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The condition diagnosis of rotating machinery depends largely on the feature analysis of vibration signals measured for the
condition diagnosis. However, the signals measured from rotating machinery usually are nonstationary and nonlinear and contain
noise. The useful fault features are hidden in the heavy background noise. In this paper, a novel fault diagnosis method for rotating
machinery based on multiwavelet adaptive threshold denoising and mutation particle swarm optimization (MPSO) is proposed.
Geronimo,Hardin, andMassopust (GHM)multiwavelet is employed for extractingweak fault features under backgroundnoise, and
themethod of adaptively selecting appropriate threshold for multiwavelet with energy ratio of multiwavelet coefficient is presented.
The six nondimensional symptom parameters (SPs) in the frequency domain are defined to reflect the features of the vibration
signals measured in each state. Detection index (DI) using statistical theory has been also defined to evaluate the sensitiveness
of SP for condition diagnosis. MPSO algorithm with adaptive inertia weight adjustment and particle mutation is proposed for
condition identification. MPSO algorithm effectively solves local optimum and premature convergence problems of conventional
particle swarm optimization (PSO) algorithm. It can provide a more accurate estimate on fault diagnosis. Practical examples of
fault diagnosis for rolling element bearings are given to verify the effectiveness of the proposed method.

1. Introduction

Rolling element bearings are an important part of and widely
used in rotating machinery. In practical application, bearing
failures may cause the breakdown of equipment, and further,
serious consequences may arise due to the failure. Thus,
fault diagnosis and condition discrimination of bearings
have an important significance for safe operation, guaran-
teeing production efficiency and reducing maintenance cost.
Many reliability survey papers deal with failure statistics of
rotating machinery subassemblies, focusing mainly on roller
bearing because of their widespread use in industry [1–4].
Occurrence rate of bearing faults is very high in rotating
machines, and other faults arising in rotation machines
are often associated with bearing faults. In many instances,

the accuracy of the instruments and devices used to monitor
and control the rotationmachines is highly dependent on the
dynamic performance of bearings. Although fault diagnosis
of rolling bearings is often artificially carried out using time
or frequency analysis of vibration signals, there is a need for
a reliable, fast automated diagnosis method.

Vibration diagnosis is commonly used to detect the faults
and identify the states in rotating machine. The condition
diagnosis of rotating machinery depends largely on the fea-
ture analysis of vibration signals measured for the condition
diagnosis because the signals carry dynamic information
about the machine state [5–7]. However, feature extraction
for fault diagnosis is difficult, because if the vibration signals
are measured at an early stage of the machine failure, or
at a location away from the fault part, the vibration signals
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contain strong noise. Stronger noise than the actual failure
signal may lead to misrecognition of useful information for
the condition diagnosis. Thus, it is important that the feature
of the signal can be sensitively extracted at the state change of
a machine.

Wavelet transform (WT) is well known for its ability
to focus on localized structures in time-frequency domain
which has been widely used for fault diagnosis of rolling
element bearings [8–10]. It has the local characteristic of time
domain as well as frequency domain and its time-frequency
window is changeable. In the processing of nonstationary
signals it presents better performance than the traditional
Fourier analysis.However, themeasured signals often contain
strong noise and the fault features are hidden in the back-
ground noise, and it is not the best way for WT to match
the different fault features with a single wavelet and scaling
functions, which will reduce the fault diagnosis accuracy.
Multiwavelet transform is the new development of WT. It
is constructed from translations and dilations of scaling and
wavelet vector functions and has the predominant properties
such as orthogonality, symmetry, compact support, and
higher order vanishing moments. Multiwavelet transform
decomposes the signal into subsignals of different frequency
bands based on vector basis functions, via inner product
principle. Because of the multiple scaling and wavelet basis
functions, multiwavelet transform has predominant advan-
tages in feature extraction of signals. Recently multiwavelet
transform has been applied in fault diagnosis of rotating
machinery as a powerful tool. In [11],multiwavelet systemwas
introduced to diagnose gear faults. In [12, 13], multiwavelet
lifting scheme was improved for compound faults separation
and extraction. In [14], the undecimated multiwavelet was
proposed for fault diagnosis of planetary gearboxes.

