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Magnetic flux leakage (MFL) as an efficient method for pipeline flaw detection plays important role in pipeline safety. This
nondestructive test technique assesses the health of the buried pipeline. The signal is gathered by an array of hall-effect sensors
disposed at the magnetic neutral plane of a pair of permanent magnet in the pipeline inspection gauge (PIG) clinging to the inner
surface of the pipe wall.Themagnetic fluxmeasured by the sensors reflects the health condition of the pipe.The signal is influenced
by not only the condition of the pipe, but also by the lift-off value of the sensors and various properties of electronic component.
The consistency of the position of the sensors is almost never satisfied and each sensor measures differently. In this paper, a new
scheme of channel equalization is proposed for MFL signal in order to correct sensor misalignments, which eventually improves
accuracy of defect characterization. The algorithm proposed in this paper is adaptive to the effects of error on the disposition of
the sensor due to manufacturing imperfections and movements of the sensors. The algorithm is tested by data acquired from an
experimental pipeline. The results show the effectiveness of the proposed algorithm.

1. Introduction

MFL is a widely used nondestructive testing (NDT) methods
for pipeline inspection. The inspection machine is usually
called PIG. A PIG using MFL consists of several pairs of
strong permanent magnets which magnetize the pipe along
the axial direction of the pipe. Each pair of the strong
permanent along with the yoke iron and the hall sensors and
also brush is called a carrier.The carrier with the pipe consists
of a magnetic circuit. Details of the PIG can be found at some
famous inspection companies website, ROSEN, PII, and so
forth. A lot of research work has been done to analyze the
signal of MFL. Carvalho et al. [1], Christen and Bergamini
[2], and Xiang and Tso [3] purposed neural network based
methods to detect flaws. Mukhopadhyay and Srivastava [4]
proposed wavelet based technique to denoise the signal of
theMFL inspection.Mukherjee et al. proposed wavelet based
inverse mapping system [5]. Kathirmani et al. [6] using PCA
[7] and wavelet [8–11] technique to compress data of theMFL
signal.

But there is still one problem that needs to be studied.
The sensing arrangement, that is, each sensor, its mechan-
ical support, and the underlying electronics for acquiring
the magnetic leakage flux data, commonly referred to as
a channel, suffers mismatch among each other. A lot of
factors can cause channel-to-channel mismatch, including
the lift-off value between the pipeline, and position of hall
and coil sensors and the various properties of electronic
component. Other factors influence the factors mentioned
above can also impact the output of the signal, such as the
difference of the sensors location caused by assembly, the
shake when the detector running in the pipeline, and so
forth. All these factors make the output of the signal different
even under same testing condition and testing object. This
will lower the capacity of the detector especially during the
post processing of the signal. Such kind of mismatch may
also exist in other multisensor data processing. Commonly, it
can be equalized by using adaptive techniques. An adaptive
channel equalization algorithm to deal with the problem
of channel-to-channel mismatch of MFL signals is given in
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[12]. In [12], they assume that at least one sensor out of the
sensor array is ideal and can be used as a reference. For
implementation, this assumption imposes serious limitations
on the performance of post processing algorithm as tolerance
andmisalignment of an individual sensor is not deterministic
and needs to be accounted for in a stochastic framework
for choice of a clear cut candidate qualifying as a reference
channel. To solve the problem, Mukherjee et al. [13] gives an
adaptive method which does not need to choose a reference
channel. In [13], the reference channel required for channel
equalization is replaced with the baseline estimation. The
baseline estimation reflects the background leakage flux.
But the baseline estimation is not available under a defect
or feature. It is estimated by first order forward or back
prediction of the neighboring MFL data.

In this paper, a new adaptive channel equalization algo-
rithm tominimize channel-to-channelmismatch is proposed
for MFL signals. In contrast to [12] our algorithm does not
need to choose any reference channel. Because the ideal
reference channel is not easy to get and the character of each
channel may have little difference, equalizing the channels
adaptively with no reference channel is reasonable.The signal
of all channel is learned by a neural network. The training
data set is selected as a clean pipe (almost no flaw), which
reflects the character of the pipe. And distinguished from
[13], we mainly focus on the signal around and including the
flaw. In [13], the signal around the flaw is only estimated by
first order forward or backward prediction of the neighboring
MFL data, which may cause distortion of the flaw signal. As
flaw evaluation needs the exact shape of the signal around
and including the flaw, our algorithm has more advantage.
A PCA based flaw detection algorithm is given in this paper
to find the location of the flaw signal. A median corrected
algorithm is also given from the engineering point of view.
The simulation results show that the algorithm proposed in
this paper is efficient.

