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This paper is concerned with the problem of exponential stability and 𝐻
∞

model reduction of a class of switched discrete-time
systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-
Krasovskii functional (LKF) approach, sufficient conditions for exponential stability with 𝐻

∞
performance of such systems are

derived in terms of linear matrix inequalities (LMIs). For the high-order systems, sufficient conditions for the existence of reduced-
order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an 𝐻

∞
error

performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the
obtained results.

1. Introduction

Switched systems belong to a special class of hybrid con-
trol systems, which comprises a collection of subsystems
described by dynamics differential or difference equations,
together with a switching law that specifies the switching rule
among the subsystems. Due to the theoretical development
as well as practical applications, analysis and synthesis of
switched systems have recently gained considerable attention
[1–4].

Furthermore, the time-delay phenomenon is frequently
encountered in a variety of industrial and engineering sys-
tems [5–7], for instance, chemical process, long distance
transmission line, communication networks, and so forth.
Moreover, time-delay is a predominant source of the poor
performance and instability. In the last two decades, there
has been increasing interest in the stability analysis for the
systems; see, for example, [8, 9] and the references cited there
in. For switched delay systems, due to the impact of time-
delays, the behavior of switched delay systems is usuallymuch
more complicated than that of switched systems or delay
systems [10, 11].

The average dwell time (ADT) technique [12] and multi-
ple Lyapunov function approach [13] are two powerful and

effective tools for studying the problems of stability for
switched systems under controlled switching. By applying
ADT scheme, the disturbance attenuation properties of time-
controlled switched systems are investigated in [14]. In [15],
the exponential stability and 𝐿

2
-gain of switched delay

systems are studied by using ADT approach. Furthermore,
based on ADT method, in [16–18] the stability of switched
systems with stable and unstable subsystems co existing
was considered. Using the ADT scheme, switching design
for exponential stability was proposed in [19] for a class
of switched discrete-time constant time-delay systems. By
using the multiple Lyapunov function approach and ADT
technique, the literature [20] studied the problem of state
feedback stabilization of a class of discrete-time switched
singular systems with time-varying state delay under asyn-
chronous switching. However, many free weighing matrices
were introduced, whichmade the stability result complicated.
In [11], the problem of stabilization and robust 𝐻

∞
control

via ADTmethod switching for discrete switched system with
time-delay was considered. However, the procedures given
in [11] could not be applied to the case of asynchronous
switching or the case of switching delay systems with stable
and unstable subsystems co existing. This motivates the
present study.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 101473, 15 pages
http://dx.doi.org/10.1155/2014/101473



2 Mathematical Problems in Engineering

On another research front line, it is well known that
mathematical modeling of physical systems often results
in complex high-order models. However, this causes the
great difficulties in analysis and synthesis of the systems.
Therefore, in practical applications it is desirable to replace
high-order models with reduced-order ones for reducing the
computational complexities in some given criteria without
incurring much loss of performance or information. The
purpose of model reduction is to obtain a lower-order
systemwhich approximates a high-order system according to
certain criterion. Recently, much attention has been focused
on the model reduction problem [21–25]. Many important
results have been reported, which involve various efficient
approaches, such as the balanced truncation method [24],
the optimal Hanker norm reduction method [25], the cone
complementarily linearization method [26], and sequential
linear programming matrix method [27]. In terms of LMIs
with inverse constraints or other non convex conditions,
the model reduction of the discrete-time context has been
investigated in [28, 29]. However, it is difficult to obtain the
numerical solutions. In [30], the existence conditions for
𝐻
∞

model reduction for discrete-time uncertain switched
systems are derived in terms of strict LMIs by using switched
Lyapunov function method. However, time delays are not
taken into account. In the literature [31], a novel idea to
approximate the original time-delay system by a reduced
time-delay model has been proposed recently. However, the
unstable subsystems are not taken into account.

Motivated by the preceding discussion, the main contri-
butions of this paper are highlighted as follows. The problem
of exponential stability and 𝐻

∞
model reduction for a class

of switched linear discrete-time systems with time-varying
delay have been investigated. To lessen the computation
complexity and to reduce the conservatism, new discrete LKF
are constructed and the delay interval is divided into two
unequal subintervals by the delay decomposition method.
The switching law is given by ADT scheme, such that even
if one or more subsystem is unstable the overall switched
system still can be stable. For the high-order systems, suf-
ficient conditions for the existence of the desired reduced-
order model are derived in terms of strict LMIs, which can be
easily solved by usingMATLAB LMI control toolbox. Finally,
numerical examples are given to show the effectiveness of the
proposed methods.

The remainder of this paper is structured as follows. In
Section 2, the problem formulation and some preliminaries
are introduced. In Section 3, the main results are presented
on the exponential stability of switched discrete-time systems
with time-varying delay. In Section 4, the main results on
the 𝐻

∞
model reduction for the high-order systems are

presented. Numerical examples are given in Section 5. The
last section concludes the work.

Notations. We use standard notations throughout the paper.
𝜆min(𝑀) (𝜆max(𝑀)) stands for the minimal (maximum)
eigenvalue of 𝑀. 𝑀

𝑇 is the transpose of the matrix 𝑀. The
relation 𝑀 > 𝑁 (𝑀 < 𝑁) means that the matrix 𝑀 − 𝑁 is
positive (negative) definite. ‖𝑥‖ denotes the Euclidian-norm
of the vector 𝑥 ∈ 𝑅

𝑛. 𝑅
𝑛 represents the 𝑛-dimensional real

Euclidean space. 𝑅
𝑛×𝑚 is the set of all real 𝑛 × 𝑚 matrices.

diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. In symmetric
block matrices or long matrix expressions, we use an asterisk
“∗” to represent a term that is induced by symmetry. 𝐼denotes
the identity matrix.

2. Problem Description and Preliminaries

Consider a class of switched linear discrete-time systemswith
time-varying state delay of the form

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑖
𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐶

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑖
𝑢 (𝑘) ,

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 = −ℎ, −ℎ + 1, . . . , 1,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 denotes the system state, 𝑦(𝑘) ∈ 𝑅

𝑚 is
the measured output, 𝑢(𝑘) ∈ 𝑅

𝑝 is the disturbance input
vector which belongs to 𝑙

2
[0, ∞). 𝜙(𝜃) ∈ 𝑅

𝑛 is a vector-valued
initial function. The switching signal 𝜎 (denoting 𝜎(𝑘) for
simplicity) : [0, ∞) → 𝑁 = {1, 2, . . . , 𝑇} is a piecewise
constant function and depends on time. 𝜎 = 𝑖 means that the
𝑖th subsystem is activated.𝑇 is the number of subsystems.The
systemmatrices 𝐴

𝑖
, 𝐴
𝑑𝑖

, 𝐵
𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, and 𝐷

𝑖
are a set of known

real matrices with appropriate dimensions.
For a given finite positive integer ℎ > 0, 𝑑(𝑘) is time-

varying delay and satisfies the following condition

0 ≤ 𝑑 (𝑘) ≤ ℎ, ∀𝑘 ∈ 𝑁
+

. (2)

To facilitate theoretical development, we introduce the fol-
lowing definitions and lemmas.

Definition 1 (see [19]). The system (1) with disturbance input
𝑢(𝑘) = 0 is said to be exponentially stable if there exist a
switching function 𝜎(⋅) and positive number 𝑐 such that every
solution 𝑥(𝑘, 𝜙) of the system satisfies

‖𝑥 (𝑘)‖ ≤ 𝑐𝜆
𝑘−𝑘0

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩𝑠

, ∀𝑘 ≥ 𝑘
0
, (3)

for any initial conditions (𝑘
0
, 𝜙) ∈ 𝑅

+

× 𝐶
𝑛. 𝑐 > 0 is the decay

coefficient, 0 < 𝜆 ≤ 1 is the decay rate, and ‖𝜙‖
𝑠

= sup{‖𝜙(𝑙)‖,

𝑙 = 𝑘
0

− ℎ, 𝑘
0

− ℎ + 1, . . . , 𝑘
0
}.

Definition 2 (see [11]). Consider the system (1) with the fol-
lowing conditions.

(1) With 𝑢(𝑘) = 0, the system (1) is exponentially stable
with convergence rate 𝜆 > 0.

(2) The 𝐻
∞

performance ‖𝑦(𝑘)‖
2

< 𝛾‖𝑢(𝑘)‖
2
is guaran-

teed for all nonzero 𝑢(𝑘) ∈ 𝐿
2
[0, ∞) and a prescribed

𝜅 > 0 under the zero condition.

In the above conditions, the system (1) is exponentially
stabilizable with 𝐻

∞
performance 𝛾 and convergence rate 𝜆.

Here 𝛾 characterizes the disturbance attenuation perfor-
mance. The smaller the 𝛾 is, the better the performance is.

Definition 3 (see [12]). For a switching signal 𝜎(𝑘) and any
𝑇
2

> 𝑘 > 𝑇
1

≥ 0, let 𝑁
𝜎
(𝑇
1
, 𝑇
2
) denote the number of
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switching of 𝜎(𝑘) over (𝑇
1
, 𝑇
2
). If for any given 𝑁

0
≥ 1 and

𝑇
𝑎

> 0, we have 𝑁
𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+ (𝑇
2

− 𝑇
1
)/𝑇
𝑎
, then 𝑇

𝑎
and

𝑁
0
are called the ADT and the chatter bound, respectively.

Lemma 4 (see [9]). For any matrix 𝑅 = 𝑅
𝑇

> 0, integers 𝑎 ≤

𝑏, vector function 𝜉(𝑘) : {−𝑏, −𝑏 + 1, . . . , −𝑎} → 𝑅
𝑛, then

(𝑎 − 𝑏)

𝑘−𝑎−1

∑

𝑠=𝑘−𝑏

𝑧
𝑇

(𝑠) 𝑅𝑧 (𝑠) ≤ 𝜉
𝑇

(𝑘) [

−𝑅 𝑅

−𝑅
] 𝜉 (𝑘) . (4)

Here

𝑧 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘 − 𝑎) 𝑥
𝑇

(𝑘 − 𝑏)] .