PSO algorithm is a population based stochastic optimiza-
tion technique developed by Kennedy and Eberhart in 1995
and inspired by social behavior of bird flocking or fish school-
ing [15]. In PSO algorithm, particles cooperate in finding
good solutions for difficult discrete optimization problems.
PSO algorithm has been applied to a variety of different
problems, such as function optimization [16], scheduling [17],
traveling salesman problem [18], neural network training
[19, 20], and clustering task [21–23] which is the topic of
interest in this paper. In recent years, PSO algorithm has
been successfully applied in mechanical fault diagnosis; the
domestic research on PSO fault diagnosis issues also has
many articles reporting [24–27]. In [24], Bocaniala and Sa
da Costa compared the time spent by PSO algorithm and
genetic algorithm, testifying PSO algorithm with prominent
superiority through fault diagnosis benchmark problem. In
[25], Pan et al. used PSO algorithm to extract fault charac-
teristics of rotation machinery. In [26, 27], PSO algorithm
was used to diagnose gearbox fault. In this study, a clustering
model is constructed by using an improved PSO calledMPSO
algorithm. It is used to classify the SPs calculated from the
signals in each machine state for condition diagnosis, as well
as obtaining their optimal clustering centers. According to
these optimal clustering centers’ information, the conditions
of the machine can be accurately identified.

In order to extract the fault features of signals more effec-
tively and identifymechanical conditionmore accurately, this
paper proposes a novel fault diagnosis method for rotation
machinery based on multiwavelet adaptive threshold denois-
ing andMPSOalgorithm.GHMmultiwavelet is employed for
extracting weak fault features under heavy background noise,
and the method of adaptively selecting appropriate threshold
values for multiwavelet with energy ratio of multiwavelet
coefficient is presented. The six nondimensional SPs in the
frequency domain are defined to reflect the features of the
vibration signals measured in each state. DI using statistical
theory has been also defined to evaluate the sensitive-
ness of SP for condition diagnosis. MPSO algorithm with
adaptive inertia weight adjustment and particle mutation
is proposed for condition identification. MPSO algorithm
effectively solves local optimum and premature convergence
problems of conventional particle swarm optimization (PSO)
algorithm. It can provide a more accurate estimate on fault
diagnosis. Practical examples of fault diagnosis for rolling
element bearings are given to verify the effectiveness of the
proposed method.

2. Feature Extraction by Multiwavelet Adaptive
Threshold Denoising

2.1. Multiwavelet Theory. Multiwavelet consists of wavelet
function vector Ψ and a function vector Φ is called multi-
scaling function. They are denoted as follows [28]:
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For a multiresolution of multiplicity 𝑟 > 1.
Similar to scalar wavelet, Ψ and Φ satisfy the two-scale

matrix refinement equations:
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where ∗means the complex conjugate transpose.
Figure 1 shows decomposition and reconstruction of

multiwavelet.
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Figure 1: Decomposition and reconstruction of multiwavelet.

GHM multiwavelet constructed by Geronimo, Hardin,
and Massopust is one of the most important multiwavelet
systems with two pairs of scaling and wavelet functions
and has the superior properties of short support, symmetry,
orthogonality, and second approximation order [29]. Because
of the excellent properties, GHM multiwavelets are adopted
in this study. The multiscaling functions and multiwavelet
functions of GHM multiwavelets are presented in Figure 2.
The dilation and wavelet equations for GHM multiwavelet
have four coefficients as follows:
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In view of the matrix filter banks, preprocessing is nec-
essary to translate one stream input signal into two streams.
Some preprocessing of preprocessing for multiwavelets has
been proposed, such as repeated-row preprocessing, bal-
anced multiwavelet, and prefilter methods [30]. Different
preprocessing methods will produce different effect on per-
formances of multiwavelets. It is a fundamental problem
for each multiwavelet function to choose an appropriate
preprocessing method for specific applications. In this study,
the preprocessing method of repeated-row preferable for
GHMmultiwavelet is adopted and given as follows [31]:
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where 𝑥
𝑛
is original signal, 𝑠

𝑛
is the signal after preprocessing,

and 𝑐 = √2.

