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We use variational level set method and transition region extraction techniques to achieve image segmentation task. The proposed
scheme is done by two steps. We first develop a novel algorithm to extract transition region based on the morphological gradient.
After this, we integrate the transition region into a variational level set framework and develop a novel geometric active contour
model, which include an external energy based on transition region and fractional order edge indicator function. The external
energy is used to drive the zero level set toward the desired image features, such as object boundaries. Due to this external energy,
the proposed model allows for more flexible initialization. The fractional order edge indicator function is incorporated into the
length regularization term to diminish the influence of noise. Moreover, internal energy is added into the proposed model to
penalize the deviation of the level set function from a signed distance function.The results evolution of the level set function is the
gradient flow that minimizes the overall energy functional.The proposedmodel has been applied to both synthetic and real images
with promising results.

1. Introduction

Image segmentation is a functional problem and complex
task in image processing and computer vision. Its goal is to
change the representation of a given image into something
that is more meaningful and easier to analyze. However,
image segmentation is yet a difficult task since it requires a
semantic understanding of the image. To perform the image
segmentation task, many successful techniques including
geometric active contour models using the level set method
[1] have been presented.

Active contour model, proposed by Kass et al. [2], has
been proved to be an efficient framework for image seg-
mentation. However, these models suffer from the sensi-
tivity to initial conditions and the difficulties associated
with topological changes like the merging and splitting of
the evolving curve. In order to overcome these problems,
implicit active contour models, that is, active contour models
in a level set formulation, have been proposed for image
segmentation. The basic idea of the implicit active model
is that an active contour is implicitly represented by the
zero level set of a function in higher dimension (called level
set function), and then the level set function is deformed

according to an evolution partial differential equation. In the
view of mathematics, implicit active contour models can be
categorized into two categories: one is pure PDEmodel [1, 3–
6] whose evolution equation is directly constructed; another
is the variational level set model [7–10] whose evolution
equation is derived from the minimization problem for the
energy functional defined on the level set function. In this
study, we focus on the variational level set methods.

The variational level set methods have been well estab-
lished andwidely used inmany applications of image process-
ing. In field of image segmentation, it can be formulated by
minimizing energy functional defined on the level function
by gradient decent method or other methods. The level
set functions evolve in keeping with a partial differential
equation, which is derived from the minimization of the
energy functional. The popular piecewise constant (PC)
model [7] is a typical variational-based level set method,
which aims to minimize the Mumford-Shah functional [8].
Chan andVese [7] utilize the global image statistics inside and
outside the evolving curve rather than the gradients on the
boundaries to formulate and achieve good performance in
image segmentation task.However, the PCmodel usually fails
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to segment the images with intensity inhomogeneity since
it assumes that the intensities in each region always remain
constant. To overcome the limitation of the PC model, many
efficient schemes have been proposed in related literatures
[9–11]. Wang et al. formulate a local PC model using local
statistical function and extend thismodel for texture segmen-
tation by an extended structure tensor [11]. Li et al. proposed
an implicit active contours model based on local binary
fitting energy, which used the local information as constraint
and well work on the image with intensity inhomogeneities
[12, 13]. He et al. propose an improved region-scalable fitting
model based on the “mollifying” kernel and local entropy
[14]. There is a problem appearing in these implicit models:
contour initialization. This means that the segmentation
results generally depend on the selection of initial contours.
Recently, Li et al. design a new external energy to make the
proposedmodel robust to initialization or free of manual ini-
tialization, which is denoted asMCYmodel in this paper [15].

To solve the limitation of variational level set method,
many researchers try to propose efficient schemes combined
with other methods [16]. In this paper, we incorporate the
transition region into the variational framework, which is
different from other methods. Transition region is geometri-
cally located between object and background and composed
of pixels having intermediate gray levels between those
of object and background [17]. Due to this characteristic,
transition region-based thresholding has been developed
quickly in image segmentation area. Gerbrands demonstrates
the existence of transition region in an image for the first time.
After this, Zhang and Gerbrands introduce the transition
region into thresholding segmentation method [18]. Yan et
al. present a local entropy based transition region extraction
and thresholding method [19]. Li and Liu propose a modified
local entropy based transition region extraction method by
integrating local complexity and local variance [20]. These
references show that transition region has been used in
thresholding segmentation well. However, thresholding tech-
niques generally introduce discontinuous contour. In this
work, we incorporate the transition region into the varia-
tional framework and develop a novel image segmentation
method.

