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The fuzzy C means clustering algorithm with spatial constraint (FCMS) is effective for image segmentation. However, it lacks
essential smoothing constraints to the cluster boundaries and enough robustness to the noise. Samson et al. proposed a variational
level set model for image clustering segmentation, which can get the smooth cluster boundaries and closed cluster regions due to
the use of level set scheme. However it is very sensitive to the noise since it is actually a hard Cmeans clusteringmodel. In this paper,
based on Samson’s work, we propose a new variational level set model combined with FCMS for image clustering segmentation.
Compared with FCMS clustering, the proposed model can get smooth cluster boundaries and closed cluster regions due to the
use of level set scheme. In addition, a block-based energy is incorporated into the energy functional, which enables the proposed
model to bemore robust to the noise than FCMS clustering and Samson’smodel. Some experiments on the synthetic and real images
are performed to assess the performance of the proposed model. Compared with some classical image segmentation models, the
proposed model has a better performance for the images contaminated by different noise levels.

1. Introduction

Image segmentation is separating the image domain into
dissimilar homogeneous regions, which is the precondition
and foundation of further image analysis and understanding.
The quality of segmentation affects the result of the following
analysis and processing directly. So, it is an important
technique in image processing and has drawn much research
attention at the theory and application. In recent years, vari-
ational level set method and clustering technology have been
widely exploited in image segmentation because of their good
experimental performance and sound theoretical foundation.

The variational level set model used in image segmen-
tation is formulated as follows [1–4]. The contours are first
implicitly represented by the zero level set (ZLS) of a higher
dimensional function, usually referred to as the level set func-
tion. And then one can obtain evolution partial differential
equation (PDE) or partial differential equations (PDEs) for
level set function in terms ofminimizing an energy functional
which typically includes the internal energy that smoothes
the level set function and the external energy that aligns the
ZLS with object boundaries. At last, the level set function

evolves according to the evolution PDE or PDEs and thus
achieves the goal for evolving the ZLS implied therein. Com-
pared with the traditional level set method where the level
set function is driven purely by PDE, in the variational level
set method, the evolution PDE is obtained by minimizing
energy functional. So, more prior information (e.g., texture
and shape information) on the image can be conveniently
taken into account into the energy functional, which makes
the variational level set method have a good performance
and extensive adaptability. Here, we present some classical
variational level set models for image segmentation. The
well-known Mumford and Shah (MS) [5] model for image
segmentation has been successfully extended to a wide range
of applications. But it cannot be solved directly in practice
because of the nonconvexity of its functional. Recently, some
improved models are proposed, such as piecewise constant
model [6] proposed byChan andVese (CV) and region-based
active contour model [7] (RBACM) proposed by Zhang et
al.. In order to enhance the quality of segmentation for image
with inhomogeneous intensity, Li et al. [8] proposed an
implicit active contour driven by local binary fitting energy
(LBF), and then Zhang et al. [9] proposed an active contour
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driven by local image fitting energy (LIF) which has higher
computing efficiency than LBF. The models mentioned
above can only be utilized for two-phase partition. Some
multiphase models are proposed, such as Vese and Chan [10]
proposed multiphase CV model (MCV), Gao and Yan [11]
proposed multiphase local CV model (MLCV) to improve
the efficiency for noisy image segmentation.

Clustering is to partition a given input dataset or image
pixels into 𝑘 clusters with most similarities in the same
cluster and most dissimilarities between different clusters. In
the last decades, the fuzzy C means clustering (FCM) [12]
has been widely used in image segmentation (e.g., [13, 14])
due to its good performance and a well-grounded theory.
Such a success chiefly attributes to the introduction of fuzzy
membership relations between the image pixels and the
cluster centers, 𝑐

𝑖
(𝑖 = 1, . . . , 𝑘). This allows the ability

of FCM to be able to retain more image information than
the hard C means clustering. The original FCM clustering
has a good performance on segmenting the most noise-
free image, but it fails to segment images contaminated by
noise, outliers, and other imaging artifacts. Ahmed et al. [15]
first considered the fuzzy C means with spatial constraints
(FCMS), that is, incorporating the spatial information of
image into the objective function, to overcome this difficulty.
Afterward, some FCMS-basedmodels were proposed tomeet
different research requirements. Such as Chen and Zhang
[16] modified the FCMS objective function to reduce the
computational complexity. They then replaced the Euclidean
distance in FCMS by a kernel-induced distance and then
proposed a Gaussian kernel version of FCMS, called GFCMS
later. Yang and Tsai [17] proposed a generalized type of
GFCMS in which the parameters can be automatically esti-
mated under a learning scheme. Kannan et al. [18] proposed
an effective FCMS for segmenting medical images. Liu et
al. [19] proposed a fuzzy spectral clustering combined with
spatial information. He et al. [20] proposed a new FCM
clustering with total variation regularization for segmenting
the images with noisy and incomplete data.

The above mentioned clustering algorithms are all based
on the discrete data.They utilize the intensity, statistics prop-
erties, and spatial features of image pixels to perform pixels
clustering. But they cannot obtain the smooth cluster bound-
aries and closed cluster regions due to the lack of the essential
smoothing constraint to the cluster boundaries, while the
variational level setmethod just can deal with the above prob-
lems. So, the image segmentation quality will be improved
if the clustering algorithms are appropriately combined with
the variational level setmethod.However,most of the current
clustering algorithms are based on the discrete dataset, while
variation method is based on continuous function. So, these
two techniques cannot be combined together easily. Samson
et al. [21] first solved this problem in 2000 by the use of
level set method. As the first attempt of combining data
clustering with variation method, Samson’s model still has
some drawbacks, such as (1) it is a hard C means clustering;
(2) it is very sensitive to the noise; and (3) it is a supervised
clustering model. To solve these drawbacks, we propose a
variational level set model combined with FCMS clustering
(called VFCMS later) in this paper. Compared with Samson’s

model, the proposed model has the following advantages: (1)
it is a fuzzy clustering model; (2) it is very robust to the noise;
and (3) it is a semisupervised clustering model.

The remainder of this paper is organized as follows:
in Section 2, some backgrounds concerning the standard
FCMS clustering (and its variants) and Samson’s model are
presented; some drawbacks of them are also mentioned.
In Section 3, a variational level set model combined with
FCMS (i.e., VFCMS) is proposed. In Section 4, we apply
the proposed model to image clustering segmentation. The
comparisons with some classical image segmentationmodels
are also performed in this section. This paper is summarized
in Section 5.