2.2. Multiwavelet Adaptive Threshold Denoising. Similar to
single wavelet, multiwavelet denoising depends largely on
the threshold denoising. The effect of threshold denoising
depends on the selection of thresholds. A variety of threshold
choosing methods can be mainly divided into two categories:
global thresholding and level-dependent thresholding. The
former chooses a single value of 𝜆 to be applied globally
to all empirical wavelet coefficients, while the latter chooses
different threshold value 𝜆

𝜄
for each wavelet level. However,

it is difficult to choose appropriate threshold values for
different wavelet coefficient. A large threshold value cuts too
many coefficients, resulting in the loss of useful information.
Conversely, a too small threshold value will leavemuch noise.
In this study, the method of adaptive selecting appropri-
ate threshold values for multiwavelet denoising based on
comparison of noise energy in different levels is proposed.
According to the noise levels of wavelet coefficients, the
adaptive threshold value is determined by energy ratio.
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The energy spectrum of multiwavelet coefficient is
denoted as follows:
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where 𝐸
𝑗 represents multiwavelet coefficient total energy

in the 𝑗th layer; 𝐸𝑗
𝑖
represents the multiwavelet coefficient

energy of the 𝑖-dimensional in the 𝑗th layer; 𝑑
𝑗
(𝑛) is the

multiwavelet coefficient in the 𝑗th layer after 𝑟-dimensional
multiwavelet decomposition; and 𝑟 is the number of dimen-
sions of multiwavelet coefficient.

Energy ratio of multiwavelet coefficient can be obtained
as follows:
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𝐸
𝑗

𝑖
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. (7)

According to noise level of multiwavelet coefficients,
the threshold values of each multiwavelet coefficient can be
adaptively obtained as follows:

𝜇 = 𝑝 × 𝜆
𝑗

𝑖
,

𝜆
𝑗

𝑖
=

𝑀 × √2 ln (𝑛)
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,

(8)

where 𝑀 is the median absolute value of multiwavelet
coefficient; 𝑛 is signal length.

In conclusion, the processing steps of multiwavelet adap-
tive threshold denoising are summarized as follows.

(1) Preprocess the original signal to transform it into two
streams by the method of repeated-row preferable.

(2) Decompose two stream signals using multiwavelets.
(3) Threshold values are adaptively determined by energy

ratio of the wavelet coefficients.
(4) Threshold the wavelet coefficients.
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Figure 3: The simulation signal in the time domain: (a) the shock impulse signal; (b) the noisy signal.
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Figure 4:The denoising results using different wavelet denoising techniques. (a)Multiwavelet adaptive threshold denoising, (b) multiwavelet
neighboring coefficient denoising, and (c) db2 wavelet threshold denoising.

(5) Reconstruct the thresholdwavelet coefficients and the
scale coefficients.

(6) Postprocess the two stream results to get the denois-
ing signal.

In order to test effectiveness of multiwavelet adaptive
threshold denoising proposed in this paper, a simulation
experiment is designed as follows.

The simulation signal is composed of a periodic impulse
component and white Gaussian noise to simulate a bearing
fault. The periodic impulse signal with the period of 0.01 s is
expressed as

𝑥 (𝑡) = 𝑥
0
𝑒
−𝜉𝜔
𝑛
𝑡 sin𝜔

𝑛
√1 − 𝜉2𝑡, (9)

where 𝜉 is damp coefficient; 𝜔
𝑛
denotes natural frequency; 𝑥

0

indicates displacement constant. The shock impulse signal is
displayed in Figure 3(a). In this case, 𝜉 = 0.1, 𝜔

𝑛
= 3 kHz,

𝑥
0

= 5, and sampling frequency and sampling points are
20 kHz and 4096, respectively.The simulation signal is shown
in Figure 3(b), the signal has a low signal-noise ratio (SNR),
and no useful features can be seen in the dynamic signal in
the time domain.

The noisy signal is processed using GHM multiwavelet
adaptive threshold denoising, GHM multiwavelet neighbor-
ing coefficient denoising, and Daubechies 2 (db2) wavelet
threshold denoising, respectively. Type of thresholding
used is soft thresholding, and decomposition level is four.
Denoised signal’s performance is evaluated based on mean
square error (MSE) and SNR. Figure 4 shows the denoising
results using different wavelet denoising techniques. The
SNR and MSE of different wavelet denoising techniques are
calculated, as shown in Table 1. The results indicate that the
method of GHM multiwavelet adaptive threshold denoising
has themaximumSNR and theminimumMSE, whichmeans
the method proposed in this study can effectively extract
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Table 1: SNR and MSE of different wavelet denoising techniques.

Multiwavelet adaptive
threshold denoising

Multiwavelet neighboring
coefficient denoising

db2 wavelet threshold
denoising

SNR 14.516 11.098 9.667
MSE 0.212 0.235 0.306

the defect-induced shock impulses and eliminate much noise
from the simulation signal.