In this paper, we propose a two-stage variational level set
model for image segmentation. The proposed segmentation
scheme is done in two steps. We first develop a novel algo-
rithm to extract transition region based on themorphological
gradient. After this, we integrate the transition region into a
variational level set framework and develop a novel geometric
active contourmodel.The energy functional for the proposed
model consists of three parts: external term, regularization
term, and internal term. The external energy based on
transition region is used to drive the zero level set toward the
desired image features, such as object boundaries. Due to this
external energy, the proposed model allows for more flexible
initialization. The fractional order edge indicator function is
incorporated into the length regularization term to diminish
the influence of noise. Moreover, internal energy is added
into the proposed model to penalize the deviation of the
level set function from a signed distance function.The results
evolution of the level set function is the gradient flow that

minimizes the overall energy functional.Theproposedmodel
has been applied to both synthetic and real images with
promising results.

The remainder of the paper is organized as follows.
In Section 2, we simply review the related knowledge of
morphological gradients and fractional order differentiation.
The proposedmodel and analysis are introduced in Section 3.
We present the numerical scheme and experimental results in
Section 4. The conclusion is presented in Section 5.

2. Related Works

2.1. Morphological Gradients. Mathematical morphology is
a theory and technique for the analysis and processing of
geometrical structures, based on set theory, lattice theory,
topology, and random functions, which can be dated back to
1964. It is a typical nonlinear method in image processing,
which has been widely applied in image denoising, edge
detection, and image restoration. In mathematical morphol-
ogy, dilation and erosion are two fundamental operators.
Other operators can be defined by these operators, like
morphological gradient. Let 𝐼(𝑥) : Ω → R be a grayscale
image and let 𝑆 be a grayscale structuring element which is
used to detect the entire image.Thus, the dilation operator of
image 𝐼(𝑥) can be computed by

(𝐼 ⊕ 𝑆) (𝑥) = sup
𝑦∈𝐸

[𝐼 (𝑦) + 𝑆 (𝑥 − 𝑦)] ; (1)

and the erosion operator of image 𝐼(𝑥) can be computed by

(𝐼 ⊙ 𝑆) (𝑥) = inf
𝑦∈𝐸

[𝐼 (𝑦) + 𝑆 (𝑦 − 𝑥)] . (2)

According to the definition of dilation, there are two results
for image performed by this operator: (1) if the value of
structuring element is positive, the output image is brighter
than the input one; (2) it will reduce the black detail part of
the input image. Conversely, there are two results after the
erosion: (1) if the value of structuring element is positive, the
output image is blacker than the input one; (2) it will reduce
the bright detail part of the input image.

Morphological gradients can be defined by the difference
between the dilation and the erosion of a given image. In
other words, the morphological gradients are of enhancing
variation of pixel intensity in a given neighborhood. Thus,
it is useful for edge detection and image segmentation. For
a grayscale image 𝐼, the morphological gradient has the
following formulation:

Grad (𝐼) ≡ (𝐼 ⊕ 𝑆) − (𝐼 ⊙ 𝑆) . (3)

We also denote 𝐺 = Grad(𝐼).

2.2. Fractional Order Differentiation Formulation. As a gen-
eralization of integer order derivative, the fractional order
derivative can date back to correspondence between Leibniz
andHospital in 1695.The fractional order derivative has been
recognized as a powerful model mythology and applied in
many fields such as image processing. Up to now, the reader
is aware that more than one fractional order derivative exists
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in literatures. In this paper, we give the following formulation
about the fractional order differentiation.

For a given continuous function of a single variable
𝑓(𝑥) ∈ 𝐿

2
(R), the Fourier transform of 𝑓(𝑥) is defined as

𝑓 (𝑤) = ∫
R

𝑓 (𝑡) exp (−𝑗𝑤𝑡) 𝑑𝑡, (4)

where 𝑗 = √−1. In this paper, we use 𝑓
𝑛
(𝑡) instead of

𝑓
(𝑛)

(𝑡) to represent the 𝑛th derivative of𝑓(𝑡). According to the
differentiation property of Fourier transform, the equivalent
formulation of the 𝑛th derivative in the frequency domain is

𝑓
𝑛
(𝑡) ←→ 𝐹 (𝑓

𝑛
(𝑡)) = (𝑗𝑤)

