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The aim of this paper is to analyze load-carrying capacity of redundant free-floating space manipulators (FFSM) in trajectory
tracking task. Combined with the analysis of influential factors in load-carrying process, evaluation of maximum load-carrying
capacity (MLCC) is described as multiconstrained nonlinear programming problem. An efficient algorithm based on repeated
line search within discontinuous feasible region is presented to determine MLCC for a given trajectory of the end-effector and
corresponding joint path. Then, considering the influence of MLCC caused by different initial configurations for the starting
point of given trajectory, a kind of maximum payload initial configuration planning method is proposed by using PSO algorithm.
Simulations are performed for a particular trajectory tracking task of the 7-DOF space manipulator, of which MLCC is evaluated
quantitatively. By in-depth research of the simulation results, significant gap between the values of MLCC when using different
initial configurations is analyzed, and the discontinuity of allowable load-carrying capacity is illustrated. The proposed analytical
method can be taken as theoretical foundation of feasibility analysis, trajectory optimization, and optimal control of trajectory
tracking task in on-orbit load-carrying operations.

1. Introduction

Space manipulators are playing increasingly important roles
in space exploration. In particular for load-carrying opera-
tions of large structures during maintenance of satellites [1]
and construction of space station [2], using space manip-
ulators to replace astronauts can improve economy and
security of on-orbit operations. Due to the great mass and
inertia tensor of these objects, it could not only challenge
driving capability of joints but also result in instability of
the spacecraft base under free-floating condition. Therefore,
comprehensive, reasonable, and accurate analysis of load-
carrying capacity for FFSM is very necessary. As the basis
of various on-orbit operations [3], continuous trajectory
tracking task is considered in this paper.

Most of the previous works on load-carrying problems
are carried out for FFSM. Aghili and Namvar [4] and
Wang et al. [5], respectively, adopted impedance control and
adaptive sliding mode control method to improve the reli-
ability and stability during load-carrying process. In order to
deal with the trajectory tracking and vibration suppression

of a rigid-flexible coupling FFSM with a rigid payload, the
composite control approach which combines a nonsin-
gular terminal sliding mode control was proposed [6].
Jia et al. [7] and Liu et al. [8] presented trajectory planning
methodologies to achieve the goal of payload maximization,
in which optimal joint trajectories were obtained to improve
load-carrying capacity of FFSM in point-to-point motion.
However, these studies only focused on optimization of
dynamic performance for space manipulators and lacked
intuitive and systematic analysis of load-carrying capacity.

Load-carrying capacity always depends on the dynamic
motion or trajectory of the end-effector [9]. The min-
imum value of dynamic load-carrying capacity (DLCC)
shows the maximum allowable payload that the manipulator
can repeatedly lift, which is defined as maximum load-
carrying capacity (MLCC) [10]. In order to evaluate MLCC
of manipulators along the given trajectory of end-effector,
separate computation of the joint torques for compensating
the payload dynamics 𝜏𝑙 and the manipulator dynamics
𝜏𝑛𝑙 is adopted by Wang and Ravani [11]. Crane and Duffy
[12] substituted mass of the payload as unknown variables
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into the dynamic equations which are established using
Kane method and then calculated MLCC using least square
method. The studies mentioned above can only be applied
to fixed-base manipulator, whose motion is identical under
no-load and load condition, but is not fit for nonholonomic
manipulators. To solve this problem, Korayem and Ghariblu
[13] established augmented Jacobi matrix of ground wheeled
robot using nonholonomic constraint and redundancy addi-
tional constraints and then evaluated MLCC through sim-
ilar description method of [11] with taking into account
kinematic singularity problem. In contrast, the generalized
Jacobi matrix of FFSM contains the dynamic parameters, so
that dynamic singularity is needed to be considered [14].
Besides that, different from rolling contact between wheels
and ground, position and orientation of the spacecraft base
are both uncontrolled, which causes high nonlinearity of
dynamic equations. Consequently, MLCC of FFSM needs to
be achieved through numerical iteration. Using numerical
techniques, Korayem et al. [15, 16] also analyzed load-
carrying capacity as optimal control problem, in which a
two-point boundary value problem (TPBVP) was established
to determine the maximum payload and the corresponding
joint optimal path to track a given end-effector trajectory.
This method simplified the payload as a mass point but
ignored the influence to MLCC caused by inertia tensor of
the payload, which is also unfit for FFSM.