2. The Backgrounds

2.1. FCMS Clustering and Its Variants. In [15], the authors
proposed FCMS clustering to partition the discrete dataset
{x
𝑗
}
𝑛

𝑗=1
into 𝑘 clusters. The main contribution of FCMS

is that the spatial information of the discrete dataset was
incorporated into the objective function, which can increase
the robustness to noise. The objective function of FCMS is
defined as
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where 𝜇
𝑖𝑗
is a fuzzy membership matrix and 𝑚 is weighting

exponent on each fuzzy membership; {k
𝑖
}
𝑘

𝑖=1
are the cluster

centers. 𝑁
𝑗
is the set of neighbors falling into the window

centered at x
𝑗
and 𝑁

𝑅
is its cardinality; the parameter 𝛼 is

the weighting coefficient of the spatial constraints. In essence,
the spatial constraint (the second term in (1)) aims at keeping
the continuity on the neighboring data values around x

𝑗
. By

minimizing in a way similar to the standard FCM algorithm,
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(2)

The procedure of FCMS clustering is as follows. First, based
on the prior information of dataset, predefine the cluster
number 𝑘 and the initial cluster centers {k

𝑖
}
𝑘

𝑖=1
. And then

update the fuzzy membership matrix 𝜇
𝑖𝑗
and cluster centers
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(a) Noisy data

(b) FCM (c) FCMS1 (d) FCMS2 (e) GFCMS

(f) CV (ZLSs) (g) CV (h) LIF (ZLSs) (i) LIF

(j) RBACM (ZLSs) (k) RBACM (l) Samson’s model (ZLSs) (m) Samson’s model

(n) VFCMS1 (ZLSs) (o) VFCMS1 (p) VFCMS2 (ZLSs) (q) VFCMS2

Figure 1: Continued.
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Figure 1: Comparison of segmentation results on a synthetic image with mixed 1% Salt and Pepper, Gaussian, and Speckle noise (cluster
number 𝑘 = 2).
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(a) Comparison of classification errors on synthetic image with 1%
mixed noise under different values of alpha
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(b) Comparison of classification errors on synthetic image with 2%
mixed noise under different values of alpha

Figure 2: Comparison of classification errors on two-phase synthetic image with different mixed noise levels under different values of alpha.
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In [16], Chen and Zhang studied the FCMS clustering and
pointed out a shortcoming of its update equations (2), that
is, computing the neighborhood terms will take much more
time than the classical FCM.They noticed that
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(a) Noisy image

(b) FCM (c) FCMS1 (d) FCMS2 (e) GFCMS

(f) CV (ZLSs) (g) CV (h) LIF (ZLSs) (i) LIF

(j) RBACM (ZLSs) (k) RBACM (l) Samson’s model (ZLSs) (m) Samson’s model

(n) VFCMS1 (ZLSs) (o) VFCMS1 (p) VFCMS2 (ZLSs) (q) VFCMS2

Figure 3: Comparison of segmentation results on a synthetic image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster
number 𝑘 = 2).



6 Mathematical Problems in Engineering

(a) Noisy data
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Figure 4: Continued.
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(r) VFCMS1 (ZLSs) (s) VFCMS1 (t) VFCMS2 (ZLSs) (u) VFCMS2
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Figure 4: Comparison of segmentation results on a synthetic image with mixed 0.5% Salt and Pepper, Gaussian, and Speckle noise (cluster
number 𝑘 = 3).
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where x
𝑗
can be computed in advance. Obviously, updating

(5) is simpler than (2). So the clustering time can be saved.
For convenience of notation, the authors of [16] named the
clustering algorithmusing (5)withmedian andmeanfiltering
FCMS

1
and FCMS

2
, respectively.

Although FCMS clustering and its variants (e.g., FCMS
1

and FCMS
2
) have the benefits that it is simple and easy to

manipulate, it cannot obtain the smooth cluster boundaries
and the closed cluster regions for the lack of the essential
smoothing constraints for the cluster boundaries. In addition,
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(a) Noisy data

(b) FCM (c) FCMS1 (d) FCMS2 (e) GFCMS

(f) CV (ZLSs) (g) CV (h) LIF (ZLSs) (i) LIF

(j) RBACM (ZLSs) (k) RBACM (l) Samson’s model (ZLSs) (m) Samson’s model

(n) MCV (ZLSs) (o) MCV (p) MLCV (ZLSs) (q) MLCV

Figure 5: Continued.
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(r) VFCMS1 (ZLSs) (s) VFCMS1 (t) VFCMS2 (ZLSs) (u) VFCMS2

Figure 5: Comparison of segmentation results on a synthetic image with mixed 1.5% Salt and Pepper, Gaussian, and Speckle noise (cluster
number 𝑘 = 3).

although the spatial constraint is incorporated into the
objective function, FCMS cannot achieve good clustering
result when the dataset is contaminated by strong noise.

2.2. Samson’s Model. The mentioned above clustering algo-
rithms are all based on the discrete data, so they cannot be
solved by the variational method directly. It was the first
time for Samson et al. to employ the variational method
for data clustering by using level set method. In [21], they
proposed a clusteringmodel based on variational level set and
then applied it to image clustering segmentation. Let image
domain beΩ ∈ R2 and let image function be 𝑓(x) : Ω → R.
Image clustering segmentation is equivalent to solving the
following minimization problem:

inf
𝜙𝑖

{

{
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1
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) =
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}

}

}

.

(6)

The first term of the energy functional (6) aims to partition
the image domain Ω into 𝑘 subregions where the image
intensity has a Gaussian distribution of mean 𝑐

𝑖
and of

standard deviation 𝜎
𝑖
. The second term is the regularization

energy; minimizing it is equivalent to minimizing the inter-
face between clusters. Minimizing the third term leads to a
solution where the formation of a vacuum (pixel with no
labels) and overlapping (pixel with more than one labels)
regions are penalized.

As the first attempt of data clustering manipulated by the
use of variational method, Samson’s model has an advantage
over the traditional clustering algorithms in obtaining the
smooth cluster boundaries and the closed cluster regions.
However, there are still some drawbacks as follows.

(1) Samson’s model is actually a hard C means clustering
which lacks the ability to retain abundant information

from the original image and is also very sensitive to
noise.