3. Symptom Parameters for Fault Diagnosis
and Sensitivity Evaluation

3.1. Symptom Parameters for Fault Diagnosis. When devel-
oping intelligent condition diagnosis system by computer,
symptom parameters (SPs) are required to express the
information indicated by a signal measured for diagnosing
machinery faults. A good symptom parameter can correctly
reflect states and the condition trend of plant machinery
[32–34]. Many symptom parameters have been defined in
the pattern recognition field. Here, six SPs in the frequency
domain, commonly used for the fault diagnosis of plant
machinery, are considered.

Frequency-domain skewness:
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where 𝐼 is the number of spectrum lines, 𝑓
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𝑖
, and 𝑖 = 1 ∼

𝐼. 𝑓 is mean value of the analysis frequency, and 𝑓 =

(∑
𝐼

𝑖=1
𝑓
𝑖
⋅ 𝐹(𝑓
𝑖
))/∑
𝐼

𝑖=1
𝐹(𝑓
𝑖
); 𝜎 is standard deviation, and 𝜎 =

√(∑
𝐼

𝑖=1
(𝑓
𝑖
− 𝑓)
2
⋅ 𝐹(𝑓
𝑖
))/𝐼.

3.2. Detection Index. For automatic diagnosis, SPs are needed
that can sensitively distinguish the fault types. In order to
evaluate the sensitivity of a SP for distinguishing two states,
such as a normal or an abnormal state, DI is defined as
follows.

Supposing that 𝑥
1
and 𝑥

2
are the SP values calculated

from the signals measured in state 1 and state 2, respectively,
their average value and standard deviation are 𝜇 and 𝜎. The
DI is calculated by

DI =
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨

√𝜎
1
+ 𝜎
2

. (16)

The distinction rate (DR) is defined as

DR = 1 −
1

√2𝜋
∫

−DI

−∞

exp(−
𝜇
2

2
)𝑑
𝜇
. (17)

It is obvious that the larger the value of the DI, the larger
the value of the DR will be and, therefore, the better the SP
will be. Thus, the DIcan be used as the index of the quality to
evaluate the distinguishing sensitivity of the SP.

The number of symptom parameters used for diagnosis
and fault types are 𝑀 and 𝑁, respectively; the synthetic
detection index (SDI) is defined as follows:

SDI =
𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝜇
𝑖𝑘
− 𝜇
𝑗𝑘

󵄨󵄨󵄨󵄨󵄨

√𝜎
2

𝑖𝑘
+ 𝜎
2

𝑗𝑘

. (18)

4. MPSO for Condition Diagnosis

4.1. Brief of PSO. PSO algorithm is based on the groups, and
according to the environmental fitness, individual in groups
will be moved to the good region. The algorithm evaluates
the optimal result by using evolutionary fitness function
of group, and each particle in the algorithm has a fitness
value determined by the fitness function; two properties
of position and speed that are used to show the position
and moving speed of the current articles in the solving
space, by the fitness function value corresponding to particle
position coordinate, determine the performance of particles.
In PSO algorithm, each particle adjusts its position according
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to its own experience and according to the experience of
a neighboring particle, making use of the best position
encountered by itself and its neighbor.

In the 𝑅-dimensional search space, the 𝑖 particle’s space
position is defined as follows:

𝑃 (𝑖) ⋅ location = [𝑋
𝑖1
, 𝑋
𝑖2
, . . . , 𝑋

𝑖𝑅
] . (19)

The velocity of particle 𝑖 is defined as follows:

𝑃 (𝑖) ⋅ velocity = [𝑉
𝑖1
, 𝑉
𝑖2
, . . . , 𝑉

𝑖𝑅
] . (20)

The best previous position of particle 𝑖 is defined as
follows:

𝑃 (𝑖) ⋅ best = [𝑃
𝑖1
, 𝑃
𝑖2
, . . . , 𝑃

𝑖𝑅
] . (21)

The best position among all particles experienced is
defined as follows:

𝑔 (𝑖) ⋅ best = [𝑔
𝑖1
, 𝑔
𝑖2
, . . . , 𝑔

𝑖𝑅
] . (22)

The particle updates the position and velocity according
to the following equations:

𝑃 (𝑖) ⋅ velocity (𝑡 + 1)