(5)

Lemma 5 (Schur complement [32]). Let 𝑀, 𝑃, 𝑄 be given
matrices such that 𝑄 > 0. Then

[

𝑃 𝑀

∗ −𝑄
] < 0 ⇐⇒ 𝑃 + 𝑀𝑄

−1

𝑀
𝑇

< 0. (6)

The aim of this paper is to find a class of time-based
switching signals for the discrete-time switched time-delay
systems (1), whose subsystem is not necessarily stable, to
guarantee the system to be exponentially stable. For a high-
order system, we are interested in constructing a reduced-
order switched system to approximate the system.

3. Stability Analysis

With the preliminaries given in the previous section we are
ready to state the exponential stability and 𝐻

∞
performance

of switched systems (1). To obtain the exponential stability of
switched systems (1), we construct following discrete LKF:

𝑉
𝑖
(𝑘) = 𝑉

𝑖1
(𝑘) + 𝑉

𝑖2
(𝑘) + 𝑉

𝑖3
(𝑘) , ∀𝑖 ∈ 𝑁. (7)

Here

𝑉
𝑖1

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘) ,

𝑉
𝑖2

(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖1

𝑥 (𝑠)

+

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖2

𝑥 (𝑠)

+

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖3

𝑥 (𝑠) ,

𝑉
𝑖3

(𝑘) =

−1

∑

𝜃=−𝜗

𝑘−1

∑

𝑠=𝑘+𝜃

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

+

−𝜗−1

∑

𝜃=−ℎ

𝑘−1

∑

𝑠=𝑘+𝜃

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

+

−1

∑

𝜃=−𝑑(𝑘)

𝑘−1

∑

𝑠=𝑘+𝜃

(1 + 𝛼
𝑖
)
𝑘−1−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠) ,

(8)

where 𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 = 1, 2, 3) are symmetric pos-
itive definite matrices with appropriate dimensions, 𝑧(𝑘) =

𝑥(𝑘 + 1) − 𝑥(𝑘), and integer 𝜗 ∈ (0, ℎ) and 𝛼
𝑖
are given

constants.

Remark 6. In order to derive less conservative criteria than
the existing ones, the delay interval [0, ℎ] is divided into two
unequal subintervals: [0, 𝜗] and [𝜗, ℎ], where 𝜗 ∈ (0, ℎ) is
a tuning parameter. The information about 𝑥(𝑡 − 𝜗) can be
taken into account. This plays a vital role in deriving less
conservative results. Thus, for any 𝑘 ∈ 𝑍

+, we have 𝑑(𝑘) ∈

[0, 𝜗] or 𝑑(𝑘) ∈ [𝜗, ℎ].
Firstly, we will provide a decay estimation of the system

LKF in (7) along the state trajectory of switched system (1)
without disturbance input (i.e., 𝑢(𝑘) = 0).

Lemma 7. Given constants −1 < 𝛼
𝑖

≤ 0, ℎ > 0 and 𝜗 ∈

(0, ℎ), if there exist some symmetric positive definite matrices
𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 = 1, 2, 3) such that the following LMIs
hold:

[

Ψ
𝑖11

Ψ
𝑖12

Ψ
𝑖22

] < 0, (9)

[

Φ
𝑖11

Φ
𝑖12

Φ
𝑖22

] < 0, (10)

where

Ψ
𝑖11

=

[

[

[

[

𝜓
𝑖

11
𝜓
𝑖

12
0 0

𝜓
𝑖

22
𝜓
𝑖

23
0

∗ 𝜓
𝑖

33
𝜓
𝑖

34

∗ ∗ 𝜓
𝑖

44

]

]

]

]

,

Φ
𝑖11

=

[

[

[

[

𝜓
𝑖

11
0 𝜙
𝑖

13
0

𝜙
𝑖

22
𝜙
𝑖

23
𝜙
𝑖

24

∗ 𝜙
𝑖

33
0

∗ ∗ 𝜓
𝑖

44

]

]

]

]

,

Ψ
𝑖12

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

1𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

1𝑖

0 0

0 0

]

]

]

]

,

Φ
𝑖12

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

2𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

2𝑖

0 0

0 0

]

]

]

]

,

Ψ
𝑖22

= diag {−𝑃
𝑖

−𝑊
1𝑖

} , Φ
𝑖22

= diag {−𝑃
𝑖

−𝑊
2𝑖

} ,

𝜓
𝑖

11
= − (1 + 𝛼

𝑖
) 𝑃
𝑖
−

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

) + 𝑄
𝑖1

+ 𝑄
𝑖3

,

𝜓
𝑖

12
=

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

) ,

𝜓
𝑖

22
= −(1 + 𝛼

𝑖
)
𝜗

𝑄
𝑖3

−

(1 + 𝛼
𝑖
)
𝜗

𝜗

(2𝑅
𝑖1

+ 𝑅
𝑖3

) ,
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𝜓
𝑖

23
=

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝑅
𝑖1

,

𝜓
𝑖

33
= (1 + 𝛼

𝑖
)
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

)

−

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

−

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝑅
𝑖1

,

𝜓
𝑖

34
=

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

,

𝜓
𝑖

44
= −(1 + 𝛼

𝑖
)
ℎ

𝑄
𝑖2

−

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

,

𝜙
𝑖

13
=

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

) ,

𝜙
𝑖

22
= −(1 + 𝛼

𝑖
)
ℎ

𝑄
𝑖3

−

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

(2𝑅
𝑖2

+ 𝑅
𝑖3

) ,

𝜙
𝑖

23
=

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

(𝑅
𝑖2

+ 𝑅
𝑖3

) ,

𝜙
𝑖

24
=

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝑅
𝑖2

,

𝜙
33

= −

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

(𝑅
𝑖2

+ 𝑅
𝑖3

)

−

(1 + 𝛼
𝑖
)
𝜗

𝜗

(𝑅
𝑖1

+ 𝑅
𝑖3

)

− (1 + 𝛼
𝑖
)
𝜗

(𝑄
𝑖1

− 𝑄
𝑖2

) ,

𝑊
1𝑖

= (ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ 𝜗𝑅
𝑖3

,

𝑊
2𝑖

= (ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ ℎ𝑅
𝑖3

.

(11)

Then, by means of LKF (7), along the trajectory of the systems
(1) without disturbance input, one has

Δ𝑉
𝑖
(𝑘) = 𝑉

𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘) ≤ 𝛼

𝑖
𝑉
𝑖
(𝑘) . (12)

Proof. Let us choose the system LKF (7). Define

𝑉
𝑖
(𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑉
𝑖
(𝑘) =

3

∑

𝑚=1

Δ̃𝑉
𝑖𝑚

(𝑘) , (13)

where

Δ̃𝑉
𝑖𝑚

(𝑘) = 𝑉
𝑖𝑚

(𝑘 + 1) − (1 + 𝛼
𝑖
) 𝑉
𝑖𝑚

(𝑘) . (14)

Therefore, the following equality holds along the solution of
(1):

Δ̃𝑉
𝑖1

(𝑘) = 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘) ,

(15)

Δ̃𝑉
𝑖2

(𝑘) = 𝑥
𝑇

(𝑘) (𝑄
𝑖1

+ 𝑄
𝑖3

) 𝑥 (𝑘)

− (1 + 𝛼
𝑖
)
ℎ

𝑥
𝑇

(𝑘 − ℎ) 𝑄
𝑖2

𝑥 (𝑘 − ℎ)

− (1 + 𝛼
𝑖
)
𝑑(𝑘)

𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄
𝑖3

𝑥 (𝑘 − 𝑑 (𝑘))

− (1 + 𝛼
𝑖
)
𝜗

𝑥
𝑇

(𝑘 − 𝜗) (𝑄
𝑖1

− 𝑄
𝑖2

) 𝑥 (𝑘 − 𝜗) ,

(16)

Δ̃𝑉
𝑖3

(𝑘) = 𝑧
𝑇

(𝑘) ((ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ 𝑑 (𝑘) 𝑅
𝑖3

) 𝑧 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

−

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠) .

(17)

For any 𝑘 ∈ 𝑍
+, we have 𝑑(𝑘) ∈ [0, 𝜗] or 𝑑(𝑘) ∈ [𝜗, ℎ].

(1) If 𝑑(𝑘) ∈ [0, 𝜗], it gets

−

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

= −

𝑘−1−𝑑(𝑘)

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠) .

(18)

So (17) could be

Δ̃𝑉
𝑖3

(𝑘) ≤ 𝑧
𝑇

(𝑘) ((ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ 𝜗𝑅
𝑖3

) 𝑧 (𝑘)

−

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝜏(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖1

+ 𝑅
𝑖3

) 𝑧 (𝑠)

−

𝑘−1−𝜏(𝑘)

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠) .

(19)
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From Lemma 4, we have

−

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠)

≤

(1 + 𝛼
𝑖
)
ℎ

ℎ − 𝜗

𝜉
𝑇

1
(𝑡) [

−𝑅
𝑖2

𝑅
𝑖2

−𝑅
𝑖2

] 𝜉
1

(𝑡) ,

(20)

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖1

+ 𝑅
𝑖3

) 𝑧 (𝑠)

≤

(1 + 𝛼
𝑖
)
𝜏(𝑘)

𝜏 (𝑘)

𝜉
𝑇

2
(𝑘) [

−𝑅
𝑖1

− 𝑅
𝑖3

𝑅
𝑖1

+ 𝑅
𝑖3

−𝑅
𝑖1

− 𝑅
𝑖3

] 𝜉
2

(𝑘)

≤

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝜉
𝑇

2
(𝑘) [

−𝑅
𝑖1

− 𝑅
𝑖3

𝑅
𝑖1

+ 𝑅
𝑖3

−𝑅
𝑖1

− 𝑅
𝑖3

] 𝜉
2

(𝑘) ,

(21)

−

𝑘−1−𝑑(𝑘)

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖1

𝑧 (𝑠)

≤

(1 + 𝛼
𝑖
)
𝜗

𝜗 − 𝜏 (𝑘)

𝜉
𝑇

3
(𝑘) [

−𝑅
𝑖1

𝑅
𝑖1

−𝑅
𝑖1

] 𝜉
3

(𝑘)

≤

(1 + 𝛼
𝑖
)
𝜗

𝜗

𝜉
𝑇

3
(𝑘) [

−𝑅
𝑖1

𝑅
𝑖1

−𝑅
𝑖1

] 𝜉
3

(𝑘) ,

(22)

where

𝜉
𝑇

1
(𝑘) = [𝑥

𝑇

(𝑘 − 𝜗) 𝑥
𝑇

(𝑘 − ℎ)] ,

𝜉
𝑇

2
(𝑘) = [𝑥

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘))] ,

𝜉
𝑇

3
(𝑘) = [𝑥

𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝜗)] .