It is worth noting that the studies mentioned above
(see [11–13, 15, 16]) are all carried out for ground manipula-
tors, in which only joint driving capacity is considered as
the primary limitation of MLCC. Furthermore, motion of
the manipulator can result in translation and rotation of
the base under microgravity condition, which depend on
the mass and inertia tensor of the payload. Different from
tip over stability problem of ground mobile manipulators
caused by gravity [17], base attitude disturbance could have
a great influence on communication system and solar panels
of spacecraft, which must be considered in load-carrying
capacity analysis of FFSM. In addition to this, most previous
studies only evaluated MLCC for the given trajectory of end-
effector and corresponding joint path. In trajectory tracking
task of FFSM, pose of the end-effector is not only related
to the current joint angles but also associated with the
history of jointmovements, which causes two problemswhen
linear velocity and angular velocity of the end-effector are
determined. On the one hand, generalized Jacobi matrix of
FFSM is different when the payload changes, which may
result in singularity of the manipulator and instability of
the base due to the variation of joint path and base attitude
disturbance. FFSM will be unable to carry certain object and
move along the trajectory even if mass and inertia tensor
of the body are not greater than the “maximum payload.”
On the other hand, for redundant space manipulators, there
may be multiple initial configurations for the starting point
of a given trajectory tracking task, whose corresponding joint
path solved by velocity-level inverse kinematic equations can
make a massive difference of DLCC. Therefore, in order to
comprehensively analyze the load-carrying capacity of FFSM
in trajectory tracking task, the mentioned two cases must be
considered.

This paper is organized as follows. Section 2 derives the
kinematic and dynamic equations of FFSM with a payload;
Section 3 formulates evaluation of DLCC as a multicon-
strained nonlinear programming problem, and an efficient
algorithm is presented to determine maximum payload
within discontinuous feasible region. In Section 4, the maxi-
mum payload initial configuration analysis method based on
PSO is explained. Section 5 shows the simulation results and
analyzes load-carrying capacity of 7-DOF FFSM in typical
trajectory tracking task. Section 6 presents the conclusions of
the work.

2. Mathematical Model of
FFSM with a Payload

As shown in Figure 1, the system considered in this paper
consists of a base, a revolute-jointed manipulator which has
𝑛 degrees of freedom, and a payload which is attached to the
end-effector. It is assumed that the components of the system
are all rigid bodies.

Define the symbols as follows:

Σ𝐼: inertial coordinate system, which is the reference
coordinate system of all recursive calculations,

Σ𝑏: coordinate system of the base,

Σ𝑘: coordinate system of link 𝑘,

Σ𝐸: coordinate system of the end-effector,

𝐽𝑘: joint 𝑘 of themanipulator, which is used to connect
link 𝑘 − 1 with link 𝑘,

𝐶𝑘: mass center of link 𝑘,

p𝑒: vector from Σ𝑛 to Σ𝐸,

𝑚𝑘: mass of link 𝑘,

I𝑘: inertia tensor of link 𝑘 with respect to Σ𝑘.

According to reference [18], the general kinematic equa-
tion of space manipulators can be written as

ẋ𝑒 = J𝑏ẋ𝑏 + J𝑚q̇, (1)

where ẋ𝑒 = [k𝑇
𝑒
,𝜔
𝑇

𝑒
]
𝑇

∈ R6 is velocity vector of the end-
effector with respect to Σ𝐼; ẋ𝑏 = [k𝑇

𝑏
,𝜔
𝑇

𝑏
]
𝑇

∈ R6 is velocity
vector of the base with respect to Σ𝐼; q̇ = [ ̇𝑞𝑛,

̇𝑞𝑛−1, . . . ,
̇𝑞1]
𝑇

∈

R𝑛 is joint angular velocity vector; J𝑏 ∈ R6×6 is Jacobian
matrix denoting the relationship between velocity of the base
and velocity of the end-effector; J𝑚 ∈ R6×6 is Jacobian matrix
denoting the relationship between joint angular velocity and
velocity of the end-effector.

It is assumed that the initial linear and angular momen-
tums are equal to zero and no external forces or torques act on
the whole system under free-floating condition. According to
conservation of momentum and angular momentum, we can
easily obtain that

H𝑏ẋ𝑏 + H𝑏𝑚q̇ = 0, (2)
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Figure 1: Simplified model of free-floating space manipulators.

whereH𝑏 andH𝑏𝑚 denote inertia matrix of base and coupled
inertia matrix, respectively [18]. Substituting (2) into (1) leads
to the relationship as follows:

ẋ𝑒 = Jfloatq̇ (3)

ẋ𝑏 = J𝑏𝑚q̇, (4)

where Jfloat = J𝑚−J𝑏H−1𝑏 H𝑏𝑚 denotes the generalized Jacobian
matrix of space manipulators; J𝑏𝑚 = −H−1

𝑏
H𝑏𝑚 denotes the

relationship between joint angular velocity and base velocity.
Link 𝑛 and payload can be treated as a single composite

rigid body and Σ𝐺 and Σ𝐿 are defined as coordinate system
at the mass center of link 𝑛 and payload, respectively, while
Σ𝐶 is defined as coordinate system at the mass center of
the composite rigid body. Using parallel-axis theorem and
rotation transformation of the inertia tensor,mass and inertia
tensor of the composite body can be easily obtained as