= 𝜔𝑃 (𝑖) ⋅ velocity (𝑡)

+ 𝜂
1
𝑟
1 [𝑃 (𝑖) ⋅ best (𝑡) − 𝑃 (𝑖) ⋅ location (𝑡)]

+ 𝜂
2
𝑟
2
[𝑔 (𝑖) best (𝑡) − 𝑃 (𝑖) ⋅ location (𝑡)] ,

𝑃 (𝑖) ⋅ location (𝑡 + 1)

= 𝑃 (𝑖) ⋅ location (𝑡) + 𝑃 (𝑖) ⋅ velocity (𝑡 + 1) ,

(23)

where 𝑟
1
and 𝑟
2
are the random numbers within (0, 1) and 𝜂

1

and 𝜂
2
are the accelerationwhich constants the control of how

far a particle moves in a single generation.The inertia weight
𝜔 controls the previous velocity of particle, and it is defined
as follows:

𝜔 = 0.5 +
rand
2

, (24)

where rand is random generated number between 0 and 1.
Although PSO algorithm is easy to realize, the method is

easy to trap into local optimum. Shi and Eberhart proposed
a linearly decreasing weight particle swarm optimization
(WPSO) of which a linearly decreasing inertia factor was
introduced into the velocity of the updated equation from
the original PSO [35, 36]. The performance of WPSO is
significantly improved over the original PSO because WPSO
balances out the global and local search abilities of the swarm
effectively. The equation for the linearly decreased weight is
defined as follows:

𝜔
𝑙
= 𝜔max − iteration ×

𝜔max − 𝜔min
iterationmax

, (25)

where 𝜔max is 1, 𝜔min is 0.1, and iterationmax is the maximum
number of the allowed iterations.

The velocity of the updated equation forWPSO is defined
as follows:

𝑃 (𝑖) ⋅ velocity (𝑡 + 1)

= 𝜔
𝑙
𝑃 (𝑖) ⋅ velocity (𝑡)

+ 𝜂
1
𝑟
1 [𝑃 (𝑖) ⋅ best (𝑡) − 𝑃 (𝑖) ⋅ location (𝑡)]

+ 𝜂
2
𝑟
2
[𝑔 (𝑖) best (𝑡) − 𝑃 (𝑖) ⋅ location (𝑡)] .

(26)

4.2. MPSO. Although WPSO algorithm improved conven-
tional PSO to a certain extent, it cannot adapt to all of complex
practical problems.Themain reasons can be explained as fol-
lows. (1)The inertia weight of conventionalWPSO algorithm
is monotone decreasing, and adjustment ability of WPSO
algorithm is limited. If particles cannot find optimal point
in the initial stage of the algorithm, WPSO algorithm is easy
to trap into local optimum with the decrease of the inertia
weight. (2) With increasing iterations, particle diversity of
WPSO algorithm decreases; it causes deterioration of global
search ability; WPSO algorithm is also easy to trap into local
optimum and premature convergence.

To improve global search ability and adjustment ability
of conventional PSO algorithm and prevent local optimum
and premature convergence problems,MPSO algorithmwith
adaptive inertia weight adjustment and particle mutation is
proposed in this paper.

4.2.1. Adaptive Inertia Weight. Define change rate of fitness
value:

𝑅 =

󵄨󵄨󵄨󵄨𝑓 (𝑡 + 5) − 𝑓 (𝑡)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨

, (27)

where 𝑓(𝑡) is optimum fitness value of the 𝑡th iteration;
𝑓(𝑡 + 5) is optimum fitness value of the (𝑡 + 5)th iteration;
𝑅 indicates change rate of fitness value in five iterations.

According to the variation of 𝑅, the inertia weight 𝜔

adaptively adjusts as follows:

𝜔 = {
𝑘
1
+ 0.5𝑞, 𝑅 > 0.05,

𝑘
2
+ 0.5𝑞, 𝑅 ≤ 0.05,

(28)

where 𝑞 is a random number with a uniform probability
within 0∼1; 𝑘

1
and 𝑘
2
are parameters; 𝑘

1
> 𝑘
2
; the choice of 𝑘

1

and 𝑘
2
is determined experimentally; here 𝑘

1
= 0.5 and 𝑘

2
=

0.2. When 𝑅 > 0.05, the algorithm is in the exploration stage,
and a large 𝜔 is beneficial to the algorithm’s convergence.
When 𝑅 ≤ 0.05, the algorithm is in the development stage,
and a small 𝜔 is beneficial to searching optimum point.