(2) The external clustering energy (the first term of
𝐸(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
)) is point-based, which makes the cluster-

ing results sensitive to noise and outliers.
(3) It is a supervised image classificationmodel.The clus-

ter number 𝑘 and the cluster centers {𝑐
𝑖
}
𝑘

𝑖=1
must be

given by the preclustering. In addition, the updating
schemes for the cluster centers are not introduced by
Samson et al. So, the clustering result is very sensitive
to the choice of the initial cluster centers.

(4) The evolving level set function 𝜙
𝑖
(x, 𝑡) needs periodi-

cal reinitialization to keep it close to a signed distance
function during its evolution by solving the following
PDE:
𝜕𝜙
𝑖 (x, 𝑡)
𝜕𝑡

= sign (𝜙
𝑖 (x, 𝑡)) (1 −

∇𝜙𝑖 (x, 𝑡)
) .

(7)

In this paper, following Samson’s work, we propose a
variational level set model combined with FCMS clustering
(VFCMS) for image clustering segmentation. Four schemes
are introduced to resolve the above mentioned drawbacks of
Samson’s model (6).

(1) A block-based clustering energy and a spatial con-
straint are introduced into the energy functional. In
addition, the fuzziness of belongingness of each pixel
to the cluster centers is introduced. These improve-
ments enable the new model to be more robust to
noises than Samson’s model and FCMS clustering.

(2) A variational formulation is proposed for updating
membership functions and cluster centers, which
makes the newmodelmore robust to the initial cluster
centers and achieves a semisupervised clustering.

(3) A regularization term based on a new edge stopping
function is proposed, which enables the active con-
tours to move quickly through the noise regions and
reach the right boundaries of image.

(4) A regularization term is introduced to eliminate the
need of the costly reinitialization procedure.
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(a) Noisy data

(b) FCM (c) FCMS1 (d) FCMS2 (e) GFCMS

(f) CV (ZLSs) (g) CV (h) LIF (ZLSs) (i) LIF

(j) RBACM (ZLSs) (k) RBACM (l) Samson’s model (ZLSs) (m) Samson’s model

(n) VFCMS1 (ZLSs) (o) VFCMS1 (p) VFCMS2 (ZLSs) (q) VFCMS2

Figure 6: Continued.
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Figure 6: Comparison of segmentation results on a plane image withmixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number
𝑘 = 2).

3. The Proposed VFCMS Model

3.1. External Energy

3.1.1. Fuzzy Clustering Energy. The external clustering energy
proposed by Samson et al. in [21] is defined as
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Unfortunately, minimizing directly this energy functional to
achieve the image clustering has two drawbacks: (1) it is
sensitive to noises since it is point-based and (2) the ratio 𝑒

𝑖
/𝜎
𝑖

of weighted parameter 𝑒
𝑖
to the standard deviation 𝜎

𝑖
can be

seen as the membership between the image pixel 𝑓(x) and
the cluster center 𝑐

𝑖
. In [21], these two parameters are both

chosen as constants. So, the clustering algorithm proposed by
Samson et al. in [21] is actually a hard C means clustering. To
deal with the first problem, (1) the use of block-based energy
and (2) incorporating spatial information into the energy are
appropriate choices. For the second problem, fuzziness of the
belongingness of each image pixel should be incorporated
into the clustering energy. Most existing fuzzy clustering
algorithms are based on the discrete data and utilize the
membership matrix to determine the belongingness of each
data.Thematrix is difficult to incorporate into the variational
formulation directly. In this paper, we introduce continuous
membership function 𝜇

𝑖
(x) which can be easily manipulated

in the variational problem.
Based on the points discussed above, we introduce the

following fuzzy and block-based clustering energy:

E
𝐴

1
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

=

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑐

𝑖
)
2
𝑑y𝐻(𝜙

𝑖 (x)) 𝑑x,

s.t.
𝑘

∑

𝑖=1

𝐻(𝜙
𝑖 (x)) = 1,

𝑘

∑

𝑖=1

𝜇
𝑖 (x) = 1,

(9)

where 𝐺
𝜎
(x) is a point spread function, (e.g., Gaus-

sian function with standard deviation 𝜎). The constraint
∑
𝑘

𝑖=1
𝐻(𝜙
𝑖
(x)) = 1 is to penalize the overlapping and vacuum

formation of the clustering regions and ∑
𝑘

𝑖=1
𝜇
𝑖
(x) = 1 is a

nature constraint.
In what follows, we analyze this energy in the theory.

Denote

𝑓 (x) = ∫
Ω

𝐺
𝜎
(x − y) 𝑓 (y) 𝑑y = (𝐺

𝜎
∗ 𝑓) (x) . (10)

The point spread function 𝐺
𝜎
(x) satisfies that ∫𝐺

𝜎
(x)𝑑x = 1.

Thus we have

∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑐

𝑖
)
2
𝑑y

= ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x) + 𝑓 (x) − 𝑐𝑖)

2

𝑑y

= ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x))

2

𝑑y

+ (𝑓 (x) − 𝑐𝑖)
2

∫
Ω

𝐺
𝜎
(x − y) 𝑑y

+ 2∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x)) (𝑓 (x) − 𝑐𝑖) 𝑑y

= ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x))

2

𝑑y + (𝑓 (x) − 𝑐𝑖)
2

+ 2∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x)) (𝑓 (x) − 𝑐𝑖) 𝑑y

(11)
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(a) Noisy image

(b) FCM (c) FCMS1 (d) FCMS2 (e) GFCMS

(f) MCV (ZLSs) (g) MCV (h) MLCV (ZLSs) (i) MLCV

(j) Samson’s model (ZLSs) (k) Samson’s model (l) VFCMS1 (ZLSs) (m) VFCMS1

(n) VFCMS2 (ZLSs) (o) VFCMS2

Figure 7: Continued.
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(r) The surface plot of 𝜙3

Figure 7: Comparison of segmentation results on a plane image withmixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number
𝑘 = 3).

in which

∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x)) (𝑓 (x) − 𝑐𝑖) 𝑑y

= (𝑓 (x) − 𝑐𝑖)∫
Ω

𝐺
𝜎
(x − y) 𝑓 (y) 𝑑y

− 𝑓 (x) (𝑓 (x) − 𝑐𝑖)∫
Ω

𝐺
𝜎
(x − y) 𝑑y

= (𝑓 (x) − 𝑐𝑖) 𝑓 (x) − 𝑓 (x) (𝑓 (x) − 𝑐𝑖) = 0,

∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑓 (x))

2

𝑑y

= ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y))2𝑑y + ∫

Ω

𝐺
𝜎
(x − y) (𝑓 (x))

2

𝑑y

− 2∫
Ω

𝐺
𝜎
(x − y) 𝑓 (y) 𝑓 (x) 𝑑y

= ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y))2𝑑y − (𝑓 (x))

2

.