The paper is organized as follows. In Section 2, an ELM
based method is given to dynamically compensate each
channel, and also with a PCA based statistic method to
separate normal and flaw signal and extract signal characters.
The details of our algorithm proposed in this paper are stated
too. A median corrected algorithm is given, and simulation
results are shown in Section 3. Section 4 concludes the paper
indicating major achievements and future scope of this work.

2. PCA and ELM Based Channel Equalization

2.1. Channel Equalization Using ELM Neural Networks. Neu-
ral networks are very efficient and popular tool to do
regression and classification. The advantages of the neural
networks are mainly two points: one is that the model
of the data does not need to be known, the other is its
high capability to deal with nonlinear problems. There exist
many types of neural networks; however, feedforward neural
networks may be one of the most popular neural networks.
The feedforward neural network usually consists of one input
layer receiving the stimulin from external environments, one
or multihidden layers, and one output layer sending the
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Figure 1: Neural network model for channel equalization.

network output to external environments. Widely used neu-
ral networks include backpropagation (BP) neural network
[14], radial basis function (RBF) neural network [15], and
support vector machine (SVM) [16]. Three main approaches
are usually used to train feedforward networks including
gradient-descent based method (e.g., BP neural networks),
least-square based method (e.g., RBF network learning) and
standard optimization method based method (e.g., SVM).
Different from traditional learning algorithms, ELM [17]
tends to reach not only the smallest training error but also
the smallest norm of output weights. According to the neural
network theory, for feedforward neural networks, smaller
training error results in smaller norm of weights and better
generalization performance. Since the hidden layer needs not
be tuned in ELM and the hidden layer parameters can be
fixed, the output weights can then be resolved using the least-
square method. The model of channel equalization using
ELM is given as Figure 1.

The output function of single-hidden layer feedforward
networks (SLFNs) with 𝐿 hidden nodes can be represented
by

𝑓 (𝑥) = Σ
𝑙

𝑖=1
𝛽𝑖𝑔𝑖 (𝑥) , (1)

where 𝑔𝑖(𝑥) denotes the output function of the 𝑖th hidden
node.

For 𝑁 arbitrary distinct samples (𝑥𝑖, 𝑡𝑖), SLFNs with 𝐿

hidden nodes are mathematically modeled as

Σ
𝑙

𝑖=1
𝛽𝑖𝑔𝑖 (𝑥𝑗) = 𝑦𝑗, 𝑗 = 1, . . . , 𝑁. (2)

That SLFNs can approximate these𝑁 samples with zero error
means that

Σ
𝑙

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑦𝑗 − 𝑡𝑗

󵄩󵄩󵄩󵄩󵄩
= 0. (3)

The parameters in 𝑔𝑖(𝑥) can be trained according to (2).
This can be written as

𝐺𝛽 = 𝑇, (4)
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where
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(5)

It is proved in [17] that given any small positive value 𝑒 >

0, activation function 𝑔 : 𝑅 → 𝑅 which is infinitely
differentiable in any interval and𝑁 arbitrary distinct samples
(𝑥𝑖, 𝑡𝑖), there exists 𝑙 ≤ 𝑁 such that for any {𝑤𝑖, 𝑏𝑖}

𝑙

𝑖=1

(parameters need to be trained in 𝑔𝑖(𝑥)) randomly generated
from any intervals of 𝑅𝑑 × 𝑅 according to any continuous
probability distribution, with probability one, ‖𝐻𝑁×𝑙𝛽𝑙×𝑚 −
𝑇𝑁×𝑚‖ < 𝑒. And from the interpolation point of view the
maximum number of hidden nodes required is not larger
than the number of training samples. In fact, if 𝐿 = 𝑁, the
training errors can be zero.

Though the ELM has good regression ability, there is still
one obverse problem that the results of the ELM rely on the
training data set. But the flaw difference is from not only
length and width, but also depth, which may cause the MFL
signal variance. It is impossible to include all flaw signal in the
training data set. A better way is to use a small training data
set to train the ELM which can generate good compensation
results. One solution is given in this paper in Section 2.2.