(23)

Combining (13)–(22), it yields

𝑉
𝑖
(𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑉
𝑖
(𝑘)

≤ 𝜉
𝑇

(𝑘) Ψ
𝑖11

𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) + 𝑧

𝑇

(𝑘) 𝑊
1𝑖

𝑧 (𝑘) ,

(24)

where

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝜗) 𝑥
𝑇

(𝑘 − ℎ)] .

(25)

Multiplying (9) both from left and right by diag
{0 0 0 0 𝑃

−1

𝑖
𝑊
−𝑇

𝑖
}, by Schur Complement, further, con-

sidering (24), one can infer that (12) holds.

(2) If 𝑑(𝑘) ∈ [𝜗, ℎ], it gets

−

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠)

= −

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠)

−

𝑘−𝜗−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖3

𝑧 (𝑠) .

(26)

One obtains

Δ̃𝑉
𝑖3

(𝑘) ≤ 𝑧
𝑇

(𝑘) ((ℎ − 𝜗) 𝑅
𝑖2

+ 𝜗𝑅
𝑖1

+ ℎ𝑅
𝑖3

) 𝑧 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜗

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖1

+ 𝑅
𝑖3

) 𝑧 (𝑠)

−

𝑘−𝜗−1

∑

𝑠=𝑘−𝑑(𝑘)

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) (𝑅
𝑖2

+ 𝑅
𝑖3

) 𝑧 (𝑠)

−

𝑘−𝑑(𝑘)−1

∑

𝑠=𝑘−ℎ

(1 + 𝛼
𝑖
)
𝑘−𝑠

𝑧
𝑇

(𝑠) 𝑅
𝑖2

𝑧 (𝑠) .

(27)

Similarly, it is easy to get that

𝑉
𝑖
(𝑘 + 1) − (1 + 𝛼

𝑖
) 𝑉
𝑖
(𝑘)

≤ 𝜉
𝑇

(𝑘) Φ
𝑖11

𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) + 𝑧

𝑇

(𝑘) 𝑊
2𝑖

𝑧 (𝑘) .

(28)

If (10) holds, by Schur Complement, then we have (12). This
completes the proof.

Remark 8. Our LKF does not include free-weighing matrices
as in previous investigations, and this may lead to reduce the
computational complexity and get less conservation results.

Remark 9. In order to get less conservative results, the delay
interval [0, ℎ] can be divided into much more subintervals.
However, when the number of dipartite numbers increases,
thematrix formulation becomesmore complex and the time-
consuming grows bigger.

Now we have the following theorem.

Theorem 10. If there exist some constants −1 < 𝛼
𝑖

< 0 and
positive definite symmetric matrices 𝑃

𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 =

1, 2, 3) and 𝜇 ≥ 1 such that (9), (10), and the following
inequalities hold:

𝑃
𝑖
≤ 𝜇𝑃
𝑗
, 𝑄
𝑖𝑚

≤ 𝜇𝑄
𝑗𝑚

, 𝑅
𝑖𝑚

≤ 𝜇𝑅
𝑗𝑚

,

∀𝑖, 𝑗 ∈ 𝑁.

(29)

Then, the switched system (1) with 𝑢(𝑘) = 0 and ADT satisfies
𝜏
𝑎

> − ln 𝜇/ ln𝛼 which is exponentially stable.

Proof. By Lemma 7, we have

Δ𝑉
𝑖
(𝑘) = 𝑉

𝑖
(𝑘 + 1) − 𝑉

𝑖
(𝑘) ≤ 𝛼

𝑖
𝑉
𝑖
(𝑘) , ∀𝑖 ∈ 𝑁. (30)
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Therefore,

𝑉
𝑖
(𝑘
0

+ 𝑛) ≤ (𝛼
𝑖
+ 1)
𝑛

𝑉
𝑖
(𝑘
0
) . (31)

There exists 𝜇
𝑖
≥ 1 (𝑖 ∈ 𝑁), such that

𝑉
𝑖
(𝑘) ≤ 𝜇

𝑖
𝑉
𝑗
(𝑘) , ∀𝑖, 𝑗 ∈ 𝑁. (32)

We let 𝜏
1
, . . . , 𝜏

𝑁𝜎(𝑘0,𝑘0+𝑘)
denote the switching times of 𝜎 in

(𝑘
0
, 𝑘
0

+ 𝑘), and let 𝑁
𝜎(𝑘0 ,𝑘+𝑘0)

be the switching number of 𝜎

in (𝑘
0
, 𝑘 + 𝑘

0
), by (31) and (32), one obtains

𝑉
𝜎(𝑘+𝑘0)

(𝑘 + 𝑘
0
) ≤ 𝜇
𝜎(𝜏1)

⋅ ⋅ ⋅ 𝜇
𝜎(𝜏𝑁
𝜎(𝑘0,𝑘0+𝑘)

)
(𝛼
𝜎(𝑘+𝑘0)

+ 1)

𝑚1

⋅ ⋅ ⋅

(𝛼
𝜎(𝑘0)

+ 1)

𝑚𝑁
𝜎(𝑘0,𝑘+𝑘0)𝑉

𝜎(𝑘0)
(𝑘
0
) ,

(33)

where 𝑚
1

+ ⋅ ⋅ ⋅ + 𝑚
𝑁𝜎(𝑘0,𝑘+𝑘0)

= 𝑘.
By −1 < 𝛼

𝑖
< 0, for all 𝑖 ∈ 𝑁, we know that there exists

𝛼 ≜ max
𝑖∈𝑁

{𝛼
𝑖
+ 1} ∈ (0, 1). Let 𝜇 = max

𝑖∈𝑁
{𝜇
𝑖
}; from (33),

one obtains

𝑉
𝑖
(𝑘 + 𝑘

0
) ≤ 𝛼
𝑘

𝜇
𝑁𝜎

𝑉
𝑗
(𝑘
0
) = 𝛼
𝑘+𝑁𝜎(ln 𝜇/ ln𝛼)

𝑉
𝑗
(𝑘
0
) . (34)

By Definition 2, for any 𝑘
0

< 𝑘, it follows that

𝑉
𝑖
(𝑘) ≤ 𝛼

𝑘+𝑁𝜎(ln 𝜇/ ln𝛼)
𝑉
𝑗
(𝑘
0
) ≤ 𝛼
𝑘(1+(ln 𝜇/𝑇𝑎 ln𝛼))

𝑉
𝑗
(𝑘
0
) .

(35)

By the system LKF (7), there always exist two positive con-
stants 𝑐

1
, 𝑐
2
such that

𝑐
1
‖𝑥(𝑘)‖

2

≤ 𝑉
𝑖
(𝑘) , 𝑉

𝑖
(𝑘
0
) ≤ 𝑐
2

󵄩
󵄩
󵄩
󵄩
𝑥(𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

𝑠
, (36)

where

𝑐
1

= min
𝑖∈𝑁

{𝜆min (𝑃
𝑖
)} ,

𝑐
2

= max
𝑖∈𝑁

{𝜆max (𝑃
𝑖
) +

3

∑

𝑚=1

(𝜆max (𝑄
𝑖𝑚

) + 𝜆max (𝑅
𝑖𝑚

))} .

(37)

Therefore,

‖𝑥(𝑘)‖
2

≤

𝑐
2

𝑐
1

𝛼
𝑘(1+(ln 𝜇/𝑇𝑎 ln𝛼))󵄩󵄩

󵄩
󵄩
𝑥(𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

𝑠
. (38)

If the average dwell time 𝜏
𝑎
satisfies 𝜏

𝑎
> − ln 𝜇/ ln𝛼 for𝜇 ≥ 1,

then the switched system (1) with 𝑢(𝑘) = 0 is exponentially
stable with 𝜆 = 𝛼

1/2

= max
𝑖∈𝑁

{(𝛼
𝑖
+ 1)
1/2

} ∈ (0, 1) stability
degree.

Remark 11. The case 𝛼 = 0 implies the asymptotic stability.

The following theorem provides exponential stability
analysis with 𝐻

∞
performance of the system (1).