𝑛
𝑓 (𝑤) , (5)

where ↔ denotes the Fourier transform pair. Clearly, the
right-hand side of the above expression is meaningful for any
number 𝑛. Thus, we can define the fractional order derivative
of 𝑓 with the order ] whose real part is greater than zero in
the Fourier domain by

𝐷
]
𝑓 (𝑡) = 𝐹

−1
((𝑗𝑤)

]
𝑓 (𝑤)) , Re ] > 0, (6)

where 𝐹
−1 is the inverse Fourier transform operator. Simi-

larly, fractional order partial derivatives of𝑓(𝑥, 𝑦) ∈ 𝐿
2
(R2)∩

𝐶(R2) are defined as

𝐷
]
𝑥
𝑓 (𝑥, 𝑦) = 𝐹

−1
((𝑗𝑤1)

]
𝑓 (𝑤1, 𝑤2)) ,

𝐷
]
𝑦
𝑓 (𝑥, 𝑦) = 𝐹

−1
((𝑗𝑤2)

]
𝑓 (𝑤1, 𝑤2)) .

(7)

Naturally, the fractional gradient operator can be defined
as

∇
]
𝑓 = (𝐷

]
𝑥
𝑓,𝐷

]
𝑦
𝑓) (8)

with the associated norm |∇
]
𝑓| = √(𝐷]

𝑥
𝑓)
2
+ (𝐷]
𝑦
𝑓)
2.

According to this norm, the fractional order edge indicator
function is defined by the following formulation generally

𝑔 (
󵄨󵄨󵄨󵄨∇

]
𝐼
󵄨󵄨󵄨󵄨) =

1

1 + 𝑐2|∇
]𝐼|
2
. (9)

It can be used for edge detection and also enhance selec-
tivity and robustness the presence of noise. The fractional
order edge indicator function is proposed in image denoising
[21] and image upsampling [22].

3. The Proposed Two-Stage Model

In this section, we will present two steps for the proposed
segmentation scheme: transition region extraction method
and variational level set segmentation model.

3.1. Transition Region Extraction Method Based on Morpho-
logical Gradient. Recently, transition region based method
has been developed in related references such as local
entropy based transition region extraction method and gray
level difference based transition region extraction method.

In this work, we present the morphological gradients based
transition region extraction method and then use the mean
of transition region to compute the weight of the external
energy in the variational level set model. Detailed process
of the proposed transition extraction algorithm is shown in
Algorithm 1.

The process of extraction is different from other meth-
ods, which is established on domain of the morphological
gradients. Meanwhile, we will deal with transition region
in a different way and incorporate it into the variational
framework.

3.2. The Proposed Variational Model Based on Transition
Region. In level set methods, a closed curve 𝐶 ⊂ Ω is
presented implicitly by the zero level set of a Lipschitz
function 𝜙 : Ω → R, with the following properties:

𝜙 (𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ inside (𝐶)

𝜙 (𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝐶

𝜙 (𝑥, 𝑦) < 0, (𝑥, 𝑦) ∈ outside (𝐶) .

(10)

The proposed model is established on level set function, and
its evolution is controlled by three forces, an external force,
adaptive regularizing force, and internal force.

3.2.1. External Energy Term Based onMorphological Gradient.
In image segmentation, an external energy can be used to
move the zero level curve toward the objects boundaries,
which depend on the image information under the level set
method. In this subsection, we define an external energy
𝐴(𝜙) based on morphological gradients to drive the level set
function to have opposite sign besides the edges.

For the given image 𝐼 : Ω → R, we can define the
following function:

𝑤 (𝐼, 𝑇
∗
) = 𝐺𝜎 ∗ (𝑇

∗
− 𝐼) , (11)

where 𝑇
∗ is the mean of transition region, obtained by

Algorithm 1 as described in Section 3.1, and 𝐺𝜎 is the Gaus-
sian kernel function with the standard deviation 𝜎. In the
following, we would show that the weight function 𝑤(𝐼, 𝑇

∗
)

has the opposite sign beside edges in the transition region,
which can be named as adaptive sign property. Without loss
of generality, we assume that the gray-level of the object is
brighter than that in the background. In the transition region,
if the point (𝑥, 𝑦) is located at the region of the object, the
gray value of the given image 𝐼 for the point (𝑥, 𝑦) is lower
than the mean of transition region 𝑇

∗. Thus, the weight
function of weighted area functional 𝑤(𝐼, 𝑇

∗
) for the point

(𝑥, 𝑦) is negative. In contrast, the value of the weight function
is positive in the region of the background. By the above
analysis, we can obtain that the value of the weight function
is of adaptive sign property.