2.2. PCA Based Flaw Exclusion. To train the ELM and solve
the problem mentioned in Section 2.1, one solution is given.

Because the property of pipe is learned using ELM, we
can use the channel with no flaw to predict the channel with
flaw when flaw is detected. By using the predicted result to
substitute the channels which detect flaw, the compensation
result can be obtained using ELM. And then, using the ELM
result, the compensation is given to each channel.This avoids
training ELM with every type of flaw. To exclude the flaw, a
PCAbased algorithm is stated as follows, which detectswhich
channels and which sampling points detest flaw signal.

PCA [18] as an efficient statistical learning algorithm is
useful to deal with multivariable problems. The PIG has 𝑛
sensors surrounding the vessel. Consider one sampling of all
sensors as 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑇. The linear transform of the
sensors result can be written as

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋅ ⋅ ⋅ + 𝑎1𝑛𝑥𝑛 = 𝑎
𝑇

1
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𝑇

2
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...
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𝑇

𝑛
𝑥

(6)

𝑦1 is called the 𝑖th principle component. The computation
steps is as follows.

First, 𝑚 samples from each sensor are collected and
written as a matrix 𝑋 ∈ 𝑅

𝑚×𝑛. The matrix is scaled to zero
mean, and in addition to unit variance.

The second step is to compute the singular values. The
covariance matrix is computed as

Σ ≅
1

𝑚 − 1
𝑋
𝑇
𝑋. (7)

An SVD (singular value decomposition) is used to com-
pute the principal components and the associated singular
vectors as

1
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where
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𝑙 is the number satisfying
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𝜎
2

𝑖
≥ 𝛼 is called the significance level. And (10) is

called the cumulated significance level, which shows how
much the first 𝑙 principle components can reflect data𝑋. The
Hotelling 𝑇2 statistic is used to detect fault

𝑇
2

𝑖
= Σ
𝑙

𝑗=1

𝑦
2

𝑖𝑗

𝜆𝑗

. (11)

With a set threshold, flaw signal can be separated from
normal signal. Suppose there are only two sensors. Take
500 sampling. The result is shown in Figure 2. The linear
transformof𝑦 is also shown in this figure.Using theHotelling
𝑇
2 statistic, which is shown as formula (11), the flaw data can

be detected.

2.3. Details of PCA and ELM Based Algorithm for Channel
Equalization. Thedata gathered using a PIG can be described
as 𝑋 ∈ 𝑅

𝑚×𝑛, where 𝑚 is the sampling number and 𝑛 is
the number of sensors. The algorithm proposed in this paper
treats data with two points of view, one is from the sampling
view and the other is from the sensor view.
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Figure 2: PCA analysis of 500 sampling using 2 sensors.

From the sampling view, the PCA algorithm is used to
detect flaw, which determines at which sampling points the
flaw locates. For example, take 𝑚 sampling, using PCA, flaw
locates at [𝑘, 𝑘 + Δ], where 1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑘 + Δ ≤ 𝑚

can be detected with a preset 𝑇2 statistic. The normal part
is tested using a trained ELM neutral network to remove
channelmismatches, which is called ELM 1. And the flaw part
is treated from the sensor point of view. The normal part is
added to the training set dynamically in order to learn more
character of this part of pipe.

From the sensor view, the flaw data is also treated using
PCA to determine which sensors detect flaw. For example,
only sensors 𝑠 to 𝑠 + Δ𝑠 detect flaw, where 1 ≤ 𝑠 ≤ 𝑠 + Δ𝑠 ≤ 𝑛.
The normal channel is used as input data, using ELM trained
with channels of normal from training data set, the flaw part
of signal can be forecasted as normal part.This step is to revert
the flaw part to its normal condition, in order to determine
how much each channel needs to be compensated with ELM
1. And using ELM 1, the channelmismatch of the flawpart can
be removed. It is clear that each flaw needs an ELM neural
network to compute the compensation, which is called the
ELM p in Figure 3.

The flow chart of the algorithm is shown in Figure 3 with
steps and details stated as follows.

Step 1. An ELM is trained using training data set to learn
the character of the normal condition of the pipe for channel
equalization. The target is each channels compensation. The
ELM trained is marked as ELM 1.

Step 2. Using PCA with 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇 represents

sensors to detect flaw which is stated in Section 2.2 with a
threshold. The 𝑇2 statistic up over the threshold denotes the
flaw signal.The signal will be separated into normal parts and
flaw parts in Step 3.

Step 3. The signal of flaw detected from Step 2 is tested using
PCAwith𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚)

𝑇 represents sampling points. A
threshold is also set automatically.The𝑇2 statistic up over the
threshold denotes the channels which detects flaw. It makes

the flaw signal detected from Step 2 separated into two parts,
the signal of normal channels and the signal channel of flaw.