Theorem 12. For given constants 𝛾 > 0, 𝜆 > 0 and −1 <

𝛼
𝑖

< 0, if there exist positive definite symmetric matrices

𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 = 1, 2, 3) and 𝜇 ≥ 1 such that (29)
and the following LMIs hold:

[

[

Ψ
𝑖11

0 Ψ
𝑖13

−𝛾
2

𝐼 Ψ
𝑖23

∗ Ψ
𝑖33

]

]

< 0, (39)

[

[

Φ
𝑖11

0 Φ
𝑖13

−𝛾
2

𝐼 Φ
𝑖23

∗ Φ
𝑖33

]

]

< 0, (40)

where

Ψ
𝑖13

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

1𝑖
𝐶
𝑇

𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

1𝑖
𝐶
𝑇

𝑑𝑖

0 0 0

0 0 0

]

]

]

]

,

Φ
𝑖13

=

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖

(𝐴
𝑖
− 𝐼)
𝑇

𝑊
𝑇

2𝑖
𝐶
𝑇

𝑖

𝐴
𝑇

𝑑𝑖
𝑃
𝑖

𝐴
𝑇

𝑑𝑖
𝑊
𝑇

2𝑖
𝐶
𝑇

𝑑𝑖

0 0 0

0 0 0

]

]

]

]

,

Ψ
𝑖33

= diag {−𝑃
𝑖

−𝑊
1𝑖

−𝐼} ,

Φ
𝑖33

= diag {−𝑃
𝑖

−𝑊
2𝑖

−𝐼} ,

Ψ
𝑖23

= [𝐵
𝑇

𝑖
𝑃
𝑖

𝐵
𝑇

𝑖
𝑊
𝑇

1𝑖
𝐷
𝑇

𝑖
] , Φ

𝑖23
= [𝐵
𝑇

𝑖
𝑃
𝑖

𝐵
𝑇

𝑖
𝑊
𝑇

2𝑖
𝐷
𝑇

𝑖
] .

(41)

Then, the system (1) with average dwell time satisfies 𝜏
𝑎

>

− ln 𝜇/ ln𝛼 which is globally exponentially stable with conver-
gence rate 𝜆 and 𝐻

∞
performance 𝛾.

Proof. Choose the LKF (7); the result is carried out by
using the techniques employed for proving Lemma 7 and
Theorem 10. If 𝑑(𝑘) ∈ [0, 𝜗], by (24), we have

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)

≤ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1)

+ 𝑧
𝑇

(𝑘) 𝑊
𝑖
𝑧 (𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘)

+ 𝜁
𝑇

1
(𝑘) [

Ψ
𝑖11

0

0 −𝛾
2] 𝜁
1

(𝑘) ,

(42)

where

𝜁
𝑇

1
(𝑘) = [𝜉

𝑇

(𝑘) 𝑢
𝑇

(𝑘)] . (43)

If 𝑑(𝑘) ∈ [𝜗, ℎ], by (28), we have

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)

≤ 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1) + 𝑧

𝑇

(𝑘) 𝑊
𝑖
𝑧 (𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘)

+ 𝜁
𝑇

1
(𝑘) [

Φ
𝑖11

0

0 −𝛾
2] 𝜁
1

(𝑘) .

(44)
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Combining (39) and (40), by Schur Complement, one can
obtain

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑦

𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) ≤ 0.

(45)

Let

𝐽 (𝑘) = 𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) ; (46)

we have

𝑉
𝑖
(𝑘 + 1) ≤ 𝛼𝑉

𝑖
(𝑘) − 𝐽 (𝑘) . (47)

By Definition 2 and Theorem 10, it is sufficient to show that
∑
∞

𝑘=0
𝐽(𝑘) < 0 for any nonzero 𝑢(𝑘). Combining (35) and

(47), it can be shown that

𝑉
𝜎

(𝑘) ≤ 𝛼
𝑘

𝜇
𝑁𝜎(0,𝑘)

𝑉
𝜎

(0) −

𝑘−1

∑

𝑠=0

𝛼
𝑘−𝑠−1

𝜇
𝑁𝜎(𝑠,𝑘)

𝐽 (𝑠) . (48)

Under the zero initial condition, we have

𝑉 (0) = 0, 𝑉 (∞) ≥ 0. (49)

Combining (48), we have

𝑘−1

∑

𝑠=0

𝛼
𝑘−𝑠−1

𝜇
𝑁𝜎(𝑠,𝑘)

𝐽 (𝑠) =

𝑘−1

∑

𝑠=0

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝐽 (𝑠) ≤ 0. (50)

Now, we consider
∞

∑

𝑘=1

𝑘−1

∑

𝑠=0

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝐽 (𝑠) . (51)

Exchanging the double-sum region, by 𝜏
𝑎

> − ln 𝜇/ ln𝛼 and
𝛼 ∈ (0, 1), one can easily get

∞

∑

𝑘=1

𝑘−1

∑

𝑠=0

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝐽 (𝑠)

=

∞

∑

𝑠=0

𝐽 (𝑠)

∞

∑

𝑘=𝑠+1

𝛼
−1

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

=

𝑒
ln𝛼+ln 𝜇/𝜏𝑎

𝛼
−1

1 − 𝑒
ln𝛼+ln 𝜇/𝜏𝑎

∞

∑

𝑠=1

𝐽 (𝑠) ≤ 0,

(52)

which means that ∑
∞

𝑠=1
𝐽(𝑠) ≤ 0. Then, by Definition 2, the

system (1) with average dwell time satisfies 𝜏
𝑎

> − ln 𝜇/ ln𝛼

which is globally exponentially stable with convergence rate
𝜆 and 𝐻

∞
performance 𝛾. This completes the proof.

If there exist some unstable subsystems in the switched
system (1) with 𝑢(𝑘) = 0, in this case, we need to estimate the
growth rate of the system LKF in (7) along the state trajectory
of switched system (1). And the corresponding 𝛼

𝑗
> 0 (𝑗 ∈

𝑁). By using the techniques employed for proving Lemma 7,
one can easily obtain the following Lemma.

Lemma 13. Given constants 𝛼
𝑗

> 0, ℎ > 0 and 𝜗 ∈

(0, ℎ), if there exist some symmetric positive definite matrices

𝑃
𝑗
, 𝑄
𝑗𝑚

, 𝑅
𝑗𝑚

(𝑗 ∈ 𝑁, 𝑚 = 1, 2, 3) such that the following LMIs
hold:

[

Ψ
𝑗11

Ψ
𝑗12

Ψ
𝑗22

] < 0,

[

Φ
𝑗11

Φ
𝑗12

Φ
𝑗22

] < 0,

(53)

where

Ψ
𝑗11

=

[

[

[

[

[

𝜓
𝑗

11
𝜓
𝑗

12
0 0

𝜓
𝑗

22
𝜓
𝑗

23
0

∗ 𝜓
𝑗

33
𝜓
𝑗

34

∗ ∗ 𝜓
𝑗

44

]

]

]

]

]

,

Φ
𝑗11

=

[

[

[

[

[

[

𝜓
𝑗

11
0 𝜙

𝑗

13
0

𝜙

𝑗

22
𝜙

𝑗

23
𝜙

𝑗

24

∗ 𝜙

𝑗

33
0

∗ ∗ 𝜓
𝑗

44

]

]

]

]

]

]

,

𝜓
𝑗

11
= − (1 + 𝛼

𝑗
) 𝑃
𝑗

+ 𝑄
𝑗1

+ 𝑄
𝑗3

−

1

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) ,

𝜓
𝑗

12
=

1

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) , 𝜓
𝑗

22
= −𝑄
𝑗3

−

1

𝜗

(2𝑅
𝑗1

+ 𝑅
𝑗3

) ,

𝜓
𝑗

23
=

1

𝜗

𝑅
𝑗1

, 𝜓
𝑗

34
=

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑗2

,

𝜓
𝑗

33
= (1 + 𝛼

𝑗
)

𝜗

(𝑄
𝑗2

− 𝑄
𝑗1

) −

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑗2

−

1

𝜗

𝑅
𝑗1

,

𝜓
𝑗

44
= −(1 + 𝛼

𝑗
)

ℎ

𝑄
𝑗2

−

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑖2

, 𝜙

𝑗

11
= 𝜓
𝑗

11
,

𝜙

𝑗

13
=

(1 + 𝛼
𝑗
)

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) ,

𝜙

𝑗

22
= −(1 + 𝛼

𝑗
)

𝜗

𝑄
𝑗3

−

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

(2𝑅
𝑗2

+ 𝑅
𝑗3

) ,

𝜙

𝑗

23
=

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

(𝑅
𝑗2

+ 𝑅
𝑗3

) , 𝜙

𝑗

24
=

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

𝑅
𝑗2

,

𝜙

𝑗

33
= −

(1 + 𝛼
𝑗
)

𝜗

ℎ − 𝜗

(𝑅
𝑗2

+ 𝑅
𝑗3

)

−

(1 + 𝛼
𝑗
)

𝜗

(𝑅
𝑗1

+ 𝑅
𝑗3

) − (1 + 𝛼
𝑗
)

𝜗

(𝑄
𝑗1

− 𝑄
𝑗2

) .

(54)

Then, by means of LKF (7), along the trajectory of the systems
(1) without disturbance input, one has

Δ𝑉
𝑗
(𝑘) = 𝑉

𝑗
(𝑘 + 1) − 𝑉

𝑗
(𝑘) ≤ 𝛼

𝑗
𝑉
𝑗
(𝑘) . (55)
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Remark 14. The proof of Lemma 13 is similar to that of
Lemma 7 and is thus omitted here. Based on Lemmas 7 and
13, one can easily design the stabilizing switching law to
guarantee the system (1) with 𝑢(𝑘) = 0 to be exponentially
stable, although some subsystems are unstable.

Without loss of generality, we can assume that 𝑁
𝑢

=

{𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑠
} is the set of all unstable subsystems and 𝑁

𝑠
=

{𝑖
𝑠+1

, 𝑖
𝑠+2

, . . . , 𝑖
𝑝
} is the set of all stable subsystems. For

simplicity, the LKF (7) is defined as 𝑉
𝑖
(𝛼
𝑖
, 𝑘) ≜ 𝑉

𝑖
(𝑘). Choose

the LKF 𝑉
𝑖
(𝛼
𝑖
, 𝑘) (−1 < 𝛼

𝑖
< 0, 𝑖 ∈ 𝑁

𝑠
) for the stable

subsystem and choose the LKF 𝑉
𝑗
(𝛼
𝑗
, 𝑘) (𝛼

𝑗
> 0, 𝑗 ∈ 𝑁

𝑢
)

for the unstable subsystem. Then, we have the following
conclusion.