Next, we propose a novel variational formulation based
on this weighted function. This will serve as an external
energy for the proposed model, which can be defined as

𝐴 (𝜙) = ∫
Ω

𝑤 (𝐼, 𝑇
∗
)𝐻 (−𝜙) 𝑑𝑥 𝑑𝑦, (12)
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Input: Data 𝐼 and grayscale structuring element 𝑆.
Processing: (1) Compute the morphological gradients 𝐺 of the data 𝐼 according to (3);

(2) Design the following threshold 𝐺
𝑇
for the transition region extraction;

𝐺
𝑇
= 𝜅 × 𝐺max with 𝐺max = max

∀(𝑖,𝑗)

𝐺(𝑖, 𝑗)

(3) Extract the transition region TR via the following way:

TR(𝑖, 𝑗) = {
1 if 𝐺(𝑖, 𝑗) ≥ 𝐺

𝑇

0 otherwie
;

Output: the mean of transition region 𝑇
∗ for TR.

Algorithm 1: Image transition region extraction.

where𝑤(𝐼, 𝑇
∗
) is the weight function defined by (11) and𝐻(⋅)

is the Heaviside function. The gradient flow of 𝐴(𝜙) is given
by the Gateaux derivative:

∇𝐴 (𝜙) = −𝑤 (𝐼, 𝑇
∗
) 𝛿 (𝜙) . (13)

According to the adaptive sign property of 𝑤(𝐼, 𝑇
∗
), the

level set function 𝜙 moves with speed of |𝑤(𝐼, 𝑇
∗
)𝛿(𝜙)| in

the opposite direction (up or down) automatically, which
coincides with the property of level set function.

3.2.2. Adaptive Length Regularization Term Based on Frac-
tional Order Edge Indicator Function. As the existing level
set evolution models, for our model it is also necessary to
add a regularizing term into the evolution to smooth the
level set function 𝜙. In the spirit of the Mumford-Shah
(MS) functional, most of models focus on penalizing the
length of contours as the regularization. For our model, we
pursue the idea of MS functional and define the following
adaptive regularizing force based on the fractional order edge
indicator function for the level set function 𝜙:

𝐿 (𝜙) = ∫
Ω

1

1 + 𝑐2|∇
]𝐼|
2

󵄨󵄨󵄨󵄨∇𝐻 (𝜙)
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

= ∫
Ω

1

1 + 𝑐2|∇
]𝐼|
2
𝛿 (𝜙)

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦,

(14)

where 𝛿(⋅) is Dirac delta function and 𝐼 : Ω → R is the
observed image. For the minimum point 𝜙, the gradient flow
of the objective energy functional 𝐿(𝜙) is given by

∇𝐿 (𝜙) = −𝛿 (𝜙) div(𝑔 (
󵄨󵄨󵄨󵄨∇

]
𝐼
󵄨󵄨󵄨󵄨)

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) , (15)

where 𝑔(|∇]
𝐼|) = 1/(1 + 𝑐

2
|∇

]
𝐼|
2
). In order to understand the

geometric meaning of the objective energy functional 𝐿(𝜙),
we suppose that zero level set of 𝜙 can be represented by a
differentiable parameterized curve 𝐶(𝑝), 𝑝 ∈ [0, 1]. Then,
functional 𝐿(𝜙) in (14) shows the length of the zero level
curve of 𝜙 in the conformal metric 𝑑𝑠 = 𝑔(𝐶(𝑝))|𝐶

󸀠
(𝑝)|𝑑𝑝.

Thus, the zero level curves move with speed 𝑔(∇
]
𝐼) and stop

on the desired boundary. In this term, the fractional order
edge indicator function can release the influence of noise
for computing the length of the zero level curves, which is
different from the generally edge indicator function as used

in PMmodel [23].The effect of this edge indicator function is
from the fractional order differentiation. There are two basic
ideals behind the selection of fractional order differentiation.
First, the intensity inhomogeneity is slowly varying in the
image domain. Its spectrum in frequency domain will be
concentrated in the low-frequency area. Fractional order
differentiation is able to preserve and enhance the low
frequency information, which is superior to the first order
differentiation. Second, fractional order differentiation can
improve immunity to noise, which can be interpreted in
terms of robustness to noise in general. This property is very
important for medical images and infrared images that suffer
from noise. According to these reasons, we incorporate this
edge indicator function into the proposed model.