Step 4. Signal of normal parts acquired from Step 2 is tested
using ELM 1 trained in Step 1.

Step 5. For the flaw signal detected in Steps 2 and 3, another
ELM is trained with training data set. The normal channels
are used as inputs of the ELM, and the flaw channels are used
as output of the ELM. For example, the flaw is detected at
sampling point from 𝑡 to 𝑡+Δ𝑡, and channels from 𝑠 to 𝑠+Δ𝑠.
The training data set from channel 1 to 𝑠 − 1 and 𝑠 + Δ𝑠 + 1 to
𝑛 is used to train this neural network. The target of the ELM
is set as the training data set with channels from 𝑠 to 𝑠 + Δ𝑠.
Each flaw has an ELM. The ELM is marked as ELMp with 𝑝
representing the number of flaw.

Step 6. The flaw signal from 𝑡 to 𝑡 + Δ𝑡, and channels from 𝑠

to 𝑠+Δ𝑠 is replaced temporarily by the test result with ELMp.

Step 7. Thesignal segment in Step 6 is tested using ELM 1.The
output is compensated to the original signal from 𝑡 to 𝑡 + Δ𝑡
and channels from 𝑠 to 𝑠 + Δ𝑠.

Step 8. Update the training data set with normal data
acquired in Step 2.

3. Experiment Results

The PIG used to collect data in this paper consists of 15
carriers with 5 axial sensors on each carrier. An 8-inch
seamless steel pipewith length of about 14meters is used to do
this experiment. 9 exterior flaws were made on this pipe. The
pipeline in our experiment is connected with two flanges and
one weld. The sampling is controlled by an odometer wheel
with the sampling frequency of 1 sampling per 2mm. Several
experiments were done with different load angel of the PIG.

In order to train our algorithm, some signal of MFL
of normal condition pipeline with no flaw is needed. The
training data is obtained in two way. (i) The first way is
to obtain from the original training data. One test data is
selected as original training data with flaw signal excluded
manually. (ii) The second way of getting the training data is
generated from each test using algorithms stated in Sections
2.1 and 2.2.The algorithm used in this paper treats data batch
by batch. One batch of data treated using the algorithm can
separate this batch of data into normal data and flaw data.
The normal part of data is added to the training data set in
order to reinforce the training result. By adding new training
data, the training set is updated. New character of the normal
condition is studied.Thismeans as the process goes, the result
of the algorithm proposed in this paper gets better. To avoid
the training data set getting too large, the length of the data set
is set to a certain length. When length of the training data set
grows up to its limits, the earlier training data will be erased
and new training data will be added to replace the vacancy.

And in order to show the efficiency of our algorithm, the
length of the original training data is reduced to only less
than 1/5 of one test, though theoretically a bigger training
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Figure 3: Flow chart of algorithm proposed.

data set will get better result. Also restricted to the experiment
environment, it is not possible to build a pipelinewith enough
length of hundreds of meters or even miles. The results
with less original training data also show that the algorithm
proposed in this paper generates satisfying results.

And algorithm of median corrector is also adopted to
compare with our results. Amongmany factors that influence
channel-to-channel mismatch, the lift-off value and the
difference of the baseline play the main role. The influence
caused by difference of the lift-off value among sensors can be
reduced by improving the assembly skills. And the influence
of the baseline (zero output) of sensors can be reduced by
calculating the average of sensors as baseline. The channel
equalization can be computed as three steps. Assume 𝑋 as
data gathered by sensing a clean pipe (almost no flaw). First,
calculate each channels average𝑥𝑖. Second, calculate𝑥mean the
average of 𝑥𝑖. Third, compensate 𝑥mean − 𝑥𝑖 to each channel.
But as the MFL data is processed automatically, this method
needs to be operated manually. And it is not that easy to find
such steady state signal. To overcome these, we use median
corrector to do rough channel equalization in engineering.
Instead of calculating the average of each channel in the first
step, 𝑥𝑖 is each channel’s median value. Other steps are same
as the average method.

