 5.2/65 2.7/33 3.5/32 6/78 3.2/34 4/35 6.5/88 3.7/36
V4 2.5/30 5/60 2.8/33 2.8/32 5.2/70 3.1/35 3/32 5.4/75 3.2/35 3.6/35 6.2/85 3.8/38 4.2/38 6.8/100 4.4/40
V5 2.5/35 5.2/68 3/38 2.8/38 5.4/80 3.2/40 3/38 5.5/85 3.3/40 3.7/40 6.3/95 3.9/45 4.4/45 7/120 4.5/58
V6 2.8/40 5.5/70 3.5/45 3/45 5.6/100 3.2/50 3.3/48 6.2/10 3.4/53 3.8/55 6.8/120 4/60 4.5/62 7.2/135 4.6/65
V7 3.8/50 6.5/80 4.5/55 4/50 6.2/110 4.2/55 4.2/50 6.5/115 4.4/55 4.5/60 7/145 4.8/65 4.8/65 7.5/165 5/70

problem with population size (𝑁𝑝), the maximal iteration
number (𝐺max), dynamic random search times (𝐸𝑝𝑜𝑐ℎ), and
the length of the lot scheduling chromosome (len1), the time
complexity of difference evolution operator is 𝑂(𝑁𝑝 × len1),
decoding operator is 𝑂(𝑁𝑝 × len1), selection operator is
𝑂(𝑁𝑝), and local search operator is 𝑂(len1 × 𝐸𝑝𝑜𝑐ℎ × 0.1).
Therefore, the time complexity of whole algorithm is

𝑂(𝑁𝑝, 𝐺max)

= 𝐺max × (𝑂 (𝑁𝑝 × len1) + 𝑂 (𝑁𝑝 × len1)

+𝑂 (𝑁𝑝) + 𝑂 (len1 × 𝐸𝑝𝑜𝑐ℎ × 0.1))

= 𝐺max × (2𝑂 (𝑁𝑝 × len1)

+𝑂 (len1 × 𝐸𝑝𝑜𝑐ℎ × 0.1) + 𝑂 (𝑁𝑝)) .

(10)

Obviously, the time complexity of HDDE algorithm is
related to len1,𝑁𝑝, 𝐺max, and Epoch.

4. Simulation Results and Analysis

4.1. Test Problems and Comparison of Results. We evaluate
performance of theHDDEalgorithmon 14 test problemswith
different complexity, in which 𝐶1 ∼ 𝐶4 designed by Kacem et
al. [27, 28] are 8 × 8, 10 × 7, 10 × 10, and 15 × 10 problem,
respectively, and 𝐶5 ∼ 𝐶14 designed by Brandimarte [29]
are from MK1 to MK10 problem. The proposed algorithm
has been coded with VC++ 6.0 and runs on a PC with Intel
Pentium CPU 2.66GHz processor and 1G of memory. The
parameters of HDDE are set as follows:𝑁𝑝 = 50,𝐺max = 500,
𝐹 = 0.5, 𝐶𝑟 = 0.7, Epoch = 50, and𝑁𝑠 = 10.

The results of HDDE, KBACO [22], PVNS [23], hGA
[24], and eGA [25] are compared in Table 1, where 𝐶∗ is
the optimal value obtained by HDDE, 𝐶max is the optimal
value obtained by the algorithms from literatures, dev denotes
the relative error percent between HDDE and the other
algorithms, that is, dev = (𝐶max −𝐶

∗
)/𝐶max ×100%, and “- -”

means that corresponding experiment was not conducted in
those literatures. As shown in Table 1, the HDDE algorithm
is not worse than any of those algorithms, and it can obtain
the global optimal solution for most of the problems, which
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Figure 2: Best values of HDDE and DE obtained over 30 runs.

Table 5: Results of DE and HDDE.

Algorithm Best Worst Average Standard
deviation Runtime (s)

DE 2518.21 2607.86 2563.29 21.65 1.3
HDDE 2426.6 2521.89 2463.16 26.76 3.2

indicates that the proposed algorithm has better global
searching ability. Each algorithm has its own advantages, but
it also has certain disadvantage on large scale problems. For
instance, theHDDE algorithmhas lower global search for𝐶13
and 𝐶14.