3.2.3. Internal Energy Functional. In many situations, the
level set function will develop shocks, very sharp and/or flat
shape during the evolution, which in turn makes further
computation highly inaccurate in numerical approximations
[9]. To avoid these problems, it is necessary to keep the level
set function as an approximate signed distance function in the
processing of the evolution, especially in the neighborhood
around the zero level set [24]. An alternative approach is to
solve the eikonal equation |∇𝜙| = 1. Some fast algorithms
have been proposed for solving this eikonal equation. How-
ever, these algorithms are generally time-consuming. In this
paper, we add an extra internal energy to replace solving the
eikonal equation, which can be written as

𝑃 (𝜙) =
1

2
∫
Ω

(
󵄨󵄨󵄨󵄨∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨 − 1)
2
𝑑𝑥 (16)

with the gradient flow

∇𝑃 (𝜙) = div(
∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) − Δ𝜙. (17)

This extra internal energy avoids directly using the
reinitialization step to keep the level set function as a signed
distance function. Actually, this term is more like a metric to
characterize how close a function 𝜙 is to a signed distance
function, which plays an important role in our model.

3.2.4. The Proposed Energy Functional. With the above
defined forces, that is, adaptive length regularization term
𝐿(𝜙), weighted external energy 𝐴(𝜙), and 𝑃(𝜙), the overall
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(a) (b) (c)

(d) (e) (f)

Figure 1: Segmentations results on the regularization term. First column: original image and noisy images; second column: the proposed
model without 𝐿(𝜙); third column: the proposed model.

objective energy functional for the level set function 𝜙 is
expressed as

𝐸 (𝜙) = 𝜆𝐿 (𝜙) + 𝛾𝐴 (𝜙) + 𝜇𝑃 (𝜙)

= 𝜆∫
Ω

𝑔𝛿 (𝜙)
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

+ 𝛾∫
Ω

𝑤 (𝐼, 𝑇
∗
)𝐻 (−𝜙) 𝑑𝑥 𝑑𝑦

+
𝜇

2
∫
Ω

(
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨 − 1)
2
𝑑𝑥 𝑑𝑦.

(18)

By the linearity of gradient operator, the gradient flow of
the functional 𝐸(𝜙) is given by

∇𝐸 (𝜙) = −𝜆𝛿 (𝜙) div(𝑔
∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) − 𝛾𝑤 (𝐼, 𝑇
∗
) 𝛿 (𝜙)

− 𝜇 [Δ𝜙 − div(
∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

)] .

(19)

We obtain the gradient decent flow equation for the func-
tional 𝐸(𝜙):

𝜕𝜙

𝜕𝑡
= 𝜆𝛿 (𝜙) div(𝑔

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) + 𝛾𝑤 (𝐼, 𝑇
∗
) 𝛿 (𝜙)

+ 𝜇 [Δ𝜙 − div(
∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

)] .

(20)

For practical and feasible implementation, 𝐻𝜀(𝑥) is
chosen as a noncompactly supported, smooth, and strictly

monotone approximation of 𝐻(𝑥), which can be formulated
as

𝐻𝜀 (𝑥) =
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 +

2

𝜋
arctan

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, 𝜀 󳨀→ 0. (21)

The regularized version 𝛿𝜀(𝑥) of the Dirac function 𝛿(𝑥)

is correspondingly written as follows:

𝛿𝜀 (𝑥) =
1

𝜋
⋅

𝜀

𝜀2 + 𝑥2
. (22)

3.2.5. Further Analysis of the Proposed Energy Functional.
In this subsection, we would verify the effectiveness of the
two new terms incorporated in the new level set method.
The external energy term is a force which moves the zero
level set curve toward the object boundaries. If without this
term, the proposed model does not have any other forces
to finish this work, and its experimental results will be like
the first column of Figure 1. The adaptive regularization term
based on fractional order differentiation is used to diminish
the influence of noise and smooth the level set function.
If we reduce this term, the proposed model will not finish
segmentation task for images with strong noise. We give
the experimental results on two images: original image and
degraded image with strong noise, as shown in Figure 1.
As we can see, the proposed model cannot segment image
with strong noise when it loses the help of the adaptive
regularization term.