𝑚𝑐 = 𝑚𝑛 + 𝑚load

𝑚𝑐p𝑐 = 𝑚𝑛p𝑛 + 𝑚loadpload

I𝑐 =
𝐶I𝑛 +

𝐶Iload
𝐶I𝑛 =

𝐶R𝐺 [I𝑛 + 𝑚𝑛 (
𝐶P
𝑇

𝐺

𝐶P𝐺E3 −
𝐶P𝐺
𝐶P
𝑇

𝐺
)]
𝐶R
𝑇

𝐺

𝐶Iload =
𝐶R𝐿 [Iload + 𝑚load (

𝐶P
𝑇

𝐿

𝐶P𝐿E3 −
𝐶P𝐿
𝐶P
𝑇

𝐿
)]
𝐶R
𝑇

𝐿
,

(5)

where 𝑚𝑛, 𝑚load, and 𝑚𝑐 denote mass of link 𝑛, payload, and
the composite body, respectively; p𝑛 denotes vector from Σ𝑛

to Σ𝐺, pload and p𝑐 denote vectors from Σ𝑛 to Σ𝐿 and Σ𝐶,
respectively; I𝑛, Iload, and I𝑐 denote inertia tensors of link 𝑛,
payload, and the composite body with respect to their own
coordinate system, respectively; 𝐶P𝐺 and

𝐶P𝐿 denote vectors
from Σ𝐺 and Σ𝐿 to Σ𝐶;

𝐶R𝐺 and 𝐶R𝐿 denote the rotation
matrix of Σ𝐺 and Σ𝐿 with respect to Σ𝐶.

The velocity and acceleration of the composite body with
respect to Σ𝐼 can be calculated as follows:

k𝑐 = k𝑒 + 𝜔𝑒 × (p𝑐 − p𝑒)

𝜔𝑐 = 𝜔𝑒

k̇𝑐 = k̇𝑒 + �̇�𝑒 × (p𝑐 − p𝑒) + 𝜔𝑒 × [𝜔𝑒 × (p𝑐 − p𝑒)]

�̇�𝑐 = �̇�𝑒.

(6)

The first two equations in (6) can be written in matrix
form as

[

k𝑐
𝜔𝑐

] = [
E3 [𝜔𝑒 × (p𝑐 − p𝑒)]𝜔+𝑒
0 E3

] [

k𝑒
𝜔𝑒

] . (7)

Define J𝑐𝑒 = [
E3 [𝜔𝑒×(p𝑐−p𝑒)]𝜔+𝑒
0 E3

]; then ẋ𝑐 = J𝑐𝑒ẋ𝑒, and
substituting it into (3) we can obtain

ẋ𝑐 = J𝑐𝑒Jfloatq̇. (8)

According to Newton-Euler equations and D’Alembert’s
principle, the generalized inertial force acting on the com-
posite body can be written as

F𝑐 = [

𝑚𝑐k̇𝑐
I𝑐�̇�𝑐 + 𝜔𝑐 × (I𝑐𝜔𝑐)

] . (9)

Then the joint torques 𝜏 = [𝜏1, 𝜏2, . . . , 𝜏𝑛]
𝑇 can be

obtained according to recursive Newton Euler dynamic
equations.

3. Evaluation of DLCC in Trajectory
Tracking Task

Using velocity-level inverse kinematic equations, three types
of Cartesian continuous trajectory tracking of the end-
effector can be attained [19]: (1) continuous pose (including
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position and orientation) tracking; (2) continuous posi-
tion/orientation tracking without disturbance on the base
attitude; (3) continuous position/orientation tracking and
adjusting the base attitude at the same time. Considering that
the movement of the base can be determined in the second
type and third type, continuous pose tracking task is emphat-
ically considered in this paper. In this section, limitations
of joint driving capacity and disturbance of the base are
emphatically considered in evaluation algorithm, which is
also suitable for the other two types of trajectory tracking
task.

3.1. Continuous Pose Tracking Planning of the End-Effector.
Define qini and x𝑏 ini as initial configuration and initial pose of
the base, respectively. The end-effector of space manipulator
is required to carry the payload along the given trajectory
in Cartesian space and finally reach the desired pose x𝑒 des.
DefineΔ𝑡 as the control cycle of joint controller and discretize
the trajectory into 𝑠 points, 𝑠 = (𝑡𝑓 − 𝑡0)/Δ𝑡.

The initial pose of the end-effector x𝑒 ini can be obtained
according to qini. Based on the linear and angular velocity
planning of the end-effector, ẋ𝑒𝑖 (𝑖 = 1, 2, . . . , 𝑠) can be deter-
mined. Then joint velocity can be computed as follows:

q̇ = J+float (x𝑒𝑖, q𝑖, pload, 𝑚load, Iload) ẋ𝑒, (10)

where J+float is generalized inversematrix of Jfloat for redundant
space manipulators.