4.2.2. ParticleMutation. To increase particle diversity of PSO
algorithm, the method of particle mutation is proposed. In
the operation process of PSO algorithm, if the best position
among all particles𝑔best does not change in a long time, some
particles are mutated according to a certain probability. The
execution process of the mutation for PSO is as follows.

(1) All particles are arranged in ascending order accord-
ing to the values of the fitness function.
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Table 2: DIs of each SP.

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6

DIN:O 5.733 2.607 0.953 13.973 6.920 3.287
DIN:I 1.947 1.467 0.740 1.593 3.387 1.840
DIN:R 4.540 3.580 0.513 0.707 2.287 2.820
DIO:I 3.793 0.467 0.587 1.367 2.413 1.680
DIO:R 2.007 0.693 1.040 1.533 1.567 1.606
DII:R 1.560 0.467 0.813 1.087 1.687 1.413

(2) The𝑚 (𝑚 > 1) particles with smaller fitness functions
are selected.

(3) Random data 𝑟
𝑖
{𝑖 = 1, 2 . . . , 𝑚} for selected particles

are produced automatically.
(4) A weight 𝑃

𝑚
is set, and 0.1 < 𝑃 < 0.5.

(5) 𝑃
𝑚

is compared with 𝑟
𝑖
, if 𝑃
𝑚

> 𝑟
𝑖
, and then the

particle’s space position is updated by using (29).
(6) Steps (3)–(5) are looped until the space position of𝑚

particles are updated:

𝑥
𝑡+1

𝑖𝑗
= 𝑥
𝑡

𝑖𝑗
(1 + 0.5𝜂) , (29)

where 𝜂 is random data that obeys Gaussian(0, 1) distribu-
tion.

4.3. Fitness Function of MPSO for Condition Diagnosis.
Assume that𝑁 is the sample set of vibration signalsmeasured
in 𝑚 different states; the length of 𝑁 is 𝑛, 𝑁 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
}.

Every sample signal has 𝑡 identified symptoms (in this paper,
the symptoms are 𝑃

1
–𝑃
6
). Then, the clustering analysis is

to divide 𝑛 sample data into 𝑚 states, such that the fitness
function 𝐹 shown in (30) is minimized:

min𝐹 =

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

𝑡

∑

𝑘=1

𝑎
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖𝑘
− 𝑋
𝑗𝑘

󵄩󵄩󵄩󵄩󵄩

2

, (30)

𝑋
𝑗𝑘

=

∑
𝑛

𝑖=1
𝑎
𝑖𝑗
𝑆
𝑖𝑘

∑
𝑛

𝑖=1
𝑎
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑡) , (31)

𝑎
𝑖𝑗
= {

1, if 𝑆
𝑖
∈ state 𝑗

0, if 𝑆
𝑖
∉ state 𝑗

(𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚) .

(32)

5. Diagnosis and Application

In this section, the application of condition diagnosis for a
rolling bearing is shown to verify that the method proposed
in this paper is effective.

5.1. Experimental System. Figure 5 shows the experimental
system for a roller bearing fault diagnosis test. The most
commonly occurring faults in a roller element bearing are the
outer-race defect, the inner-race defect, and the roller element
defect. These fault bearings are shown in Figure 6 and were
created artificially using a wire-cutting machine. In this work

Load
Gear box

Timing belt

Flange

Bearing

Bearing

Motor

Shaft

Accelerometer

Loading 
equipment

Figure 5: Experimental system for bearing fault diagnosis.

an accelerometer (PCBMA352A60) was used to measure the
vibration signals of the vertical direction in the normal, the
outer-race defect, the inner-race defect, and the roller element
defect states, respectively. The original vibration signals in
each state are measured at a constant speed (800 rpm), and
a 150 kg load was also transported on the rotating shaft by
the loading equipment (RCS2-RA13R) while the vibration
signals were being measured. The sampling frequency of the
signal measurement was 50 kHz, and the sampling time was
20 s. All of the data was divided to 100 parts; 40 parts were
used to train diagnosis system; other parts were used for
condition identification test. Spectrum values at frequency
Figures 7(a), 8(a), 9(a), and 10(a) show the original vibration
signal in each state, and Figures 7(b), 8(b), 9(b), and 10(b)
show the multiwavelet adaptive threshold denoising results
of the vibration signal in each state.