4.2. Practical Dye Vat Scheduling Problem and Discussion
of Results. In this paper, we get a certain amount of data
samples from actual production in some dyeing workshop.
Suppose that the enterprise receives 9 orders, where 10 types
of products need to be processed. The products, color depth,
demand, delivery duration, and weight of tardiness penalty
are shown in Table 2. There are 7 types of dye vats in
the dyeing workshop, all of which have different capacity.
Information of each vat, such as the number, quantity,
minimum capacity, and maximum capacity of each dye vat,
is shown in Table 3. There is also the cleaning time (unit:
hour), that is, setup time, while the product of different color
depth is processed in the vat with the maximum output
in Table 3. The processing time (unit: hour) and cost of
different product on different vat with its maximum output
are shown in Table 4, where p1, p2, and p3 denote three main
operations of dyeing process, that is, preprocessing, dyeing,
and postprocessing, respectively. The setup time and cost
of preprocessing operation of any product are 0. Moreover,
suppose that switching cost factors 𝛼 = 0.9 and 𝛽 = 0.7.

To evaluate the effectiveness of local search strategies, DE
and HDDE run 30 times, independently, and the parameters
are set as follows: 𝑁𝑝 = 50, 𝐺max = 200, 𝐹 = 0.5, 𝐶𝑟 = 0.7,
Epoch = 10, and 𝑁𝑠 = 3. Figure 2 and Table 5 show the
comparison of results obtained by DE and HDDE over 30
runs and Figure 3 is convergent graph of the optimal value
obtained by DE and HDDE. As seen in Figure 2 and Table 5,
the local search strategy leads to a significant improvement in
the global searching ability of HDDE.The results obtained by
HDDE over 30 times are better than those of DE. However,
HDDE also consumes a certain amount of computation time.
In addition, As we can see from Figure 3, DE does not evolve
essentially in later stage with the increasing of iteration.

0 50 100 150 200
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2800
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Figure 3: Convergent graph of the optimal solution for DE and
HDDE.

On the contrary, HDDE can avoid trapping into the local
optimum effectively, and it has higher optimization efficiency
than DE.

In general, a larger standard deviation e represents that
there is a greater difference between the most value and the
average value of solutions, and a smaller standard deviation
shows that the most value is close to the average value of
solution. As we can see from Figure 3, no more changes
are occurred in the optimal value obtained by DE in later
iterations; that is, DE easily gets into the local extremum in
the later evolution period. Furthermore, as shown in Figure 2
and Table 5, most value of solutions calculated for 30 times is
close to the average value. Because of a local search strategy
with dynamic random searching based on the critical path
and randommutation operator, HDDE can evolve further in
later iterations as seen in Figure 3; that is, the local search
strategy helps HDDE being out of local minimum. On the
other hand, randomness of the local search strategy also
results in the bigger difference between some value of solution
and the average value as shown in Figure 2 and Table 5.

Finally, the batch number of every product is [3, 2, 3, 1, 2,
5, 2, 2, 2, 1], the optimal lot splitting chromosome is [85, 100,
85, 30, 120, 10, 10, 260, 60, 100, 20, 10, 10, 10, 50, 420, 10, 138, 10,
170, 10, 125, 90] and the optimal lot scheduling chromosome
is [52, 81, 32, 64, 101, 101, 101, 31, 63, 32, 82, 33, 51, 92, 71, 91, 22,
12, 22, 41, 32, 63, 81, 21, 41, 81, 22, 72, 72, 31, 21, 62, 12, 72, 63,
31, 13, 64, 21, 65, 51, 62, 52, 12, 62, 41, 71, 33, 71, 13, 61, 82, 52,
11, 64, 91, 33, 82, 11, 61, 65, 65, 13, 61, 92, 11, 51, 92, 91]. As seen
from the lot splitting chromosome, most of the subbatches
satisfy the requirement of themaximumoutput of certain dye
vat, and each product only has at most one batch unsatisfied.
Simulation results show the feasibility of batch splitting and
validity of the proposed algorithm.

5. Conclusion

Aiming at lot splitting with equipment capacity constraints
in flexible job shop scheduling problem, a two-level coding
scheme including the lot splitting chromosome and the lot
scheduling chromosome is presented. The new encoding
method of the lot splitting chromosome is applied to solve
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the batch splitting optimization problem satisfying the max-
imum processing output of machine. Moreover, according
to the faultiness that DE is apt to be trapped into the
local optima, the local search strategy with dynamic random
searching based on the critical path and random mutation
operator is developed, which is, respectively, used to adjust
the neighborhood solutions of the lot splitting chromosome
and the lot scheduling chromosome. Based on the analysis
and comparison of results of benchmark problems, it is
shown that the proposed algorithm has better optimization
performance beyondmost of other global algorithms. Finally,
the proposed algorithm is applied to solve the practical
scheduling problem of some dyeing workshop. Simulation
results show that the proposed algorithm has good global
search ability and it can effectively solve the practical lot
splitting with equipment capacity constraints in flexible job
shop scheduling problem.
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