The joint velocity of point 𝑖 is as follows:

q (𝑡𝑖+1) = q (𝑡𝑖) + q̇ (𝑡𝑖+1) Δ𝑡. (11)

Then the velocity of the base can be obtained as

ẋ𝑏 (𝑡𝑖) = J𝑏𝑚 (x𝑒 (𝑡𝑖) , q (𝑡𝑖) , pload, 𝑚load, Iload) q̇ (𝑡𝑖) . (12)

The attitude disturbance of the base at point 𝑖 + 1 is
computed as

x𝑏 (𝑡𝑖+1) = x𝑏 (𝑡𝑖) + ẋ𝑏 (𝑡𝑖) Δ𝑡 = [X𝑏 (𝑡𝑖) Φ𝑏 (𝑡𝑖)]
𝑇
, (13)

whereX𝑏 andΦ𝑏 denote the position and attitude of the base,
respectively;Φ𝑏 = [𝛼𝑏, 𝛽𝑏, 𝛾𝑏]

𝑇.
Through circular computations for 𝑠 loops, the joint path

and movement of the base can be obtained.

3.2. Problem Statement of MLCC Evaluation. Define 𝜇𝑖 as the
dynamic payload coefficient at discrete point 𝑖 of the given
trajectory, and then dynamic load-carrying capacity of space
manipulator can be expressed as [13]

𝑚
DLCC
𝑖

= 𝜇
max
𝑖

𝑚load

IDLCC
𝑖

= c (𝜇max
𝑖

) Iload,
(14)

where c ∈ R1×3 denotes the coefficient vector, which consists
of positive rational numbers and related to the mass and its
distribution of the payload; 𝜇max

𝑖
is the maximum value of 𝜇𝑖,

which is defined as the dynamic load-carrying coefficient.

On this basis, we define themaximumpayload coefficient
as

𝜆max = min {𝜇
max
1

, 𝜇
max
2

, . . . , 𝜇
max
𝑠

} . (15)

For a given trajectory tracking task, maximum allowable
payload that FFSM is able to carry can be defined as MLCC

𝑚MLCC = min {𝑚
DLCC
𝑖

} = 𝜆max𝑚load

IMLCC = min {IDLCC
𝑖

} = c (𝜆max) Iload.
(16)

Define Φmax
𝑏

= [𝛼
max
𝑏

, 𝛽
max
𝑏

, 𝛾
max
𝑏

]
𝑇 as the maximum

allowable attitude disturbance of the base and the constraint
function can be expressed as follows:

𝑔1 (𝜆) = max {






𝛼
𝑖

𝑏
(𝜆)






} − 𝛼

max
𝑏

𝑔2 (𝜆) = max {






𝛽
𝑖

𝑏
(𝜆)






} − 𝛽

max
𝑏

𝑔3 (𝜆) = max {






𝛾
𝑖

𝑏
(𝜆)






} − 𝛾

max
𝑏

.

(17)

Define [𝜏
min
𝑘

, 𝜏
max
𝑘

] as the driving torque range provided
by joint 𝑘; joint drive capacity constraint functions are
obtained as

ℎ
𝑘

1
(𝜆) = max {𝜏

𝑖

𝑘
(𝜆)} − 𝜏

max
𝑘

ℎ
𝑘

2
(𝜆) = 𝜏

min
𝑘

− min {𝜏
𝑖

𝑘
(𝜆)} .

(18)

Considering dynamic parameters of the payload con-
tained within Jfloat, the joint angle and angular velocity may
exceed the limitations when 𝜆 changes according to (10) and
(11). Define 𝑞

max
𝑘

and 𝑞
min
𝑘

as the upper and lower limits of
joint 𝑘, while defining ̇𝑞

max
𝑘

as the upper limit of absolute
value of angular velocity for joint 𝑘; then the corresponding
constraint functions are

ℎ
𝑘

3
(𝜆) = max {𝑞

𝑖

𝑘
(𝜆)} − 𝑞

max
𝑘

ℎ
𝑘

4
(𝜆) = 𝑞

min
𝑘

− min {𝑞
𝑖

𝑘
(𝜆)}

ℎ
𝑘

5
(𝜆) = max {







̇𝑞
𝑖

𝑘
(𝜆)






} − ̇𝑞

max
𝑘

.

(19)

In addition, singularity problem of Jfloat may happen
when using velocity-level inverse kinematic equations as (10).
Joint angular velocity would become unacceptably large with
singular configurations, which is contained within (19). Con-
sidering the multiconstraints mentioned above, evaluation
of MLCC can be expressed as a nonlinear programming
problem:

max 𝜆

s.t. 𝑔𝑗 (𝜆) ≤ 0, 𝑗 = 1, 2, 3;

ℎ
𝑘

𝑗
(𝜆) ≤ 0, 𝑗


= 1, 2, . . . , 5; 𝑘 = 1, 2, . . . , 𝑛.

(20)



Mathematical Problems in Engineering 5

3.3. Solution Algorithm of Maximum Load-Carrying Coeffi-
cient. To solve the nonlinear programming problem estab-
lished above, initial payload needs to be selected. However,
feasible region of independent variable in (20)may be discon-
tinuous due to the constraint equations, whose monotonicity
is difficult to prove. If line search is executed along the
monotone increasing direction of 𝜆, the solution may be
locally optimal, which cannot reflect the true value ofMLCC.
In order to avoid this problem, maximum payload coefficient
can be solved as follows.