5.2. Diagnosis by the Proposed Method. The main procedure
for fault diagnosis using GHMmultiwavelet adaptive thresh-
old denoising andMPSO algorithm is shown in Figure 11 and
explained as follows.

(1) Vibration signals are measured in each known state.
(2) Weak fault feature is extracted by using GHM multi-

wavelet adaptive threshold denoising.
(3) SPs are calculated using (10)–(15).
(4) The highly sensitive SPs are selected for condition

diagnosis by DI.
(5) MPSO algorithm is trained with SPs selected by DI,

and the optimal clustering centers are obtained.
(6) Condition of the bearing can be diagnosed by the

trained MPSO algorithm and SPs.
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(a) (b) (c)

Figure 6: Bearing defects. (a) Outer-race defect. (b) Inner-race defect. (c) Roller defect.
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Figure 7: The vibration signal in normal state: (a) the original vibration signal, (b) after multiwavelet adaptive threshold denoising, and (c)
Fourier spectrum of the denoised signal.

In this study, the good SPs which have high sensitivity
for distinguishing each fault state of the bearing are selected
by the method of DI. As an example, Table 2 lists parts of
DIs of SPs. The maximum value (50.49) of SDI is obtained
in the case of the combination of 𝑃

1
, 𝑃
5
, and 𝑃

6
, and when 𝑃

1
,

𝑃
5
, and 𝑃

6
, are used for distinguishing each state separately,

the DIs are larger than 1.41, and all of the DRs are larger
than 92.1%. Therefore, 𝑃

1
, 𝑃
5
, and 𝑃

6
have high sensitivity for

distinguishing each fault state of the bearing.
In this study, MPSO automatically obtains the optimal

clustering centers according to the classification of the sample
data information. The purpose of training MPSO is the
acquisition of optimum clustering centers. The SPs selected
by DI were input into MPSO. MPSO converged to the
optimum clustering centers. In the training process ofMPSO,
at first, the sample data are classified into the normal, the
outer-race defect, the inner-race defect, and the roller element

defect randomly.The fitness values and the clustering centers
are calculated by (30) and (31). With increasing iterations,
the speed and position (classification of the sample data) of
the particle are updated incessantly, and according to the
classification of the sample data information, the clustering
centers are also updated. Finally, the optimal clustering
centers with a minimum fitness value are calculated.

To explain the effectiveness of MPSO algorithm, a com-
parison is made among MPSO, WPSO, and PSO algorithms.
The optimal clustering centers of each state are obtained by
MPSO, WPSO, and PSO algorithms, respectively. Particle
number and iteration number of the three algorithms are
50 and 1000, respectively. The clustering centers obtained by
each method are shown in Tables 3, 4, and 5. Figure 12 shows
the fitness curve of PSO, WPSO, and MPSO algorithms. It
is obvious that MPSO algorithm has the minimum fitness
value; namely, the optimal clustering centers obtained by
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Figure 8:The vibration signal in outer-race defect state: (a) original vibration signal, (b) after multiwavelet adaptive threshold denoising, and
(c) Fourier spectrum of the denoised signal.
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Figure 9: The vibration signal in inner-race defect state: (a) original vibration signal, (b) after multiwavelet adaptive threshold denoising,
and (c) Fourier spectrum of the denoised signal.

MPSO algorithm are themost accurate. MPSO algorithm has
stronger capacity of searching optimal solution.

After training MPSO algorithm, to verify the diagnostic
capability of the proposed method in this paper, the test data
measured in each known state that had not been used to train
MPSO algorithm were used. When inputting the test data

into the trained MPSO algorithm, MPSO classified the test
data according to the information of the optimum clustering
centers shown in Table 3 and correctly and quickly output
identification results. As an example, some diagnosis results
are listed in Table 6.We also identified condition of the rolling
bearing using PSO and WPSO algorithms, respectively, and
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Figure 10:The vibration signal in roller defect state: (a) original vibration signal, (b) after multiwavelet adaptive threshold denoising, and (c)
Fourier spectrum of the denoised signal.

Table 3: Clustering centers obtained by MSPO.