Theorem 15. If there exist some constants −1 < 𝛼
𝑖

< 0,
𝛼
𝑗

> 0 (𝑗 ̸= 𝑖, 𝑖 ∈ 𝑁
𝑠
, 𝑗 ∈ 𝑁

𝑢
) and positive definite symmetric

matrices 𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

, 𝑃
𝑗
, 𝑄
𝑗𝑚

, 𝑅
𝑗𝑚

(𝑚 = 1, 2, 3) and 𝜇 ≥ 1

such that Lemmas 7 and 13 and the following LMIs hold:

𝑃
𝑙
≤ 𝜇𝑃
𝑠
, 𝑄
𝑙𝑚

≤ 𝜇𝑄
𝑠𝑚

, 𝑅
𝑙𝑚

≤ 𝜇𝑅
𝑠𝑚

, ∀𝑙, 𝑠 ∈ 𝑁.

(56)

Then, the switched system (1) with 𝑢(𝑘) = 0 and the average
dwell time satisfies 𝜏

𝑎
> ln 𝜇/−𝜅, 𝑇

𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽 −

𝜅)/(− ln𝛼 + 𝜅), 𝜅 ∈ (ln𝛼, 0) which is exponentially stable.

Proof. Consider the following LKF candidate:

𝑉
𝜎(𝑘)

(𝑘) = {

𝑉
𝑖
(𝛼
𝑖
, 𝑘) , 𝜎 (𝑘) = 𝑖 ∈ 𝑁

𝑠
,

𝑉
𝑗
(𝛼
𝑗
, 𝑘) , 𝜎 (𝑘) = 𝑗 ∈ 𝑁

𝑢
.

(57)

By Lemmas 7 and 13, we have

𝑉
𝜎(𝑘+1)

(𝑘 + 1) ≤ (𝛼
𝜎(𝑘+1)

+ 1) 𝑉
𝜎(𝑘+1)

(𝑘) . (58)

Let 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

be the total activity time in which all subsystems
satisfied 0 > 𝛼

𝑖
> −1 on the interval (𝑘

0
, 𝑛 + 𝑘

0
) and

𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≜ 𝑛 − 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

the total activity time in which all
subsystems satisfied 𝛼

𝑗
> 0 on the interval (𝑘

0
, 𝑛 + 𝑘

0
).

By using the techniques employed for proving Theorem 10,
combining (56) and (58), we derive that

𝑉
𝜎(𝑛+𝑘0)

(𝑛 + 𝑘
0
)

≤ 𝜇
𝑁𝜎(𝑛+𝑘0)𝛼

𝑇
𝛼

𝑘0,𝑛+𝑘0𝛽
𝑇
𝛽

𝑘0,𝑛+𝑘0𝑉
𝜎(𝑘0)

(𝑘
0
)

= 𝑒
𝑇
𝛼

𝑘0,𝑛+𝑘0
ln𝛼+𝑇𝛽

𝑘0,𝑛+𝑘0
ln𝛽+𝑁𝜎(𝑘0,𝑛+𝑘0) ln 𝜇𝑉

𝜎(𝑘0)
(𝑘
0
) ,

(59)

where

𝛼 ≜ max
𝑖∈𝑁𝑠

{𝛼
𝑖
+ 1} ∈ (0, 1) , 𝛽 ≜ max

𝑗∈𝑁𝑢

{𝛼
𝑗

+ 1} > 1.

(60)

By 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽−𝜅)/(− ln𝛼+𝜅), 𝜅 ∈ (ln𝛼, 0), one
obtains

𝑇
𝛼

𝑘0 ,𝑛+𝑘0

ln𝛼 + 𝑇
𝛽

𝑘0 ,𝑛+𝑘0

ln𝛽 ≤ 𝜅𝑛. (61)

So we have

𝑉
𝜎(𝑛+𝑘0)

(𝑛 + 𝑘
0
) ≤ 𝑒
𝜅𝑛+𝑁𝜎(𝑘0,𝑛+𝑘0)

ln 𝜇
𝑉
𝜎(𝑘0)

(𝑘
0
) . (62)

By Definition 2, for any 𝑛 + 𝑘
0

> 𝑘
0
, it follows that

𝑉
𝜎(𝑛+𝑘0)

(𝑛 + 𝑘
0
) ≤ 𝑒
𝜅𝑛+𝑁𝜎(𝑘0,𝑛+𝑘0)

ln 𝜇
𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ 𝑒
𝑛(𝜅+(ln 𝜇/𝜏𝑎))

𝑉
𝜎(𝑘0)

(𝑘
0
) .

(63)

By 𝜏
𝑎

> ln 𝜇/ − 𝜅, we have lim
𝑘→∞

𝑉
𝜎
(𝑘) = 0. Moreover,

the overall system is exponentially stable. This completes the
proof.

Remark 16. From the proof of Theorem 15, one can see that
the obtained exponential stability for the switched system (1)
with 𝑢(𝑘) = 0 is exponential stable with 𝑒

−1/2 stability degree.
In order to get a free decay rate, we can replace the condition
𝜏
𝑎

> ln 𝜇/ − 𝜅, 𝑇𝛼
𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽 − 𝜅)/(− ln𝛼 + 𝜅), 𝜅 ∈

(ln𝛼, 0) by 𝜏
𝑎

> log𝜇
𝜖
/−𝜅,𝑇𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (log𝛽
𝜖
−𝜅)/(−log𝛼

𝜖
+

𝜅), 𝜅 ∈ (log𝛼
𝜖
, 0), 𝜖 > 1; then the switched system (1) with

𝑢(𝑘) = 0 is exponentially stable with 𝜖
−1/2 stability degree.

Theorem 17. For given constants 𝛾 > 0, −1 < 𝛼
𝑖

< 0,
𝛼
𝑗

> 0 (𝑗 ̸= 𝑖, 𝑖 ∈ 𝑁
𝑠
, 𝑗 ∈ 𝑁

𝑢
), if there exist positive definite

symmetric matrices 𝑃
𝑖
, 𝑄
𝑖𝑚

, 𝑅
𝑖𝑚

, 𝑃
𝑗
, 𝑄
𝑗𝑚

, 𝑅
𝑗𝑚

(𝑚 = 1, 2, 3)

and 𝜇 ≥ 1 such that (56), (39), (40), and the following LMIs
hold:

[

[

[

Ψ
𝑗11

0 Ψ
𝑗13

−𝛾
2

𝐼 Ψ
𝑗23

∗ Ψ
𝑗33

]

]

]

0,

[

[

[

Φ
𝑗11

0 Φ
𝑗13

−𝛾
2

𝐼 Φ
𝑗23

∗ Φ
𝑗33

]

]

]

< 0,

(64)

and𝑇
𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽−𝜅)/(− ln𝛼+𝜅), 𝜅 ∈ (ln𝛼, 0), and
the average dwell time satisfies 𝜏

𝑎
> ln 𝜇/−𝜅; then the switched

system (1) is exponentially stable and with 𝐻
∞
performance 𝛾.

Remark 18. The proof of Theorem 17 is similar to that of
Theorems 12 and 15 and is thus omitted here.

4. 𝐻
∞

Model Reduction

In this section, we will approximate system (1) by a reduced-
order switched system described by

𝑥 (𝑘 + 1) = 𝐴
𝑟𝑖

𝑥 (𝑘) + 𝐴
𝑟𝑑𝑖

𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵
𝑟𝑖

𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑟𝑖

𝑥 (𝑘) + 𝐶
𝑟𝑑𝑖

𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷
𝑟𝑖

𝑢 (𝑘) ,

(65)

where 𝑥(𝑘) ∈ 𝑅
𝑞 is the state vector of the reduced-order

system with 𝑞 < 𝑛 and 𝑦(𝑘) ∈ 𝑅
𝑚 is the output of reduced-

order system. 𝐴
𝑟𝑖

, 𝐴
𝑟𝑑𝑖

, 𝐶
𝑟𝑖

, 𝐶
𝑟𝑑𝑖

, 𝐵
𝑟𝑖
, and 𝐷

𝑟𝑖
are the matrices

with compatible dimensions to be determined. The system
(65) is assumed to be switched synchronously by switching
signal 𝜎(𝑘) in system (1).
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Augmenting the model of system (1) to include the states
of (65), we can obtain the error system as follows:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑖
𝑢 (𝑘) ,

𝑒 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐶

𝑑𝑖
𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑖
𝑢 (𝑘) .

(66)

Here

𝐴
𝑖
= [

𝐴
𝑖

0

0 𝐴
𝑟𝑖

] , 𝐴
𝑑𝑖

= [

𝐴
𝑑𝑖

0

0 𝐴
𝑟𝑑𝑖

] ,

𝐵
𝑖
= [

𝐵
𝑖

𝐵
𝑟𝑖

] , 𝑥 (𝑘) = [

𝑥 (𝑘)

𝑥 (𝑘)
] ,

𝐶
𝑖
= [𝐶
𝑖

−𝐶
𝑟𝑖

] , 𝐶
𝑑𝑖

= [𝐶
𝑑𝑖

−𝐶
𝑟𝑑𝑖

] ,

𝐷
𝑖
= 𝐷
𝑖
− 𝐷
𝑟𝑑𝑖

, 𝑒 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) .

(67)

The following theorem gives a sufficient condition for the
existence of an admissible 𝐻

∞
reduced-order model (65) for

system (1).

Theorem 19. Given constants 0 < 𝛼 < 1, 𝛾 > 0, 𝜇 ≥ 1, ℎ >

0, and 𝜗 (0 < 𝜗 < ℎ), if there exist some symmetric positive
definite matrices 𝑃̃

𝑖
, 𝑄
𝑖𝑚

, 𝑅̃
𝑖𝑚

(𝑚 = 1, 2, 3) and matrices 𝑋
𝑖
,

𝑌
𝑖
, 𝐿
𝑖
, 𝐻
𝑖
, 𝐹
𝑖

(𝑖 ∈ 𝑁) such that the following LMIs hold

[

Π
𝑖1

Π
𝑖2

Π
𝑖3

] < 0, (68)

[

Π
𝑖1

Π
𝑖2

Π
𝑖3

] < 0, (69)

𝑃̃
𝑖
≤ 𝜇𝑃̃
𝑗
, 𝑄
𝑖𝑚

≤ 𝜇𝑄
𝑗𝑚

, 𝑅̃
𝑖𝑚

≤ 𝜇𝑅̃
𝑗𝑚

, ∀𝑖, 𝑗 ∈ 𝑁.