(1) Select 𝑚0, I0, and c(𝜆) of the initial payload (accord-
ing to 𝑚load and Iload if the object is given), which is
heavy enough to dissatisfy all the constraints of (20).

(2) Define𝐷 as the number of repetitive line search. Exe-
cute searching along monotonic decrease direction of
𝜆 until reaching the feasible region; 𝐼𝐷 denotes the
number of iterations, and the corresponding result
of current line search is marked as 𝜆(𝐼𝐷); the initial
region of search is [0, 1], and the starting point is
𝜆0 = 1.

(3) To ensure computational efficiency, select a properΔ𝜆

as the initial step size (the obtained 𝜆max may be a
lot smaller than actual value if Δ𝜆 is too large, while
computational cost would increase if it is too small);
for 𝐷 = 2, 3, . . ., the corresponding region of line
search and step size are [𝜆(𝑝𝐷−1), 𝜆(𝑝𝐷−1 − 1)] and
2
−(𝐷−1)

Δ𝜆, respectively.
(4) In order to reduce the computational cost, com-

pute variables in the following order and deter-
mine whether corresponding constraints are satisfied:
Jfloat → q̇ → q → Φ𝑏 → 𝜏.

(5) In order to get the optimal solution which is close
enough to boundary of feasible region, 𝜆(𝑝𝐷) ∈ {S1}∩
{S2} is determined as termination condition of the
algorithm. {S1} is the feasible region of (20), and {S2}
is defined as follows:

S2 = {𝜆 |




𝑔1 (𝜆)





≤ Δ𝛼𝑏 ∨





𝑔2 (𝜆)





≤ Δ𝛽𝑏

∨




𝑔3 (𝜆)





≤ Δ𝛽𝑏 ∨






ℎ
𝑘

1
(𝜆)






≤ Δ𝜏𝑘

∨






ℎ
𝑘

2
(𝜆)






≤ Δ𝜏𝑘 ∨






ℎ
𝑘

3
(𝜆)






≤ Δ𝑞𝑘

∨






ℎ
𝑘

4
(𝜆)






≤ Δ𝑞𝑘 ∨






ℎ
𝑘

5
(𝜆)






≤ Δ ̇𝑞𝑘;

𝑖 = 1, 2, . . . , 𝑠; 𝑘 = 1, 2, . . . , 𝑛} ,

(21)

where Δ𝛼𝑏, Δ𝛽𝑏, Δ𝛾𝑏, Δ𝜏𝑘, Δ𝑞𝑘, Δ
̇𝑞𝑘 is the accuracy at max-

imum payload coefficient computation, which denotes the
allowable error of constraint functions. When the payload
coefficient value lies in feasible region and satisfies (21), it is
regarded as the approximate solution of 𝜆max.

Using the mentioned algorithm we can efficiently obtain
optimal solution of (20) through repeated line search within
discontinuous feasible region. When the constraints cannot
be satisfied, ẋ𝑒 and qini must be reelected. For a given
trajectory of the end-effector and corresponding joint path,

MLCC can be evaluated according to Figure 2, which can also
be applied in feasibility evaluation of load-carrying capacity
when the object is known. If no proper discretized point along
the given trajectory can be determined for 𝜆 ∈ [0, 1], it means
space manipulators are incompetent to accomplish the given
trajectory tracking task.

4. Analysis of Maximum Payload Initial
Configuration Using PSO

For redundant space manipulators, there are multiple ini-
tial configurations for a given starting point of the task.
According to Section 3, MLCC can therefore be significantly
different when tracking the same trajectory of end-effector. In
order to evaluate themaximum load that themanipulator can
carry under all possible circumstances, maximum payload
initial configuration planning method is proposed in this
section, which provides evidence for further analysis of load-
carrying capacity of the space manipulator.

Firstly, position-level inverse kinematics of redundant
space manipulator based on numerical approach is adopted
to solve qini which satisfy the given X𝑒 ini. Define Tini as the
pose matrix form of X𝑒 ini with respect to Σ𝑏. For a random
joint angle vector q𝑟 ∈ R𝑛, the corresponding pose matrix of
the end-effector is defined as T𝑟. It is assumed that the end-
effector canmove fromT𝑟 to Tini through differential motion
of the joints, and Newton-Raphson iterative equation can be
established:

𝑑q = J+
𝑚
D, (22)

where D = [𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑥 𝛿𝑦 𝛿𝑧]
𝑇 denotes differential

motion vector of the end-effector and J𝑚 denotes motion
relationship between the end-effector and the base (assume
that it is fixed).

It is assumed that the end-effector moves from current
pose to the desired position and orientation through differ-
ential movement of the joints, which means

Tini = T𝑟 (E4 + Δ) , (23)

where Δ = Trans(𝑑𝑥, 𝑑𝑦, 𝑑𝑧)Rot(𝑘, 𝑑𝜃) − E4 denotes the dif-
ferential operators.Then the elements ofD can be determined
according to Δ = T−1

𝑟
Tini − E4.