4. Numerical Algorithm and Results

4.1. Numerical Implementation of the Model. The partial
differential equation in the continuous domain presented
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Segmentation results by both models: the proposed model and RSF model on the synthetic image with different noise. First row:
original image and noisy images (Gaussian white noise with zero mean with different variances: 0.02, 0.1, and 0.2 for (b)–(d)); second row:
the proposed model; third row: RSF model.

in (20) can be implemented using a simple finite difference
method in numerical scheme. All the spatial derivatives
𝜕𝜙/𝜕𝑥 and 𝜕𝜙/𝜕𝑦 are approximated by the central difference
and the temporal partial derivatives 𝜕𝜙/𝜕𝑡 are approximated
by the forward difference. To approximate (20) numerically,
we recall first the notations in the finite differences schemes.
LetΔ𝑡 be the time step, let ℎ be the space step, and let (𝑥𝑖, 𝑦𝑗) =
(𝑖ℎ, 𝑗ℎ) be the grid points.We also denote 𝜙𝑛

𝑖,𝑗
= 𝜙(𝑥𝑖, 𝑦𝑗, 𝑛Δ𝑡)

as an approximation of the level set function 𝜙(𝑥, 𝑦, 𝑡). The
central differences of spatial partial derivatives are written as
the following notations:

Δ
𝑥
𝜙𝑖,𝑗 =

𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗

2ℎ
, Δ

𝑦
𝜙𝑖,𝑗 =

𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗−1

2ℎ
. (23)

Then, the evolution equation of our model in (20) can
be discredited using the forward difference as the following
formulation:

𝜙
𝑛+1

𝑖,𝑗
− 𝜙
𝑛

𝑖,𝑗

Δ𝑡
= 𝑄 (𝜙

𝑛

𝑖,𝑗
) , (24)

where 𝑄(𝜙
𝑛

𝑖,𝑗
) is the numerical approximation of the right

hand side of (20). The corresponding curvature 𝜅 =

div(∇𝜙/|∇𝜙|) in the 𝑄(𝜙
𝑛

𝑖,𝑗
) can be discredited as

𝑘
𝑛

𝑖,𝑗
= Δ
𝑥
[
[
[

[

Δ
𝑥
𝜙
𝑛

𝑖,𝑗

√(Δ𝑥𝜙
𝑛

𝑖,𝑗
)
2

+ (Δ𝑦𝜙
𝑛

𝑖,𝑗
)
2

]
]
]

]

+ Δ
𝑦
[
[
[

[

Δ
𝑦
𝜙
𝑛

𝑖,𝑗

√(Δ𝑥𝜙
𝑛

𝑖,𝑗
)
2

+ (Δ𝑦𝜙
𝑛

𝑖,𝑗
)
2

]
]
]

]

.

(25)

Then, (20) is implemented as follows:

𝜙
𝑛+1

𝑖,𝑗
− 𝜙
𝑛

𝑖,𝑗

Δ𝑡
= 𝜆𝛿 (𝜙

𝑛

𝑖,𝑗
) 𝑙
𝑛

𝑖,𝑗
+ 𝛾𝑤(𝐼, 𝑇

∗
)
𝑖,𝑗
𝛿 (𝜙
𝑛

𝑖,𝑗
)

+ 𝜇 (Δ
𝑥
(Δ
𝑥
𝜙
𝑛

𝑖,𝑗
) + Δ
𝑦
(Δ
𝑦
𝜙
𝑛

𝑖,𝑗
) − 𝑘
𝑛

𝑖,𝑗
) ,

(26)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: The comparisons of the MCY model (the first and the third row) and the proposed model (the second and the fourth row) on
segmenting the synthetic images in Figures 2(a) and 2(b), starting with different constant functions (𝜙

0
= −1, 0, 1 from left column to right

column).

where

𝑙
𝑛

𝑖,𝑗
= Δ
𝑥
[
[
[

[

1

1 + 𝑐2
󵄨󵄨󵄨󵄨󵄨
∇]𝐼𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

⋅

Δ
𝑥
𝜙
𝑛

𝑖,𝑗

√(Δ𝑥𝜙
𝑛

𝑖,𝑗
)
2

+ (Δ𝑦𝜙
𝑛

𝑖,𝑗
)
2

]
]
]

]

+ Δ
𝑦
[
[
[

[

1

1 + 𝑐2
󵄨󵄨󵄨󵄨󵄨
∇]𝐼𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

⋅

Δ
𝑦
𝜙
𝑛

𝑖,𝑗

√(Δ𝑥𝜙
𝑛

𝑖,𝑗
)
2

+ (Δ𝑦𝜙
𝑛

𝑖,𝑗
)
2

]
]
]

]

.