(70)

Then system (66) with the average dwell time 𝜏
𝑎
satisfies 𝜏

𝑎
>

− ln 𝜇/ ln𝛼 which is exponentially stable with an 𝐻
∞

norm
bound 𝛾.

Here

Π
𝑖1

=

[

[

[

[

[

[

𝜑
𝑖

11
𝜑
𝑖

12
0 0 0

𝜑
𝑖

22
𝜑
𝑖

23
0 0

∗ 𝜑
𝑖

33
𝜑
𝑖

34
0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

,

Π
𝑖1

=

[

[

[

[

[

[

[

𝜑
𝑖

11
0 𝜑
𝑖

13
0 0

𝜑
𝑖

22
𝜑
𝑖

23
𝜑
𝑖

24
0

∗ 𝜑
𝑖

33
0 0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

]

,

Π
𝑖2

=

[

[

[

[

[

[

𝜑
𝑇

𝑖16
𝜑
𝑇

𝑖17
𝜑
𝑇

𝑖18

𝜑
𝑇

𝑖26
𝜑
𝑇

𝑖27
𝜑
𝑇

𝑖28

0 0 0

0 0 0

𝜑
𝑇

𝑖56
𝜑
𝑇

𝑖57
𝜑
𝑇

𝑖58

]

]

]

]

]

]

,

Π
𝑖3

= diag {𝑃̃
𝑖
− 2𝑈̃
𝑖

𝑊̃
𝑖
− 2𝑈̃
𝑖

−𝐼} ,

Π
𝑖3

= diag {𝑃̃
𝑖
− 2𝑈̃
𝑖

𝑊̂ − 2𝑈̃
𝑖

−𝐼} ,

𝜑
𝑖

11
= 𝑄
𝑖1

+ 𝑄
𝑖3

− 𝛼𝑃̃ −

𝛼
𝜗

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

12
=

𝛼
𝜗

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) , 𝜑
𝑖

22
= −𝛼
𝜗

𝑄
𝑖3

−

𝛼
𝜗

𝜗

(2𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

23
=

𝛼
𝜗

𝜗

𝑅̃
𝑖1

, 𝜑
𝑖

34
=

𝛼
ℎ

ℎ − 𝜗

𝑅̃
𝑖2

,

𝜑
𝑖

33
= 𝛼
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛼
ℎ

ℎ − 𝜗

𝑅̃
𝑖2

−

𝛼
𝜗

𝜗

𝑅̃
𝑖1

,

𝜑
𝑖

44
= −𝛼
ℎ

𝑄
𝑖2

−

𝛼
ℎ

ℎ − 𝜗

𝑅̃
𝑖2

,

𝜑
𝑖

55
= −𝛾
2

𝐼, 𝜑
𝑖

13
= 𝜑
𝑖

12
,

𝜑
𝑖

22
= −𝛼
ℎ

𝑄
𝑖3

−

𝛼
ℎ

ℎ − 𝜗

(2𝑅̃
𝑖2

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

23
=

𝛼
ℎ

ℎ − 𝜗

(𝑅̃
𝑖2

+ 𝑅̃
𝑖3

) , 𝜑
𝑖

24
= 𝜑
𝑖

34
,

𝜑
33

= 𝛼
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛼
𝜗

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) −

𝛼
ℎ

ℎ − 𝜗

(𝑅̃
𝑖2

+ 𝑅̃
𝑖3

) ,

𝑊̃
𝑖
= (ℎ − 𝜗) 𝑅̃

𝑖2
+ 𝜗𝑅̃
𝑖1

+ 𝜗𝑅̃
𝑖3

,

𝑊̂
𝑖
= (ℎ − 𝜗) 𝑅̃

𝑖2
+ 𝜗𝑅̃
𝑖1

+ ℎ𝑅̃
𝑖3

,

𝜑
𝑇

𝑖16
= [

𝐴
𝑇

𝑖
𝑋
𝑇

𝑖
𝐴
𝑇

𝑖
𝐸
𝑇

𝑌
𝑖

0 𝐿
𝑇

𝑖

] ,

𝜑
𝑇

𝑖17
= [

𝐴
𝑇

𝑖
𝑋
𝑇

𝑖
− 𝑋
𝑇

𝑖
𝐴
𝑇

𝑖
𝐸
𝑇

𝑌
𝑖
− 𝐸
𝑇

𝑌

0 𝐿
𝑇

𝑖
− 𝑌
𝑇

𝑖

] ,

𝜑
𝑇

𝑖18
= [

𝐶
𝑇

𝑖

−𝐶
𝑇

𝑟𝑖

] ,

𝜑
𝑇

𝑖26
= 𝜑
𝑇

𝑖27
= [

𝐴
𝑇

𝑖𝑑
𝑋
𝑇

𝑖
𝐴
𝑇

𝑖𝑑
𝐸
𝑇

𝑌
𝑖

0 𝐻
𝑇

𝑖

] ,

𝜑
𝑇

𝑖28
= [

𝐶
𝑇

𝑑𝑖

−𝐶
𝑇

𝑟𝑑𝑖

] ,

𝜑
𝑖56

= 𝜑
𝑖57

= [

𝑋
𝑖
𝐵
𝑖

𝐹
𝑖
+ 𝑌
𝑇

𝑖
𝐸𝐵
𝑖

] ,

𝜑
𝑖58

= 𝐷
𝑖
− 𝐷
𝑟𝑑𝑖

.

(71)

Furthermore, if a feasible solution to the above LMIs (68), (69),
and (70) exists, then the system matrices of an admissible 𝐻

∞

reduced-order model in the form of (65) are given by

𝐴
𝑟𝑖

= 𝑌
−1

𝑖
𝐿
𝑖
, 𝐴

𝑟𝑑𝑖
= 𝑌
−1

𝑖
𝐻
𝑖
, 𝐵

𝑟𝑖
= 𝑌
−1

𝑖
𝐹
𝑖
. (72)
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Proof. Consider the following LKF for the switched system
(66):

𝑉
𝑖
(𝑘) = 𝑉

𝑖1
(𝑘) + 𝑉

𝑖2
(𝑘) + 𝑉

𝑖3
(𝑘) . (73)

Here

𝑉
𝑖1

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃̃
𝑖
𝑥 (𝑘) ,

𝑉
𝑖2

(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝜗

𝛼
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖1

𝑥 (𝑠)

+

𝑘−𝜗−1

∑

𝑠=𝑘−ℎ

𝛼
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖2

𝑥 (𝑠)

+

𝑘−1

∑

𝑠=𝑘−𝑑(𝑘)

𝛼
𝑘−1−𝑠

𝑥
𝑇

(𝑠) 𝑄
𝑖3

𝑥 (𝑠) ,

𝑉
𝑖3

(𝑘) =

−1

∑

𝜃=−𝜗

𝑘−1

∑

𝑠=𝑘+𝜃

𝛼
𝑘−1−𝑠

𝑧̃
𝑇

(𝑠) 𝑅̃
𝑖1

𝑧̃ (𝑠)

+

−𝜗−1

∑

𝜃=−ℎ

𝑘−1

∑

𝑠=𝑘+𝜃

𝛼
𝑘−1−𝑠

𝑧̃
𝑇

(𝑠) 𝑅̃
𝑖2

𝑧̃ (𝑠)

+

−1

∑

𝜃=−𝑑(𝑘)

𝑘−1

∑

𝑠=𝑘+𝜃

𝛼
𝑘−1−𝑠

𝑧̃
𝑇

(𝑠) 𝑅̃
𝑖3

𝑧̃ (𝑠) ,

(74)

where 𝑧̃(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and 𝑃̃
𝑖
, 𝑄
𝑖𝑚

, 𝑅̃
𝑖𝑚

(𝑖 ∈ 𝑁, 𝑚 =

1, 2, 3) are symmetric positive definite matrices with appro-
priate dimensions; integer 𝜗 and 𝛼 are given constants.

By using the techniques employed for proving Lemma 7,
one can easily obtain the result. Calculate the difference of
𝑉
𝑖
(𝑘) in (73) along the state trajectory of system (66).

(1) If 𝑑(𝑘) ∈ [0, 𝜗], it gets

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑒

𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)

≤
̃
𝜉
𝑇

(𝑘) Π
𝑖1

̃
𝜉 (𝑘)

+ 𝑥
𝑇

(𝑘 + 1) 𝑃̃
𝑖
𝑥 (𝑘 + 1)

+ 𝑧
𝑇

(𝑘) 𝑊̃
𝑖
𝑧 (𝑘) + 𝑒

𝑇

(𝑘) 𝑒 (𝑘) ,

(75)

where

̃
𝜉
𝑇

(𝑘)

= [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑥
𝑇

(𝑘 − 𝜗) 𝑥
𝑇

(𝑘 − ℎ) 𝑢
𝑇

(𝑘)] .