When the desired accuracy 𝜉 and maximum iterations N
are given, execute iterative computation and save the obtained
qini till it satisfies ‖𝑑q‖ ≤ 𝜉 or output failure information if the
accuracy cannot reach the given accuracy when the number
of iterations is equal to N.

Consider that the closest joint angles near current con-
figuration can be approached in the iteration process. As a
result, the unique feasible initial configuration qini can be
obtained according to a given q𝑟, which is regarded as the
optimal control vector. Then the maximum payload initial
configuration can be solved through optimal computation in
𝑛-dimensional joint space for the given motion planning of
the end-effector. The cost function is expressed as follows by
considering 𝜆 ≥ 0:

𝑓 = −𝜆max (q𝑟) . (24)
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Figure 2: Flow chart of maximum payload coefficient solving algorithm.

Particle swarm optimization algorithm is a method
that starts from random solutions and searches the global
optimal solution through iterative computation, which has
advantages of high precision, fast convergence, and so on
[20]. When particle [𝑖] of the population evolves to the
𝑘th generation within 𝑟-dimensional continuous searching
space, its position and speed can be updated according to the
following computation:

V[𝑖]
𝑘+1

= 𝜒V[𝑖]
𝑘

+ 𝑐1𝑟1 (𝑥
[𝑖]

best − 𝑥
[𝑖]

𝑘
) + 𝑐2𝑟2 (𝑔best − 𝑥

[𝑖]

𝑘
)

𝑥
[𝑖]

𝑘+1
= 𝑥
[𝑖]

𝑘
+ V[𝑖]
𝑘
,

(25)

where 𝑥
[𝑖]

best denotes the best position that particle [𝑖] expe-
rienced; 𝑔best denotes the best position that all the particles
experienced;𝜒 denotes the inertiaweight; 𝑐1 and 𝑐2 are used to
regulate the step size where the particles fly to 𝑥

[𝑖]

best and 𝑔best,
respectively; 𝑟1 and 𝑟2 are independent random numbers that
evenly distribute in [0, 1].

In this study, the process for implementing the PSO is as
follows.

Step 1. Initialize the population and essential parameters of
PSO; the region in each direction of searching space is set as

[𝑞min, 𝑞max]. Then initialize random q𝑟 as initial position of
particles and determine initial velocity.

Step 2. Compute the corresponding fitness value of each
particle according to the following process.

(a) Solve the corresponding qini of each particle through
Newton-Raphson iteration; if the failure information
is obtained, then execute (b); else execute (c).

(b) Assign 0 as the fitness value of the particle.
(c) Evaluate MLCC using the algorithm as shown in

Figure 2 according to the obtained qini. If 𝜆max = 0,
execute (b); else determine the fitness value by sub-
stituting the obtained maximum payload coefficient
into (24).

Step 3. Compare the current position of each particle with
𝑥
[𝑖]

best according to its fitness value and then replace 𝑥
[𝑖]

best with
the current position if it is superior to 𝑥

[𝑖]

best. Determine 𝑔best
using the fitness values of all the particles and then update the
velocity and position of particles according to (25).

Step 4. Loop to Step 2 until the maximum number of genera-
tions is not met; else output the corresponding qini of optimal
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Figure 3: 7-DOF free-floating space manipulator.

Table 1: 𝐷-𝐻 parameters of 7-DOF space manipulator.

Link i 𝜃𝑖 (
∘) 𝑑𝑖 (m) 𝑎𝑖−1 (m) 𝛼𝑖−1 (

∘)
1 𝜃1 (0) 𝑑1 0 90
2 𝜃

2
(90) 𝑑

2
0 −90

3 𝜃3 (0) 0 𝑎3 0
4 𝜃4 (0) 𝑑3 + 𝑑4 + 𝑑5 𝑎4 0
5 𝜃5 (0) 0 0 90
6 𝜃6 (−90) 𝑑6 0 −90
7 𝜃7 (0) 𝑑7 0 0

solution as themaximumpayload initial configuration for the
given trajectory tracking task.

5. Simulation Results

5.1. Simulation Model. In this case study, a seven-link space
manipulator mounted on a base is considered, where 𝑑1 =

𝑑7 = 1.2m,𝑑2 = 𝑑3 = 𝑑5 = 𝑑6 = 0.53m, 𝑎3 = 𝑎4 = 5.8m, and
𝑑4 = 0.52m. Joint frames according toDHmethod are shown
in Figure 3 and the relative parameters are listed in Tables 1
and 2. Pose of ∑

1
is [−0.2m, 0m, 2m, 0∘, 0∘, 0∘] with respect

to Σ𝑏 as shown in Figure 3.