All data of one test is treated using the algorithm pro-
posed in this paper. Figure 4 shows the PCA result of Step 2 in
Section 2.3. The threshold is automatically generated with 𝐹
distribution parameter of 95%. All the components and flaws
are described in Figure 4. Details of raw signal of 3 flaws are
shown to illustrate the following steps in Figure 5.The dashed
line shows the flaw sampling point intervals detected using
PCA as shown in Figure 5. By applying the sensor view of
PCA stated as Step 3 in Section 2.3, the flaw signal channels
are marked within the solid line in Figure 5. The sensor
view PCA result is shown in Figure 6, with 𝐹 distribution
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Figure 8: Median treated data of flaw 1.

parameter of 95%. The normal channels is used as input of
ELM p, and test result is shown from Figures 7–12.

To show the result, the standard deviation (SD) and peak
signal to noise ratio (PSNR) are adopted. The results are
shown in Tables 1 and 2. Lower standard deviation reflects
that the signal is cleaner with less channel mismatch. To
illustrate the result, two segments of flaw signal are plotted.
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Figure 9: PCA and ELM based algorithm treated data of flaw 1.

0
20

40
60

80

0
20

40
60

80

2.9

2.8

2.7

2.6
2.5

3

Channel index
Sampling number

Se
ns

or
 o

ut
pu

t (
V

)

Figure 10: Raw data of flaw 2.
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Figure 11: Median treated data of flaw 2.

The baseline estimation algorithm proposed in [13] is also
compared in Tables 1 and 2. From Table 1, it can be seen that
the flaw in show is typical small size flaw.The PSNR results in
Table 2 also indicate that our algorithm minimizes channel-
to-channel mismatches.

From Figures 7 and 10, it is clear that the signal has great
channel mismatches which makes it impossible to evaluate
the flaw size. Using median algorithm corrected data shown
as Figures 8 and 11, the flaw signal is prominent and the signal
of normal channel is smooth, but still some ripple exists.
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Table 1: SD of raw data and corrected data.

Index of flaw SD of raw data SD of median
corrected data

SD of baseline
estimation equalized

data

SD of adaptive channel
equalized data

flaw size (length ∗ width ∗
depth, unit mm)

1 0.0544 0.0129 0.0121 0.0093 40 × 20 × 1
2 0.0548 0.0138 0.0136 0.0108 𝜙6 perforation
3 0.0565 0.0175 0.0169 0.0158 𝜙8 perforation
4 0.0617 0.0324 0.0318 0.0288 20 × 40 × 4
5 0.0564 0.0182 0.0179 0.0160 40 × 20 × 4
6 0.0560 0.0143 0.0143 0.0142 20 × 20 × 2
7 0.0544 0.0115 0.0104 0.0089 40 × 20 × 2
8 0.0573 0.0174 0.0163 0.0141 20 × 40 × 2

Table 2: PSNR of raw data and corrected data.

Index of flaw PSNR of raw data PSNR of median
corrected data

PSNR of baseline
estimation equalized

data

PSNR of adaptive
channel equalized data

flaw size (length ∗ width ∗
depth, unit mm)

1 16.8393 25.6999 26.0056 26.7182 40 × 20 × 1
2 18.6216 30.4281 31.0981 32.5947 𝜙6 perforation
3 19.0502 29.0965 29.2674 30.0454 𝜙8 perforation
4 18.5951 24.0668 24.1328 24.6181 20 × 40 × 4
5 17.5086 25.5968 25.8254 26.5034 40 × 20 × 4
6 16.8988 21.7448 22.9136 24.0683 20 × 20 × 2
7 16.4687 26.5349 26.8903 28.1939 40 × 20 × 2
8 17.5993 26.5228 26.8162 27.8077 20 × 40 × 2
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Figure 12: PCA and ELM based algorithm treated data of flaw 2.

Figures 9 and 12 show the results of algorithm proposed in
this paper, the flaw signal is more prominent and the normal
part is smoother, which results easy to evaluate the flaw. The
SD shown in Table 1 also indicates that data treated by our
algorithm has less channel mismatches and noise.

4. Conclusion

In this paper, a new adaptive channel equalization is proposed
for processing of MFL signal prior to flaw characterization.

The scheme performs channel equalization by using single
layer neural networks, and the fast learning algorithmof ELM
is used to give excellent processing speed. Focusing on the
signal of flaw, a PCA based flaw detect algorithm is given to
locate the flaw signal. The algorithm proposed in this paper
minimizes the channel-to-channelmismatch and reduces the
distortion of the signal of the flaw. Both theory analysis and
simulation results show the efficiency of our algorithm. For
the flaw signal, the algorithm proposed in this paper needs
to locate the flaw first. For shallow and small flaw, how to
locate it andmake less false detection is still a problem in both
theory and engineering.
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