(76)

For any appropriately dimensioned matrices 𝑃̃
𝑖
> 0 and non-

singular matrices 𝑈̃
𝑖
, we have

(𝑃̃
𝑖
− 𝑈̃
𝑖
)

𝑇

𝑃̃
−1

𝑖
(𝑃̃
𝑖
− 𝑈̃
𝑖
) ≥ 0. (77)

Thus

−𝑈̃
𝑇

𝑖
𝑃̃
−1

𝑖
𝑈̃
𝑖
≤ 𝑃̃
𝑖
− 2𝑈̃
𝑖
. (78)

If (68) holds, we have

[

Π
𝑖1

Π
𝑖2

Θ
𝑖3

] < 0, (79)

where

Θ
𝑖3

= diag {−𝑈̃
𝑇

𝑖
𝑃̃
−1

𝑖
𝑈̃
𝑖

𝑈̃
𝑇

𝑖
𝑊̃
−1

𝑖
𝑈̃
𝑖

−𝐼} . (80)

Let

𝑈̃
𝑖
= [

𝑋
𝑖

0

𝑌
𝑇

𝑖
𝐸 𝑌
𝑖

] , 𝐸 = [𝐼 0] ,

𝑌
𝑖
𝐴
𝑟𝑖

= 𝐿
𝑖
, 𝑌

𝑖
𝐴
𝑟𝑑𝑖

= 𝐻
𝑖
, 𝑌

𝑖
𝐵
𝑟𝑖

= 𝐹
𝑖
.

(81)

Multiplying (79) both from left and right by
diag {0 0 0 0 0 𝑈̃

−𝑇

𝑖
𝑈̃
−𝑇

𝑖
−𝐼}, by Schur Complement,

further, considering (75), one can infer

𝑉
𝑖
(𝑘 + 1) − 𝛼𝑉

𝑖
(𝑘) + 𝑒

𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) ≤ 0.

(82)

Similarly, for the case of 𝑑(𝑘) ∈ [𝜗, ℎ], the fact that (69) holds
means that (82) is true. Set

Γ (𝑘) = 𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) , (83)

we have
𝑉
𝑖
(𝑘 + 1) ≤ 𝛼𝑉

𝑖
(𝑘) − Γ (𝑘) . (84)

Let 𝑁
𝜎(𝑘0 ,𝑘)

be the number of switching times in (𝑘
0
, 𝑘). From

(84) and (70), we can obtain

𝑉
𝑖
(𝑘 + 𝑘

0
) ≤ 𝛼
𝑘

𝜇
𝑁𝜎(𝑘0,𝑘)𝑉

𝑖
(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘0

𝛼
𝑘−𝑠−1

𝜇
𝑁𝜎(𝑠,𝑘)

Γ (𝑠)

≤ 𝛼
𝑘+𝑁𝜎(𝑘0,𝑘)

(ln 𝜇/ ln𝛼)
𝑉
𝑗
(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘0

𝛼
𝑘−𝑠−1+𝑁𝜎(𝑠,𝑘)(ln 𝜇/ ln𝛼)

𝜇
𝑁𝜎(𝑠,𝑘)

Γ (𝑠) .

(85)

Assume the zero disturbances input 𝑢(𝑘) = 0 to the state
equation of system (66). By Definition 2, for any 𝑘

0
< 𝑘, it

follows that

𝑉
𝑖
(𝑘) ≤ 𝛼

𝑘+𝑁𝜎(ln 𝜇/ ln𝛼)
𝑉
𝑗
(𝑘
0
) ≤ 𝛼
𝑘(1+(ln 𝜇/𝜏𝑎 ln𝛼))

𝑉
𝑗
(𝑘
0
) .

(86)

From 𝜏
𝑎

> − ln 𝜇/ ln𝛼, one obtains lim
𝑘→∞

𝑉
𝑖
(𝑘) = 0. There

exist 𝑐
𝑛

> 0, 𝑛 = 1, 2, such that

𝑐
1
‖𝑥 (𝑘)‖

2

≤ 𝑉
𝑖
(𝑘) , 𝑉

𝑖
(𝑘
0
) ≤ 𝑐
2

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

𝑠
. (87)

Here
‖𝑥 (𝑘)‖

𝑠
= max
𝜃=−h,...,0

‖𝑥 (𝑘 + 𝜃)‖ , 𝑐
1

= 𝜆min (𝑃
𝑖
) ,

𝑐
2

= 𝜆max (𝑃
𝑖
) +

3

∑

𝑘=1

(𝜆max (𝑄
𝑖𝑘

) + 𝜆max (𝑅
𝑖𝑘

)) .

(88)

Therefore

‖𝑥 (𝑘)‖
2

≤

𝑐
2

𝑐
1

𝛼
𝑘(1+(ln 𝜇/𝜏𝑎 ln𝛼))󵄩󵄩

󵄩
󵄩
𝑥 (𝑘
0
)
󵄩
󵄩
󵄩
󵄩

2

𝑠
. (89)
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If the average dwell time 𝜏
𝑎
satisfies 𝜏

𝑎
> − ln 𝜇/ ln𝛼, then the

switched system (66) is exponentially stable with 𝜆 = 𝛼
1/2

stability degree. For any nonzero 𝑢(𝑘) ∈ 𝑙
2
[0, ∞), under zero

initial condition, combining (68), (69), (70), (85), and (89),
one can easily obtain

𝐽 =

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)] ≤ 0. (90)

Therefore ‖𝑒(𝑘)‖
2

≤ 𝛾‖𝑢(𝑘)‖
2
. This completes the proof.

Remark 20. Recently, authors in [30, 31] have studied the
problem of model reduction for discrete-time switched sys-
tems. In those papers, time delays are not taken into account.
However, in most of the cases in engineering problems, there
always exist unknown time-varying delays; moreover, the
case of stable and unstable subsystems co exists. Motivated
by this, in this paper, we discussed the problem of 𝐻

∞

model reduction for switched linear discrete-time systems
with time-varying delays via delay decomposition approach
[10–12]. Accordingly, numerical results are given for time-
varying delay cases.

If there exist some unstable subsystems in the switched
system (1), we have the following conclusion.

Theorem 21. Given constants 0 < 𝛼 < 1, 𝛽 > 1, 𝛾 > 0, 𝜇 ≥ 1,
ℎ > 0, and 𝜗 (0 < 𝜗 < ℎ), if there exist some symmetric positive
definite matrices 𝑃̃

𝑖
, 𝑄
𝑖𝑚

, 𝑅̃
𝑖𝑚

(𝑚 = 1, 2, 3) and matrices 𝑋
𝑖
, 𝑌
𝑖
,

𝐿
𝑖
, 𝐻
𝑖
, 𝐹
𝑖

(𝑖 ∈ 𝑁) such that (68), (69), (70), and the following
LMIs hold:

[
Π̃
𝑖1

Π
𝑖2

Π
𝑖3

] < 0,

[

Π̂
𝑖1

Π
𝑖2

Π
𝑖3

] < 0.

(91)

And 𝑇
𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽 − 𝜅)/(− ln𝛼 + 𝜅), 𝜅 ∈ (ln𝛼, 0);
then system (66) with the average dwell time 𝜏

𝑎
satisfies 𝜏

𝑎
>

− ln 𝜇/ ln𝛼 which is exponentially stable with an 𝐻
∞

norm
bound 𝛾. Furthermore, if a feasible solution to the above LMIs
(68), (69), (70), and (91) exists, then the system matrices of an
admissible 𝐻

∞
reduced-order model in the form of (65) are

given by (72).
Here,

Π̃
𝑖1

=

[

[

[

[

[

[

𝜑
𝑖

11
𝜑
𝑖

12
0 0 0

𝜑
𝑖

22
𝜑
𝑖

23
0 0

∗ 𝜑
𝑖

33
𝜑
𝑖

34
0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

,

Π̂
𝑖1

=

[

[

[

[

[

[

𝜑
𝑖

11
0 𝜑
𝑖

13
0 0

𝜑
𝑖

22
𝜑
𝑖

23
𝜑
𝑖

24
0

∗ 𝜑
𝑖

33
0 0

∗ ∗ 𝜑
𝑖

44
0

∗ ∗ ∗ 𝜑
𝑖

55

]

]

]

]

]

]

,

𝜑
𝑖

11
= 𝑄
𝑖1

+ 𝑄
𝑖3

− 𝛽𝑃̃ −

1

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

12
=

1

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) , 𝜑
𝑖

22
= −𝑄
𝑖3

−

1

𝜗

(2𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

23
=

1

𝜗

𝑅̃
𝑖1

, 𝜑
𝑖

33
= 𝛽
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛽
𝜗

ℎ − 𝜗

𝑅̃
𝑖2

−

1

𝜗

𝑅̃
𝑖1

,

𝜑
𝑖

34
=

𝛽
𝜗

ℎ − 𝜗

𝑅̃
𝑖2

, 𝜑
𝑖

44
= −𝛽
ℎ

𝑄
𝑖2

−

𝛽
𝜗

ℎ − 𝜗

𝑅̃
𝑖2

,

𝜑
𝑖

55
= −𝛾
2

𝐼, 𝜑
𝑖

13
=

𝛽

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

22
= −𝛽
𝜗

𝑄
𝑖3

−

𝛽
𝜗

ℎ − 𝜗

(2𝑅̃
𝑖2

+ 𝑅̃
𝑖3

) ,

𝜑
𝑖

23
=

𝛽
𝜗

ℎ − 𝜗

(𝑅̃
𝑖2

+ 𝑅̃
𝑖3

) , 𝜑
𝑖

24
=

𝛽
𝜗

ℎ − 𝜗

(𝑅̃
𝑖2

) ,

𝜑
𝑖

33
= 𝛽
𝜗

(𝑄
𝑖2

− 𝑄
𝑖1

) −

𝛽

𝜗

(𝑅̃
𝑖1

+ 𝑅̃
𝑖3

) −

𝛽
𝜗

ℎ − 𝜗

(𝑅̃
𝑖2

+ 𝑅̃
𝑖3

) .

(92)

Remark 22. The proof of Theorem 21 is carried out by using
the techniques employed in the previous section and is thus
omitted here.

5. Examples

In this section, we consider somenumerical examples to illus-
trate the benefits of our results.

Example 1 (see [20]). Consider the discrete-time switched
system (1) with 𝑢(𝑘) = 0 and the following parameters:

𝐴
1

= [

0 0.3

−0.2 0.1
] , 𝐴

𝑑1
= [

0 0.1

0 0.2
] ,

𝐴
2

= [

0 0.3

−0.2 −0.1
] , 𝐴

𝑑2
= [

0 0.1

0 0
] .