Machinery condition Clustering centers
𝑃1 𝑃5 𝑃6

Normal 0.378 2.882 0.076
Outer-race defect 0.433 6.094 0.571
Inner-race defect 0.118 4.051 0.187
Roller element defect 0.729 5.246 0.022

Table 4: Clustering centers obtained by SPO.

Machinery condition Clustering centers
𝑃1 𝑃5 𝑃6

Normal 0.371 2.922 0.069
Outer-race defect 0.583 6.081 0.558
Inner-race defect 0.082 3.825 0.175
Roller element defect 0.579 5.325 0.020

Table 5: Clustering centers obtained by WSPO.

Machinery Condition Clustering Centers
𝑃1 𝑃5 𝑃6

Normal 0.395 2.831 0.073
Outer-race defect 0.558 6.105 0.583
Inner-race defect 0.155 4.228 0.223
Roller element defect 0.796 5.045 0.021

some identification results are shown in Tables 7 and 8. The
comparison of diagnostic capability of each method is shown
in Figure 13. Viewing the overall diagnostic results, diagnostic

accuracy of each state usingMPSO algorithm is 100%, 88.3%,
86.7%, and 81.7%, respectively; they are the largest in three
methods. The method proposed in this study provides a
more accurate estimate in the case of the rolling bearing
faults diagnosis. These results verified the efficiency of the
intelligent diagnosis method using multiwavelet adaptive
threshold denoising and MPSO proposed in this paper.

6. Conclusions

In order to diagnose faults of rotation machinery at an
early stage, this paper proposed a novel intelligent condition
diagnosis method using multiwavelet adaptive threshold
denoising and MPSO to detect faults and distinguish fault
types at an early stage.Themain conclusions are summarized
as follows.

(1) The method of multiwavelet adaptive threshold
denoising was presented for extracting weak fault
features under background noise. It could adaptively
select appropriate threshold for multiwavelet with
energy ratio of multiwavelet coefficient. The simula-
tion experiment verified that the method of multi-
wavelet adaptive threshold denoising can effectively
extract fault features and eliminate much noise from
the noisy signal.

(2) The six SPs in the frequency domain were defined for
reflecting the features of vibration signals measured
in each state. DI using statistical theory had been also
defined to evaluate the applicability of the SPs for the
condition diagnosis measured in each state. DI could
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Figure 11: Flowchart for the condition diagnosis by the method proposed in this study.

be used to indicate the fitness of a SP for condition
identification.

(3) MPSO algorithm with adaptive inertia weight adjust-
ment and particle mutation was proposed for con-
dition identification. MPSO algorithm was used to

classify the SPs calculated from the signals in each
machine state for condition diagnosis, as well as
obtaining their optimal clustering centers. According
to these optimal clustering centers’ information, the
conditions of rotation machinery could be accurately
identified. MPSO algorithm effectively solved local
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Table 6: Diagnosis result using proposed method.

Machinery condition Number of
training data

Number of test
data

Number of
correct results

Diagnostic
accuracy (%)

Normal 40 60 60 100%
Outer-race defect 40 60 53 88.3%
Inner-race defect 40 60 52 86.7%
Roller element defect 40 60 49 81.7%

Table 7: Diagnostic result using PSO.

Machinery condition Number of
training data

Number of test
data

Number of
correct results

Diagnostic
accuracy (%)

Normal 40 60 52 86.7%
Outer-race defect 40 60 43 71.6%
Inner-race defect 40 60 41 68.3%
Roller element defect 40 60 43 71.6%

Table 8: Diagnosis result using WPSO.

Machinery condition Number of
training data

Number of test
data

Number of
correct results

Diagnostic
accuracy (%)

Normal 40 60 60 100%
Outer-race defect 40 60 49 81.7%
Inner-race defect 40 60 45 75%
Roller element defect 40 60 46 76.7%

Fi
tn

es
s v

al
ue

MPSO
WPSO

PSO

Iteration number

0
0

50

100

500 1000

150

200

Figure 12:The fitness curve of PSO, WPSO, andMPSO algorithms.

optimum and premature convergence problems of
conventional PSO algorithm and raised diagnostic
accuracy.

(4) Practical example of condition diagnosis for a rolling
bearing verified that the method proposed in this
paper was effective. Moreover, a comparison was also
made among MPSO, WPSO, and PSO algorithms.
The diagnostic results show that MPSO algorithm
could provide a more accurate estimate in the case of
the rolling bearing faults diagnosis.
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Figure 13: Comparison of diagnostic capability.
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