5.2. Results and Discussions. Simulations are performed
to analyze load-carrying capacity of 7-DOF FFSM when
tracking a given straight line in Cartesian space. x𝑏 ini =

[0, 0, 0, 0, 0, 0]
𝑇; initial pose of the end-effector is set

as x𝑒 ini = [−4.55m, −6.7m, 7.85m, 1.5 rad, 0, −3 rad]𝑇,
while the desired pose of the end-effector is x𝑒 des =

[−2m, −7.5m, 4m, 1.6 rad, −0.5 rad, −3 rad]𝑇; the angular
velocity and linear velocity of the end-effector are determined
by conventional trapezoidal-velocity profile [21], in which the
total time is set as 80 s and acceleration anddeceleration times
are both set as 20 seconds; Δ𝑡 = 100ms.

Parameters and constraints are set as follows: 𝑚0 = 3𝑒 +

04 kg, 𝐼𝑥𝑥 = 𝐼𝑧𝑧 = 1.08𝑒+06 kg⋅m2, 𝐼𝑦𝑦 = 7.6𝑒+04 kg⋅m2, and
c = [0.035𝜆 + 0.956𝜆

3
, 𝜆, 0.035𝜆 + 0.956𝜆

3
]
𝑇; it is assumed

that the mass center of payload is a constant pload = [0,

1.725m, 0]
𝑇, Δ𝜆 = 0.02; the range of joint motion is from
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Figure 4: Changes of best value in the first case.

−180∘ to 180∘, Δ𝑞𝑘 = 5∘; the absolute value of maximum joint
angular velocity is 1∘/s, Δ ̇𝑞𝑘 = 0.1∘/s; the limit of joint torques
is from −500N⋅m to 500N⋅m, Δ𝜏𝑘 = 5N⋅m; maximum
allowable attitude disturbance of the base is set as [5∘, 5∘,
5∘], Δ𝛼𝑏 = Δ𝛽𝑏 = Δ𝛾𝑏 = 0.02∘; the accuracy of inverse
kinematics is 𝜉 = 0.001, N = 100; the number of particles
is 100, 𝑐1 = 𝑐2 = 2; the maximum number of iterations is 100.

Solve maximum payload initial configuration using the
algorithm proposed in Section 4. The optimal solution
is [−1.0210, 2.7640, −0.5205, 1.9840, 1.9154, −0.8771, 2.6001]

and the corresponding initial configuration (marked as A) is
[−43.64

∘, −30.52
∘, −8.78

∘, −80.62
∘, 95.05∘, −155.86

∘, 53.02∘],
𝑓A = −0.6164. Contrastive simulations are performed using
𝑓 = 𝜆max as the objective function. The resulting initial
configuration (marked as B) is [−16.04

∘, 5.63
∘, −84.71

∘,
66.31
∘, −159.87

∘, 13.56
∘, −102.28

∘
], 𝑓B = 0.0753. Using

the two extreme configurations A and B, the 7-DOF FFSM
can possess the maximum and minimum MLCC for the
given task. The optimal objective function values of particles
varying with the number of iterations in the two experiments
are shown in Figures 4 and 5. Let space manipulator carry
respective “maximum payload” along the given trajectory:
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Table 2: Dynamic parameters of 7-DOF space manipulator.

Parameters Base Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7
Mass/(kg) 7.5𝑒 + 04 30 30 70 75 30 30 40

𝑖p𝑖/(m)
0 0 −0.265 2.9 2.7 0 0 0

0 −0.265 0 0 0 0 0 0

0 0 0 0 0.5 0.265 0.265 0.6

I𝑘/(kg⋅m2)
𝐼𝑥𝑥 7.5𝑒 + 04 0.98 0.57 1.32 1.91 0.98 0.98 5.18

𝐼𝑦𝑦 7.5𝑒 + 04 0.57 0.98 197.2 243.4 0.98 0.98 5.18

𝐼𝑧𝑧 7.5𝑒 + 04 0.98 0.98 197.2 242.9 0.57 0.57 0.75

𝐼𝑥𝑦 0 0 0 0 0 0 0 0

𝐼𝑦𝑧 0 0 0 0 0 0 0 0

𝐼𝑧𝑥 0 0 0 0 −4 0 0 0
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Figure 5: Changes of best value in the second case.
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when using A as the initial configuration, joint angle and
angular velocity changes are shown in Figures 6 and 7, and
the joint torque and base attitude curves are shown in Figures
8(a) and 9(a); when using B as the initial configuration, the
joint torque and base attitude curves are shown in Figures
8(b) and 9(b). In the first case, maximum payload coefficient
is𝜆A

max = 0.6103, whichmeans that themanipulator can carry
the payload with a great mass of 18.31 t, while, in the second
case, 𝜆B

max = 0.0753, which means that the mass of maximum
payload cannot be larger than 2.26 t. Thus, for a given
trajectory tracking task of redundant space manipulator, an
appropriate initial configuration can significantly improve
MLCC of free-floating space manipulator.