(12)

From the last equation, we have

∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y))2𝑑y − (𝑓 (x))

2

→ 0 as 𝜎 → 0.

(13)

If we ignore this term, the energy functional (9) can be
rewritten as

E
𝐴

1
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

=

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

𝐻(𝜙
𝑖 (x)) 𝑑x,

s.t.
𝑘

∑

𝑖=1

𝐻(𝜙
𝑖 (x)) = 1,

𝑘

∑

𝑖=1

𝜇
𝑖 (x) = 1.

(14)

Since 𝑓(x) can be seen as a denoised image with a smoothing
kernel 𝐺

𝜎
(x), minimizing energy (14) is equivalent to cluster

the denoised image by FCM clustering. Thus, the proposed
model is more robust to noise than the standard FCM
clustering and Samson’s model.
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 8: Segmentation results on a sun image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 2).

In order to further increase the robustness to noises, we
introduce the following spatial constraint into the energy
functional. Note that here we adopt a modified form pro-
posed by Chen and Zhang in [16] to save the computing time.

E
𝐴

2
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

=

𝑘

∑

𝑖=1

𝛼∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

𝐻(𝜙
𝑖 (x)) 𝑑x,

s.t.
𝑘

∑

𝑖=1

𝐻(𝜙
𝑖 (x)) = 1,

𝑘

∑

𝑖=1

𝜇
𝑖 (x) = 1,

(15)

where 𝛼 > 0 is a tuning parameter and 𝑓(x) can be can be
considered to be the mean or median of 𝑓(x) supported on
the disk centered at x. Similar to (4), the value of 𝑓(x) can be
computed in advance, thus the clustering time can be saved.

Combining (9) and (15), the total external clustering
energy is

E
𝐴
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

= E
𝐴

1
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
) +E
𝐴

2
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

=

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) ∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑐

𝑖
)
2
𝑑y𝐻(𝜙

𝑖 (x)) 𝑑x

+

𝑘

∑

𝑖=1

𝛼∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

𝐻(𝜙
𝑖 (x)) 𝑑x,

s.t.
𝑘

∑

𝑖=1

𝐻(𝜙
𝑖 (x)) = 1,

𝑘

∑

𝑖=1

𝜇
𝑖 (x) = 1.

(16)

Similar to [16], for convenience of notation later, the proposed
VFCMS model is renamed as VFCMS

1
and VFCMS

2
corre-

sponding to 𝑓(x) being median filtering and mean filtering,
respectively. In addition, in what follows, we always write

∫
Ω

𝐺
𝜎
(x − y) (𝑓 (y) − 𝑐

𝑖
)
2
𝑑y = (𝐺

𝜎
∗ (𝑓 − 𝑐

𝑖
)
2
) (x) . (17)

3.1.2. The Optimal Membership Functions. Fixing level set
functions {𝜙

𝑖
}
𝑘

𝑖=1
and clustering centers {𝑐

𝑖
}
𝑘

𝑖=1
, we seek the

optimal membership functions 𝜇
𝑖
(x) which make the energy

functional E𝐴(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
) to converge to a local min-

imum. In order to improve the ability of active contour
to capture the pixels belonging to its cluster, we compute
the optimal membership functions that are supported on
the whole image domain Ω, that is, computing the mem-
bership relations between each pixel x and each cluster
center 𝑐

𝑖
. Firstly, we extend the fuzzy clustering energy

E𝐴(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
) to the whole image domain Ω, denoted

as E𝐴
Ω
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
). Minimizing E𝐴

Ω
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
) with
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 9: Segmentation results on a palm image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 2).

respect to each 𝜇
𝑖
(x), we can obtain the optimal membership

functions supported on total image domain Ω. The detail is
stated as follows:

min
𝜇𝑖(x)

{E
𝐴

Ω
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

=

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x) 𝑑x

+

𝑘

∑

𝑖=1

𝛼∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

𝑑x} ,

s.t.
𝑘

∑

𝑖=1

𝜇
𝑖 (x) = 1.

(18)

Using calculus of variation and Lagrange multiplier method,
the necessary condition on 𝜇

𝑖
(x) for (18) to be at a local

minimum is

𝜇
𝑚−1

1
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x) + 𝛼𝜇𝑚−1

1
(x) (𝑓(x) − 𝑐𝑖)

2

= ⋅ ⋅ ⋅ = 𝜇
𝑚−1

𝑘
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x)

+ 𝛼𝜇
𝑚−1

𝑘
(x) (𝑓 (x) − 𝑐𝑖)

2

,

𝑘

∑

𝑖=1

𝜇
𝑖 (x) = 1.

(19)

Solving each 𝜇
𝑖
(x) in the last equations, we can obtain the

optimal membership functions

𝜇
𝑖 (x)=

((𝐺
𝜎
∗ (𝑓 − 𝑐

𝑖
)
2
) (x) + 𝛼(𝑓(x) − 𝑐

𝑖
)
2

)

−1/(𝑚−1)

∑
𝑘

𝑡=1
((𝐺
𝜎
∗ (𝑓 − 𝑐

𝑖
)
2
) (x) + 𝛼(𝑓(x) − 𝑐

𝑡
)
2

)

−1/(𝑚−1)
.

(20)

In the experiments, (20) gives us the updating formula of the
optimal membership functions.

3.1.3. The Optimal Cluster Centers. Fixing level set functions
{𝜙
𝑖
}
𝑘

𝑖=1
andmembership functions {𝜇

𝑖
}
𝑘

𝑖=1
, we seek the optimal

cluster centers {𝑐
𝑖
}
𝑘

𝑖=1
which make the energy functional

E𝐴(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
) to be a local minimum. That is, minimiz-

ing the energy

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x)𝐻 (𝜙

𝑖 (x)) 𝑑x

+

𝑘

∑

𝑖=1

𝛼∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

𝐻(𝜙
𝑖 (x)) 𝑑x

(21)
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 10: Segmentation results on a light image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 2).

with respect to each 𝑐
𝑖
. The necessary condition on 𝑐

𝑖
for (21)

to be a local minimum is

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)) (x)𝐻 (𝜙

𝑖 (x)) 𝑑x

+

𝑘

∑

𝑖=1

𝛼∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)𝐻 (𝜙

𝑖 (x)) 𝑑x = 0.