(27)

4.2. Experimental Results. In this subsection, we present the
experimental results of our model on a variety of synthetic
and real images and compare them with the MCYmodel [15]
and RSF model [13]. Unless otherwise specified, the level set
function 𝜙(𝑥, 𝑦, 𝑡) is simply initialized to a constant function
𝜙0(𝑥, 𝑦) = 0 for all the experiments. We use the same
parameters of time step Δ𝑡 = 5, 𝜆 = 15, and 𝛾 = 30 for all
the images in this paper.

The first experiment is to perform the proposed mode on
synthetic images with increased strength of noise shown in
Figure 2.This group contains four images: original image and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: Segmentation results on four ship images by three models. First row: original images; second row: the MCYmodel; third row: the
RSF model; fourth row: the proposed model.

three noisy images generated by adding Gaussian white noise
with variances 0.02, 0.1, and 0.2.We use 𝜅 = 0.8 for these four
images. The results of our method are shown in the second
row of Figure 2. From this, we can see that the proposed
model can finish the task of segment well for not only
original image but also degraded images with strong noise.
In addition, we compare our model with the MCY model to
test the sensitivity to initialization. The experimental results

for 𝜙0 = −1, 0, 1 are shown in Figure 3. We observe that
the proposed model successfully extracts the object for 𝜙0 =
−1, 0, 1, while the MCY model does not finish the task of
segment for the case of 𝜙0 = −1, 0. Thus, the proposed model
is of more flexible initialization. From Figure 3, we also see
that the robustness to noise for the proposed model is better
than that for the MCYmodel from the third and fourth rows
of Figure 3.
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(a) (b) (c) (d)

Figure 5: Segmentation results on skin images by threemodels. First column: original image; second column: theMCYmodel; third column:
the RSF model; fourth column: the proposed model.
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(a)

(b)

(c)

(d)

Figure 6: Segmentation results on other types of image by three models. First row: an aerial image, a breast cyst image, and a MR image of
ventriculus cordis; second row: the MCY model; third row: the RSF model; fourth row: the proposed model.

The second experiment is to perform the proposedmodel
on four infrared ship images shown in Figure 4. This type
of image has common characteristic, that is, burry images
with high strength of noise. This brings very great difficulties
for image segmentation. Here, we advise that the value of 𝜅
belong to interval [0.1, 0.5] and use 𝜅 = 0.15, 0.25, 0.25, 0.5

for the given image. From the first experiment, we can find
that the proposed model is robust to the noise, which is

used to extract the object for this kind image. The results
of the MCY model and the RSF model are also shown in
Figure 4. We observed that the proposed model achieves the
segmentation task.

The third experiment is to perform the proposed model
on another kind of image, skin image. To analyze skin lesions,
it is necessary to accurately locate and isolate the lesions.
However, it is a challenging task since the skin image contains
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many things, such as cutaneous melanoma, grid texture, and
hair on the human skin surface. In this experiment, we test
the proposed model on six skin images. The segmentation
results by the proposed model and the other two models are
shown in Figure 5. We can see that the MCY model and the
RSF model cannot deal with this kind of image, while the
proposed model achieves satisfactory segmentation results
for these six images.

The final experiment is to perform the proposed model
on the other three real images from different modalities: a
breast cyst image with complex tissue background, an aerial
imagewith cognitive contours, and aMR image of ventriculus
cordis with complex structure and weak boundary. We list
the results by the proposed model, the MCY model, and the
RSF model in Figure 6. As we can see, the proposed model
extracts the objects for these three images. They illustrate the
advantages of the proposed model: the ability to deal with
weak boundary and complex background.

5. Conclusion

Anovel image segmentationmodel is presented in this paper,
which is established by two steps. Firstly, we present a novel
transition region extraction method based on morphological
gradient. After this, we integrate the transition region into a
variational level set framework and develop a novel geometric
active contourmodel. Since the transition region and fraction
order indicator function are used, the proposed algorithm
allows for more flexible initialization and diminishes the
influence of noise. The proposed model has been applied
to both synthetic and real images with promising results.
The experimental results confirm the effectiveness of the
proposed model for image segmentation.
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