Further simulations are performed to illustrate the reason
for significant differences of MLCC when using A and B.
Define 𝜙max

𝑏
= max{𝛼max

𝑏
, 𝛽

max
𝑏

, 𝛾
max
𝑏

} and 𝜏max = max{|𝜏min
𝑘

|,

|𝜏
max
𝑘

|}; then 400 different initial configurations are solved by
using Newton-Raphson iterative method. Using the 400 sets
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Figure 8: Torques of joints under maximum payload condition.
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Figure 9: Attitude disturbance of the base under maximum payload condition.

of initial configurations to carry a payload along the given
trajectory, 𝜙max

𝑏
and 𝜏max with respect to payload coefficient

are obtained as shown in Figures 10 and 11, respectively.
According to Figures 8–11, when using A to carry the “maxi-
mum payload”, 𝜏Amax = 499.43N⋅m∈ [464.03, 500] reaches the
boundary of feasible region while 𝜙max

𝑏
= 4.77

∘
∈ [4.64

∘
, 5
∘
],

𝜆
A
max < 0.6164 < 0.6381; when using B, 𝜙max

𝑏
= 4.98

∘ reaches
the boundary of feasible region firstly. On the premise of
satisfying joint angle and angular velocity constraints, 𝜏max

presents a monotonically increasing trend as a whole when
𝜆 ∈ [0, 1], while 𝜙max

𝑏
is locally monotonic and thus leads to

such a significant difference (about a multiple of about 7.1) of
MLCC when using with the two initial configurations.

In addition, the maximum payload coefficients when
using the 400 different initial configuration do not exceed
the following ranges: [0.0753, 0.1098] ∪ [0.3882, 0.4543] ∪

[0.5895, 0.6103]. The range of allowable payload of space
manipulator in the given trajectory tracking task can be
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Figure 10: 𝜙max
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with respect to payload coefficient.
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Figure 11: 𝜏max with respect to payload coefficient.

approximately regarded as 𝜆 ∈ [0, 0.1098] ∪ [0.3882, 0.6103].
It is scarcely possible to find an appropriate initial configura-
tion for the payload within 𝜆 ∈ [0, 0.1098] ∪ [0.3882, 0.6103],
which is consistent with the situation that the objective
function value suffers a sudden drop from 0.4005 to 0.1045
at the 15th iteration in Figure 5.

When spacemanipulator carries the “maximumpayload”
using A, it is assumed that mass of the payload is constant,
while multiplying inertia tensor of the payload by a certain
proportionality coefficient which varies in [0.1, 1]. 𝜙max

𝑏
and

𝜏max changing with respect to the proportionality coefficient
are shown in Figures 12 and 13. When the proportionality
coefficient is about 0.05 and 0.2, 𝜙max

𝑏
is 116∘ and 50∘ while

the magnitude of joint torque reaches 10
8 (N⋅m) while

attitude disturbance 106 (∘), which indicates the occurrence of
dynamics singularity and base instability condition. Despite
excluding these extreme cases, space manipulator cannot
be able to accomplish the given task when proportionality
coefficient reduces, which proves the incontinuity of feasible
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Figure 12: 𝜙max
𝑏

with respect to proportionality coefficient.
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Figure 13: 𝜏max with respect to proportionality coefficient.

region in (20). All in all, different from the ground fixed-
base manipulators which are able to carry arbitrary payload
as long as the mass and inertia tensor are not greater than the
“maximum load” [11], load-carrying capacity for FFSM has
the characteristics of discontinuity.

According to the simulation results and discussions
above, we can draw the following conclusions. (1) Driving
capability of the joints and attitude disturbance limit of the
base are important constraints of MLCC for space manip-
ulators, which must be considered in trajectory planning
and control process. (2)Monotonicity of constraint functions
results in discontinuous of load-carrying capacity for FFSM,
which is essentially caused by nonholonomic characteristic
of space manipulators. (3) MLCC of FFSM that only reflects
“maximum payload” of the manipulator can repeatedly carry
along the given trajectory when achieving upper limit of its
ability, which needs to be comprehensively evaluated and
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analyzed with considering allowable range of load-carrying
capacity for specific tasks and objects.

6. Conclusion

In this paper, a scheme is developed to analyze load-carrying
capacity of redundant space manipulators in trajectory track-
ing task. In the proposed scheme, evaluation of MLCC
is described as multiconstrained nonlinear programming
problem, which is efficiently solved through repeated line
search within discontinuous feasible region. The MLCC can
be obtained for a given trajectory and corresponding joint
path. After that, considering the influence of MLCC caused
by different initial configurations of the manipulator for a
given starting point of trajectory, a kind ofmaximumpayload
initial configuration planning method is proposed by using
PSO algorithm. The simulations comprehensively verify the
characteristic of load-carrying capacity for a 7-DOF space
manipulator, which also demonstrate the effectiveness of
the proposed algorithms. The proposed analytical method
provides theoretical foundations of feasibility analysis, tra-
jectory optimizing, and control strategy research of space
manipulators in on-orbit load-carrying operations.
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