(93)

For this system, we choose 𝜇 = 1.1 and 𝜆 = 0.931. Applying
Theorem 10, by solving the LMIs (9) and (10) and (29), we can
obtain the allowable delay upper bound ℎ = 20. It is reported,
with decay rate 𝜆 = 0.931, that the upper bound ℎ can be
obtained as 14 in [19] and 16 in [20]. Therefore, the result
in this brief can indeed provide larger delay bounds than
the results in [19, 20]. This supports the effectiveness of the
proposed idea in Theorem 10 in reducing the conservatism
of stability criteria.

Example 2. Consider the discrete-time switched system (1)
with 𝑢(𝑘) = 0 and parameters as follows:

𝐴
1

= [

0 0.3

−0.2 0.1
] , 𝐴

𝑑1
= [

0 0.1

0 0.2
] ,

𝐴
2

= [

0 0.3

−0.2 −0.1
] , 𝐴

𝑑2
= [

1.3 0.1

0 0.9
] .

(94)

It is easy to check that the 𝐴
2

+ 𝐴
𝑑2

is unstable. In this
case, we need to find a class of switching signals to guarantee
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Figure 1: The state response.
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Figure 2: Switching law.

the overall switched system to be exponentially stable. Set
𝑑(𝑘) = [|3 sin(𝑘𝜋/6)|] and 𝛼 = 0.5329, according to
Theorem 15 and by solving the LMIs (9), (10), (53), and (29),
set 𝜗 = 1; we have 𝜇 = 2.4 and𝛽 = 2.01. Choosing 𝛾

󸀠

= −0.18,
we have𝑇

𝛼

𝑘0 ,𝑛+𝑘0

/𝑇
𝛽

𝑘0 ,𝑛+𝑘0

≥ (ln𝛽−𝛾
󸀠

)/(− ln𝛼+𝛾
󸀠

) = 1.953 and
𝜏
𝑎

> ln 𝜇/ − 𝛾
󸀠

= 4.9. The simulation result of the switched
system is shown in Figure 1, where the initial condition𝜙(𝜃) =

[1.1 −0.8]

𝑇 and the switching law is shown in Figure 2. It can
be seen from Figure 1 that the designed switching signals are
effective although one subsystem is unstable. However, the
results in [20] cannot find any feasible solution to guarantee
the exponential stability of system (1).

Example 3 (see [31]). Consider the system (1) with parame-
ters as follows:

𝐴
1

=

[

[

[

[

0.13 0.22 −0.13 0.08

0.05 −0.03 0.19 0.06

−0.07 −0.05 −0.04 −0.12

−0.17 0.21 0.03 0.28

]

]

]

]

,

𝐴
2

=

[

[

[

[

0.11 0.22 −0.13 0.08

0.05 −0.03 0.15 0.06

−0.07 −0.03 −0.04 −0.12

−0.17 0.21 0.03 0.2

]

]

]

]

,

𝐴
𝑑1

= 𝐴
𝑑2

=

[

[

[

[

0.02 0.01 0 0

0 0.02 0 0

0 0 0.02 0.01

0 0 0 0.02

]

]

]

]

,

𝐵
1

= [0.19 −0.18 0.16 −0.08]

𝑇

,

𝐵
2

= [0.23 −0.13 0.16 −0.04]

𝑇

,

𝐶
1

= 𝐶
2

= [1.2 0.5 0.03 0.28] ,

𝐶
𝑑1

= 𝐶
𝑑2

= [0.02 0.05 0.01 0.09] ,

𝐷
1

= 𝐷
2

= 0.1.

(95)

When the decay rate 𝛼 is fixed, the maximum value of the
time-delay ℎ and the minimum value of the performance
index 𝛾 can computed by solving the LMIs (68)–(70) pro-
cedure in Theorem 19, which is listed in Table 1 via different
methods. Here, we choose 𝜇 = 1.001. Assume that decay rate
𝛼 = 0.9; we can compute themaximumvalue of allowed delay
ℎ = 42 and the minimum value of the performance index
𝛾 = 1.67. From ADT 𝜏

𝑎
> − ln 𝜇/ ln𝛼, we have 𝜏

𝑎
> 0.0095.

When ℎ = 2 and𝛼 = 0.9, we can compute theminimumvalue
of performance index 𝛾 = 0.53. On the other hand, assume
that maximum allowed delay ℎ = 2 and performance index
𝛾 = 2; we can compute the minimum value of the decay rate
𝛼 = 0.59 and 𝜏

𝑎
> 0.0019.

Let 𝛼 = 0.9; here, we are interested in designing a q-
order (𝑞 < 4) system (65) and choose the ADT 𝜏

𝑎
= 2

switching signals such that the model error system (66) is
exponentially stable with 𝐻

∞
norm bound 𝛾 = 2. By solving

the corresponding LMIs (68)–(70) procedure inTheorem 19.
For comparison with [31], we set the delay 𝑑(𝑘) = 2, and the
following reduced-order models can be given.

Third Order Model

𝐴
𝑟1

=
[

[

0.2753 0.0282 −0.0033

0.0097 0.2507 −0.0033

−0.0045 −0.0124 0.2569

]

]

,

𝐴
𝑟2

=
[

[

0.2799 0.0259 −0.0058

0.0074 0.2581 −0.0025

−0.0051 −0.01 0.2611

]

]

,

𝐴
𝑟𝑑1

=
[

[

−0.005 0.0069 −0.0023

0.0037 −0.0046 0.003

−0.0011 0.0002 −0.0006

]

]

,

𝐴
𝑟𝑑2

=
[

[

−0.001 0.0066 −0.0025

0.0039 −0.0044 0.0033

−0.0018 0.001 −0.0024

]

]

,
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Table 1: Comparison of parameters via different methods.

𝛼 𝛾 ℎ 𝜏
𝑎

[31] 0.9 2 2 >1.7305
Theorem 19 0.9 1.67 42 >0.0095
Theorem 19 0.9 0.53 2 >0.0095
Theorem 19 0.59 2 2 >0.0019
Theorem 19 0.6 1.8 2 >0.002

𝐵
𝑟1

= [−0.171 0.1795 −0.111]

𝑇

,

𝐵
𝑟2

= [−0.191 0.148 −0.1285]

𝑇

,

𝐶
𝑟1

= [−0.3016 −0.1328 −0.0149] ,

𝐶
𝑟2

= [−0.2987 −0.1265 −0.0173] ,

𝐷
𝑟1

= −0.1754,

𝐶
𝑟𝑑1

= [−0.0314 −0.0047 −0.0182] ,

𝐶
𝑟𝑑2

= [−0.0361 −0.0011 −0.0199] ,

𝐷
𝑟2

= −0.2396.

(96)

Second Order Model

𝐴
𝑟1

= [

0.2419 0.0355

0.015 0.2141
] , 𝐴

𝑟𝑑1
= [

−0.0028 0.0088

0.0052 −0.007
] ,

𝐵
𝑟1

= [

−0.1528

0.1617
] , 𝐶

𝑟1
= [

−0.3109

−0.1453
]

𝑇

,

𝐴
𝑟2

= [

0.2382 0.0324

0.0147 0.2183
] , 𝐴

𝑟𝑑2
= [

−0.0023 0.0076

0.0046 −0.006
] ,

𝐵
𝑟2

= [

−0.1667

0.1203
] , 𝐶

𝑟2
= [

−0.3076

−0.1362
]

𝑇

,

𝐶
𝑟𝑑1

= [−0.0488 0.0034] , 𝐷
𝑟1

= −0.2422,

𝐶
𝑟𝑑2

= [−0.05 0.0057] , 𝐷
𝑟2

= −0.3605.

(97)

First Order Model

𝐴
𝑟1

= 0.2528, 𝐴
𝑟𝑑1

= −0.0057, 𝐵
𝑟1

= −0.1498,

𝐶
𝑟1

= −0.2769, 𝐶
𝑟𝑑1

= 0.0301, 𝐷
𝑟1

= −0.1792,

𝐴
𝑟2

= 0.2606, 𝐴
𝑟𝑑2

= −0.005, 𝐵
𝑟2

= −0.1787,

𝐶
𝑟2

= −0.2851, 𝐶
𝑟𝑑2

= −0.04, 𝐷
𝑟2

= −0.2624.

(98)

To illustrate the model reduction performances of the
obtained reduced-order models, let the initial condition be
zero; the exogenous input is given as 𝑢(𝑘) = 1.8 exp(−0.4𝑘).
The output errors between the original system and the
corresponding three reduced models obtained in this paper

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time, k (s)

Figure 3: Output errors between the original system and the 3rd
model.
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Figure 4: Output errors between the original system and the 2nd
model.

(shown by the blue line) and the literature [31] (shown by the
red line) are displayed in Figures 3, 4, and 5. The switching
signal is shown in Figure 6. The simulation result of the
switched system is shown in Figures 3–5. It can be seen from
Figures 3–5 that the output errors between the original system
and the reduced-order models obtained in this paper are
smaller than that in [31].

6. Conclusions

The problem of exponential stability with 𝐻
∞

performance
and 𝐻

∞
model reduction for a class of switched linear

discrete-time systems with time-varying delay have been
investigated in this paper. The switching law is given by
ADT technique, such that even if one or more subsystem is
unstable the overall switched system can still be exponentially
stable. Sufficient conditions for the existence of the desired
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Figure 5: Output errors between the original system and the 1st
model.
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Figure 6: Switching law.

reduced-order model are derived and formulated in terms
of strict LMIs. By solving the LMIs, the system of reduced-
order model can be obtained, which also provides an 𝐻

∞

gain for the error system between the original system and the
reduced-order model. Finally, numerical examples are pro-
vided to illustrate the effectiveness and less conservativeness
of the proposedmethod. A potential extension of thismethod
to nonlinear case deserves further research.
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