(22)

Solving 𝑐
𝑖
in the last equation, we have

𝑐
𝑖
=
∫
Ω
𝜇
𝑚

𝑖
(x) ((𝐺𝜎 ∗ 𝑓) (x) + 𝛼𝑓 (x))𝐻 (𝜙

𝑖 (x)) 𝑑x
(1 + 𝛼) ∫

Ω
𝜇𝑚
𝑖
(x)𝐻 (𝜙

𝑖 (x)) 𝑑x
. (23)

The optimal cluster center 𝑐
𝑖
is actually the weighted mean of

𝑓(x) supported on theΩ
𝑖
. Equation (23) gives us the updating

formula of the optimal cluster centers in the iterative process.

3.2. The Internal Energy. In this section, we introduce two
internal energies E𝐵

1
and E𝐵

2
, where E𝐵

1
is to penalize the

singularities of level set functions and E𝐵
2
is to penalize the

formation of vacuum and overlapping regions.
In the traditional variational level set method for image

processing, in order to maintain the stability of the level set
function during the evolution, the evolving level set function
needs periodical reinitialization to keep it close to a signed

distance function [22]. Samson et al. achieved the reinitializa-
tion by periodically solving PDEs (7). Many serious problems
remain such as when to apply the reinitialization and the
computational complexity increases. In this paper, we adopt
method proposed by Zhang et al. in [23] and introduce the
following internal energy:

E
𝐵

1
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) =

1

2

𝑘

∑

𝑖=1

𝜆∫
Ω

∇𝜙𝑖 (x)

2
𝑑x (24)

to eliminate the need of the expensive reinitialization proce-
dure. Here, 𝜆 > 0 is a tuning parameter.The energyE𝐵

1
can be

identified as a metric to measure the smoothness of the level
set function.

The constraint ∑𝑘
𝑖=1

𝐻(𝜙
𝑖
(x)) = 1 is to penalize the

vacuum and overlapping regions. In this paper, similar to
(6), we introduce the following internal energy to meet this
constraint:

E
𝐵

2
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) =

1

2
𝜅∫
Ω

(

𝑘

∑

𝑖=1

𝐻(𝜙
𝑖 (x)) − 1)

2

𝑑x, (25)

where 𝜅 > 0 is a tuning parameter.The value of∑𝑘
𝑖=1

𝐻(𝜙
𝑖
(x))

will trend to 1 in the process of minimizing the energyE𝐵
2
. So,

the overlapping and vacuum cluster regions will decrease in
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 11: Segmentation results on satellite image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 3).

the process of clustering. In what follows, we write the total
of internal energy as

E
𝐵
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) = E

𝐵

1
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) +E
𝐵

2
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) . (26)

3.3.The Regularization Energy. Samson et al. [21] introduced
the following regularization energy to smooth the boundaries
of the clusters:

E
𝐶
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) =

𝑘

∑

𝑖=1

𝛾∫
𝜙𝑖=0

𝑑𝑠

=

𝑘

∑

𝑖=1

𝛾∫
Ω

𝑔 (𝑓 (x)) ∇𝐻 (𝜙
𝑖 (x))

 𝑑x,

(27)

where the stopping function is defined as

𝑔 (𝑓 (x)) = 1

1 +
∇𝐺𝜎 ∗ 𝑓 (x)


2
, (28)

which is a decreasing function of the gradient module of
image.The evolving velocity of ZLS is about one (𝑔(𝑓(x)) →
1) at the smooth position of the image, since the gradient
module is about zero (|∇𝑓(x)| → 0) at this position, which
makes the ZLS tomove quickly through the smooth position.
At the position of the edge, the gradient module |∇𝑓(x)| →
∞ and the evolving velocity 𝑔(𝑓(x)) → 0, which makes

the ZLS to stay the edges. But if the data is very noisy, the
evolving velocity of ZLS is about zero at the position of
isolated noise, since the gradient module is about infinite
at this position, which makes ZLS stay at the position of
isolated noise and results in failed image segmentation. So,
the traditional edge indicators based on the image gradient
module cannot effectively distinguish between edges and
isolated noises. In [24], the authors presented a new edge
indicator based on the second derivatives, which is defined as

𝐷 =



𝑓
𝜂𝜂


−

𝑓
𝜉𝜉




, (29)

where 𝑓
𝜂𝜂

and 𝑓
𝜉𝜉

represent the second directional deri-
vatives in the direction of the gradient ∇𝑓 and in the per-
pendicular direction of ∇𝑓, respectively. | ⋅ | denotes the
absolute value. The performance of the new edge indicator is
as follows: (1) for the edges, |𝑓

𝜂𝜂
| is large and |𝑓

𝜉𝜉
| is small, so

𝐷 is large and (2) for the isolated noises, |𝑓
𝜂𝜂
| and |𝑓

𝜉𝜉
| are

both large and almost equal, so 𝐷 is small. According to the
analysis mentioned above, edges and isolated noises can be
well distinguished based on the value of𝐷.

In this paper, we use a new stopping function in regular-
ization energy (27)

𝑔 (𝑓 (x)) = 1

1 +
𝐷(𝐺𝜎 ∗ 𝑓(x))


2
, (30)

which is based on the edge indicator (29).
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 12: Segmentation results on a butterfly image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 3).

3.4.TheNumerical Implementation. Combined with external
energyE𝐴, internal energyE𝐵 and regularization energyE𝐶,
image clustering segmentation is equivalent to minimize the
following energy functional:

E (𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
)

= E
𝐴
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
, 𝜇
𝑖
, 𝑐
𝑖
) +E
𝐵
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
) +E
𝐶
(𝜙
1
⋅ ⋅ ⋅ 𝜙
𝑘
)

=
1

2

𝑘

∑

𝑖=1

𝜆∫
Ω

∇𝜙𝑖(x)

2
𝑑x + 1

2
𝜅∫
Ω

(

𝑘

∑

𝑖=1

𝐻(𝜙
𝑖
(x)) − 1)

2

𝑑x

+

𝑘

∑

𝑖=1

∫
Ω

𝜇
𝑚

𝑖
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x)𝐻 (𝜙

𝑖 (x)) 𝑑x

+

𝑘

∑

𝑖=1

𝛼∫
Ω

𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

𝐻(𝜙
𝑖 (x)) 𝑑x

+

𝑘

∑

𝑖=1

𝛾∫
Ω

𝑔 (𝑓 (x)) ∇𝐻 (𝜙
𝑖 (x))

 𝑑x.

(31)

In experiments, we choose 𝐺
𝜎
(x) Gaussian function with

standard deviation 𝜎, that is,

𝐺
𝜎 (x) =

1

2𝜋𝜎
exp(−|x|

2

2𝜎2
) . (32)

The functionalE still has a drawback from the practical point
of view; that is,E is not Gateaux differentiable. So we have to
regularize E. To do this, we use the following regularization
Heaviside and Dirac function defined as

𝐻
𝜀 (𝑠) =

{{{

{{{

{

1

2
(1 +

𝑠

𝜀
+
1

𝜋
sin(𝜋𝑠

𝜀
)) |𝑠| ≤ 𝜀

1 𝑠 > 𝜀

0 𝑠 < −𝜀,

𝛿
𝜀 (𝑠) =

{

{

{

1

2𝜀
(1 + cos(𝜋𝑠

𝜀
)) |𝑠| < 𝜀

0 𝑠 ≥ 𝜀

(33)

to approximate the standard Heaviside and Dirac functions,
respectively. In this paper, we choose that 𝜀 = 5.

Formally minimizing the energy (31) with respect to each
𝜙
𝑖
yields the following𝐾-coupled Euler-Lagrange equations:

− 𝜆Δ𝜙
𝑖
+ 𝛿
𝜀
(𝜙
𝑖
) [𝜇
𝑚

𝑖
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x)

+ 𝛼𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

− 𝛾 div(𝑔 (𝑓 (x))
∇𝜙
𝑖

∇𝜙𝑖


)

+ 𝜅(

𝑘

∑

𝑖=1

𝐻
𝜀
(𝜙
𝑖 (x)) − 1)] = 0

(34)
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 13: Segmentation results on a panda image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 3).

for 𝑖 = 1, . . . , 𝑘, with the Neumann boundary conditions. To
solve the 𝐾-coupled PDEs (34), adopting gradient descent
scheme, we embed it into a dynamical process,

𝜕𝜙
𝑖

𝜕𝑡
= 𝜆Δ𝜙

𝑖

− 𝛿
𝜀
(𝜙
𝑖
) [𝜇
𝑚

𝑖
(x) (𝐺𝜎 ∗ (𝑓 − 𝑐

𝑖
)
2
) (x)

+ 𝛼𝜇
𝑚

𝑖
(x) (𝑓 (x) − 𝑐𝑖)

2

− 𝛾 div(𝑔 (𝑓 (x))
∇𝜙
𝑖

∇𝜙𝑖


)

+𝜅(

𝑘

∑

𝑖=1

𝐻
𝜀
(𝜙
𝑖 (x)) − 1)]

(35)

with the initial conditions 𝜙
𝑖
(𝑥, 𝑦, 0) = 𝜙

𝑖,0
(𝑥, 𝑦) for 𝑖 =

1, . . . , 𝑘. In this paper, we use the explicit finite difference
scheme and two-step splitting method [23] to solve (35). The
reader can refer to [23] for more details.

3.5. The Algorithm of Image Clustering Segmentation. Using
updating formulas (20), (23), and (35) to update the
membership functions {𝜇

𝑖
(x)}𝑘
𝑖=1

, cluster centers {𝑐
𝑖
}
𝑘

𝑖=1
, and

level set functions {𝜙
𝑖
}
𝑘

𝑖=1
successively, we obtain the follow-

ing iterative algorithm for VFCMS clustering segmentation
model.

Algorithm (VFCMS Clustering)

Step 1. Given the number of the classes 𝑘 and the initial level
set functions {𝜙

𝑖
}
𝑘

𝑖=1
, choosing the initial cluster centers {𝑐

𝑖
}
𝑘

𝑖=1
.

Step 2. Fixed level set functions {𝜙
𝑖
}
𝑘

𝑖=1
and cluster cen-

ters {𝑐
𝑖
}
𝑘

𝑖=1
, computing the optimal membership functions

{𝜇
𝑖
(x)}𝑘
𝑖=1

by (20).

Step 3. Fixed cluster centers {𝑐
𝑖
}
𝑘

𝑖=1
and membership func-

tions {𝜇
𝑖
(x)}𝑘
𝑖=1

, computing the optimal level set functions
{𝜙
𝑖
}
𝑘

𝑖=1
by solving the𝐾-coupled PDEs (35).

Step 4. Fixed membership functions {𝜇
𝑖
(x)}𝑘
𝑖=1

and level
set functions {𝜙

𝑖
}
𝑘

𝑖=1
, computing the optimal cluster centers

{𝑐
𝑖
}
𝑘

𝑖=1
by (23).

Step 5. If max
𝑖
|𝑐
𝑖
− 𝑐
𝑖
| ≤ 𝜀, end the algorithm; else let 𝑐

𝑖
= 𝑐
𝑖

and go back to Step 2.

Step 6. Output the result of image clustering segmentation
𝑢 = ∑

𝑘

𝑖=1
𝑐
𝑖
𝐻
𝜀
(𝜙
𝑖
(x)).
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 14: Segmentation results on a CT image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 4).

4. Experimental Results

In this section, we show the experimental results of image
segmentation on several synthetic and real images. There
are a total of twelve models used in this section, that is, (1)
clustering models (FCM, FCMS

1
, FCMS

2,
and GFCMS), (2)

variational level set models (CV, IVC, LIF,MCV, andMLCV),
and (3) the integration of variational level set and clustering
(Samson’s model, VFCMS

1,
and VFCMS

2
).

4.1. The Choice of Parameters. For the choice of the initial
level set function, under the combined effects of the clustering
energy and internal energy, the choice of the initial level set
function is very flexible. In our experiments, the initial level
set functions are all chosen as 𝜙

𝑖
(x) = 1 (𝑖 = 1, . . . , 𝑘).

We also tested our model by using other initial level set
functions, such as 𝜙

𝑖
(x) = 0, signed distance function, and

piecewise constant function. We found that our model using
these different initial level set functions can all get correct
image segmentation. We adopt a simple method to choose
the initial cluster centers, which is stated as follows. Let 𝑚 =

minx∈Ω𝑓(x),𝑀 = maxx∈Ω𝑓(x), and ℎ = (𝑀 − 𝑚)/𝑘; then

𝑐
𝑖
=
∑x∈Ω𝑖 𝑓 (x)

Ω𝑖


, (36)

whereΩ
𝑖
= {x ∈ Ω : 𝑚 + (𝑖 − 1)ℎ ≤ 𝑓(x) < 𝑚 + 𝑖ℎ}.

The parameter 𝜅 is a weighting parameter to measure
the penalization for the formation of a vacuum and regions
overlapping, which has a very important effect on the
performance of the proposed model. So the value of 𝜅 should
not be very small. In all experiments, we set 𝜅 = 50. We
also find that for a wide range of 𝜅 over 50 (e.g., from 50
to 100), there seem to be no apparent changes in the results.
The parameter 𝜎 adjusts the degree of smoothing. If it is too
small, we cannot obtain good segmentation results due to the
effect of the noises. Conversely, if 𝜎 is too large, the clustering
boundaries will deviate from the image boundaries due to
the oversmoothing of the image. How to choose an optimal
smoothing parameter 𝜎 is still an “open question.” In this
paper, we adopted the “trial and error” technique to deter-
mine the value of smoothing parameter𝜎. In the experiments,
if the image is corrupted bymixed 0.5% or 1% Salt and Pepper,
Gaussian, and Speckle noise, we set 𝜎 = 2 and if the image
is corrupted by 1.5% or 2% mixed noise, we set 𝜎 = 2. In
order to obtain the optimal segmentation under the case of 𝜎
being fixed, the choice of parameter 𝛼 is very important in the
proposedmodel. For the FCMS

1
, FCMS

2
, GFCMS, VFCMS

1,

and VFCMS
2
clusteringmodels, the parameter 𝛼 controls the

weight of the spatial constraints. In the experiments, we still
adopt “trial and error” technique to determine the value of
parameter 𝛼. The detail of the choice of 𝛼 is presented in Sec-
tion 4.2. For the other parameters, we set 𝜆 = 0.1 and 𝛾 = 1.
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 15: Segmentation results on a CT image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 4).

4.2. Image Clustering Segmentation

Example 1 (the clustering segmentation of noisy syn-
thetic images). Figure 1 shows the segmentation results of a
synthetic image corrupted by 1% Salt and Pepper, Gaussian,
and Speckle noise simultaneously. This image with 128 × 128
pixels contains two clusters (i.e., object and background).
Experiment results show that FCMclustering, CVmodel, LIF
model, and Samson’s model cannot segment image well due
to the effect of the noise. Since RBACM model utilizes the
global image intensities inside and outside the contour, it can
get better segmentation result. FCMS

1
, FCMS

2,
and GFCMS

model also can get good segmentation due to the introduc-
tion of spatial information.However, we find that FCMS

2
and

GFCMS clustering have fewer pixels being misclassified than
FCMS

1
. This is because FCMS

1
is implemented by median

filtering, while FCMS
2
is implemented by mean filtering

and GFCMS replaces the European distance with Gaussian
kernel-induced distance. From Figures 1(n)–1(q), we can see
that the proposed VFCMS

1
and VFCMS

2
models both can

give us good segmentation. This is because we introduce the
block-based term in the functional, except for spatial con-
straints. The last two plots show the surface plot for the con-
vergent level set functions of VFCMS

2
model, respectively.

We take a set of values for 𝛼 to test its performance in
FCMS

1
, FCMS

2
, GFCMS, VFCMS

1,
and VFCMS

2
clustering

models. Figure 2(a) shows the comparisons of classification
errors of these models under different values of 𝛼 on the

synthetic two-phase image shown in Figure 1(a). From
Figure 2(a), as 𝛼 increases, the numbers of misclassified
pixels of all five models firstly reduce. FCMS

1
, FCMS

2
, and

GFCMS reach minima between 𝛼 = 2.8 and 𝛼 = 3.2, and
VFCMS

1
and VFCMS

2
reach minima when 𝛼 in the interval

of [1.4, 3.0]. From Figure 2(a), we note that as 𝛼 continues
to increase, the numbers of misclassified pixels of all five
models will increase. In the first experiment (i.e., Figure 1),
we set 𝛼 = 2.2 in VFCMS

1
and VFCMS

2
, and set 𝛼 = 2.8 in

FCMS
1
, FCMS

2,
and GFCMS.

Figure 3 shows segmentation results of the synthetic
two-phase image corrupted by 2% Salt and Pepper, Gaussian,
and Speckle noise simultaneously. For the choice of 𝛼,
similarly, we take a set of values for 𝛼 to test its performance.
Figure 2(b) shows the comparisons of classification errors of
FCMS

1
, FCMS

2
, GFCMS, VFCMS

1,
and VFCMS

2
clustering

models under different values of 𝛼. We obtain similar
conclusions to the first experiment (see Figure 2(a)). From
Figure 2(b), we set 𝛼 = 3 in VFCMS

1
and VFCMS

2
, and

set 𝛼 = 3.2 in FCMS
1
, FCMS

2,
and GFCMS. From Figure 3,

we can clearly see that compared with the other models, the
proposed models can achieve obvious predominance when
image is corrupted by strong noise.

Figure 4 shows the segmentation results of a synthetic
three-phase image corrupted by 0.5% Salt and Pepper,
Gaussian, and Speckle noise.This image with 128×128 pixels
contains three clusters. In the experiments, the parameters
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(a) Original image and its noisy version (b) VFCMS1 (c) VFCMS2

Figure 16: Segmentation results on a CT image with mixed 2% Salt and Pepper, Gaussian, and Speckle noise (cluster number 𝑘 = 4).

are set as 𝛼 = 2 in VFCMS
1
and VFCMS

2
, and 𝛼 = 2.4 in

FCMS
1
, FCMS

2,
and GFCMS. Here, we add comparisons

with MCV andMLCV which are both multiphase segmenta-
tion models. Experiment results show that FCM clustering,
CV model, LIF model, and Samson’s model cannot segment
image well. Although RBACM is more robust to noise, it is
a two-phase segmentation and segments this three-phase
image into two parts. FCMS

1
, FCMS

2
, GFCMS,MCV,MLCV,

VFCMS
1,
and VFCMS

2
perform better on the visual effect

than othermethods.The last three plots show the surface plot
of the convergent level set functions of VFCMS

2
, respectively.

Figure 5 shows the segmentation results of the synthetic
three-phase image corrupted by 1.5% Salt and Pepper,
Gaussian, and Speckle noise. We set 𝛼 = 2.6 in VFCMS

1
and

VFCMS
2
, and 𝛼 = 3 in FCMS

1
, FCMS

2,
and GFCMS. From

experiment results, we can see that FCM clustering, CV
model, LIF model, and Samson’s model still do not segment
image well. It is observed that FCMS

1
also cannot achieve

satisfactory result in the case of image being corrupted by
strong noise. This is because it is implemented by median
filtering. Similar to Figure 4, FCMS

2
, GFCMS, MCV, MLCV,

VFCMS
1,
and VFCMS

2
can achieve better segmentation.

Table 1 gives us the segmentation accuracy (SA) of the
models on the images shown in Figures 1(a), 3(a), 4(a), and
5(a), where SA is defined as the total number of correctly
classified pixels by the total number of all pixels [16]. By
quantitative comparison of SA, the proposed VFCMS

1
and

VFCMS
2
can achieve more accurate segmentation than the

other models under different noise levels.

Example 2 (the clustering segmentation of noisy plane
image). Figure 6 presents the comparison results (clustering
into 2 clusters) on a plane image corrupted by 2% Salt and
Pepper, Gaussian, and Speckle noise simultaneously. It is
obvious that FCM, CV, LIF, and Samson’s model cannot
segment image well. FCMS

1
, FCMS

2
, GFCMS, and GBACM

can achieve better segmentation than FCM, CV, LIF, and
Samson’s model. Among these ten models, the proposed
VFCMS

1
andVFCMS

2
can obtain the superior segmentation,

and only a few pixels are misclassified. Furthermore, we
find that VFCMS

2
can give us a better segmentation than

VFCMS
1
,This is becauseVFCMS

1
is implemented bymedian

filtering, and VFCMS
2
is implemented by mean filtering.

We conclude that if the test data is corrupted by strong
noise, VFCMS

2
can get better segmentation than VFCMS

1

in general. The last two plots show the surface plot of the
convergent level set functions of VFCMS

2
.

Figure 7 presents the comparison results (clustering into
3 clusters) on the noisy plane image corrupted by 2% mixed
Salt and Pepper, Gaussian, and Speckle noises. This image
contains two low-contrast regions (i.e., background region
and the shadow region of plane). Furthermore, these two
regions are contaminated by strong noises. We would like
to segment noisy plane image into 3 parts and discriminate



Mathematical Problems in Engineering 23

Table 1: SA % of twelve models on noisy synthetic image.

Figure 1(a) Figure 2(a) Figure 4(a) Figure 5(a)
FCM 90.34 86.45 87.32 85.47
FCMS

1
99.01 97.87 98.84 98.74

FCMS
2

99.32 99.24 99.14 99.07
GFCMS 99.48 99.43 99.23 99.15
CV 89.75 87.27 68.14 68.11
LIF 72.34 71.45 62.32 61.46
RBACM 96.57 96.53 70.34 70.28
MCV 99.34 99.32
MLCV 99.47 99.44
Samson’s model 85.89 83.42 96.42 95.47
VFCMS1 99.53 99.47 99.45 99.43
VFCMS2 99.82 99.78 99.64 99.62

these two low-contrast regions. From this figure, we can
see that FCM, FCMS

1
, FCMS

2
, GFCMS, MCV, MLCV, and

Samson’s model cannot distinguish these two low-contrast
regions well. While the proposed VFCMS

1
and VFCMS

2

model can obtain the good segmentation results on these two
low-contrast regions due to the use of block-based energy
and variational level set scheme.The last three plots show the
surface plot of the convergent level set functions of VFCMS

2
.

Example 3 (the clustering segmentation of real images cor-
rupted by mixed noise). Finally, to show the practicability
and validity of the proposed model, different kinds of real
images corrupted by mixed Salt and Pepper, Gaussian, and
Speckle noise are tested. Comparedwith the synthetic images,
these real images contain much more complex boundaries,
weak boundaries, inhomogeneous regions, and low-contrast
regions. Figures 8, 9, and 10 show the segmentation results of
the images which are segmented into two clusters. Figures 11,
12, and 13 show the segmentation results of the images which
are segmented into three clusters.The segmentation results of
the images that are segmented into four clusters are shown in
Figures 14, 15, and 16. From Figures 8–16, we can clearly see
that the proposed model can overcome the influence of noise
and obtain the excellent segmentation results for different
kinds of noisy real images.

5. Conclusions

In this paper, based on the Samson’s work and FCMS cluster-
ing, we proposed a new variational level set model combined
with FCMS for image clustering segmentation. In addition,
a block-based energy was incorporated into the energy
functional, which enables the proposed models robust to the
noise. Some synthetic and real noisy images with different
noise levels were employed to compare the performance
of 12 models. Experimental results show that the proposed
model has a superior performance among these methods.
Anddifferent kinds of real noisy imagewere also used to show
the practicability and validity of the proposed model.

The experimental results reported in this paper show
that the proposed VFCMS model is very effective for noise
image clustering segmentation. This model can also be

improved by incorporating other FCMS-based clustering
algorithms, for example, Kernel-induced FCMS proposed by
Chen and Zhang [16] or Gaussian Kernel-induced FCMS
proposed by Yang and Tsai [17], and so forth. We note
that in passing our model still has some drawbacks, such
as (1) it is a semisupervised image clustering segmentation
and needs to predetermine the clustering numbers; (2) Key
parameters such as 𝛼 weighting spatial term and 𝜎 controll-
ing Gaussian smoothing are determined by human-machine
interaction; (3) the proposed model is more complex and
takes more computing time than some other classical vari-
ational level set model, such as CV, LBF, LIF, and MCV. So,
the proposed model has major drawback of weak real-time
performance. Our further works will include autoselecting
parameters, adaptive determination of the clustering number,
and improving real-time capability of VFCMS.
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