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The present paper presents the application of the polynomial least squares method to nonlinear integral equations of the mixed
Volterra-Fredholm type. For this type of equations, accurate approximate polynomial solutions are obtained in a straightforward
manner and numerical examples are given to illustrate the validity and the applicability of themethod. A comparison with previous
results is also presented and it emphasizes the accuracy of the method.

1. Introduction

In this paper, we consider nonlinear integral Volterra-
Fredholm equations of the general form:

𝑦 (𝑡) = 𝑓 (𝑡) + 𝜆
1
∫

𝑡

𝑎

𝑘
1
(𝑡, 𝑠) 𝑔

1
(𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆
2
∫

𝑏

𝑎

𝑘
2
(𝑡, 𝑠) 𝑔

2
(𝑠, 𝑦 (𝑠)) 𝑑𝑠,

(1)

where 𝑎, 𝑏, 𝜆
1
, and 𝜆

2
are constants and 𝑓, 𝑘

1
, 𝑘
2
, 𝑔
1
, and𝑔

2

are functions assumed to have suitable derivatives on the
[𝑎, 𝑏] interval.

Equations of this type are frequently used to model
applications from various fields of science such as elasticity,
electricity, and magnetism, fluid dynamics, the dynamic of
populations, and mathematical economics.

In general, the exact solution of these nonlinear integral
equations cannot be found and thus it is often necessary
to find approximate solutions for such equations. In this
regard, many approximation techniques were employed over
the years. Some of the approximation methods employed
in recent years include the following (see the examples in
Section 3).

(i) Rationalized Haar functions method ([1, 2])
(ii) Chebyshev polynomials method ([3, 4])

(iii) Triangular functions (TF) method ([5])

(iv) Sinc approximation method ([6])

(v) Collocation methods ([7])

(vi) Optimal control method ([8])

(vii) Radial basis functions method ([9])

(viii) Bernoulli matrix method ([10])

(ix) Homotopy analysis method ([11]).

In the next section, we will present the polynomial
least squares method (PLSM), which allows us to determine
analytical approximate polynomial solutions for nonlinear
integral equations. In the third section, we will compare
approximate solutions obtained using PLSM with approxi-
mate solutions computed recently for several test problems. If
the exact solution of the test problem is polynomial, PLSM is
able to find the exact solution. If not, PLSMallows us to obtain
approximations with an error relative to the exact solution
smaller than the errors obtained using other methods. In
most cases, the approximate solutions obtained not only
are more precise but also present a simpler expression in
comparison to previous ones.
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2. The Polynomial Least Squares Method

We consider the following operator, corresponding to (1):

𝐷(𝑦) = 𝑦 (𝑡) − 𝑓 (𝑡) − 𝜆
1
∫

𝑡

𝑎

𝑘
1
(𝑡, 𝑠) 𝑔

1
(𝑠, 𝑦 (𝑠)) 𝑑𝑠

− 𝜆
2
∫

𝑏

𝑎

𝑘
2
(𝑡, 𝑠) 𝑔

2
(𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(2)

We also consider the so-called remainder associated to
(1), defined as the error obtained by replacing the exact
solution 𝑦 with an approximate solution 𝑦app:

𝑅 (𝑡, 𝑦app) = 𝐷 (𝑦app (𝑡)) , 𝑡 ∈ [𝑎, 𝑏] . (3)

Before we present the actual steps of the method, we
introduce the following types of solutions.

Definition 1. One calls an 𝜖-approximate polynomial solution
of (1) an approximate polynomial solution 𝑦app satisfying the
relation (3).

Definition 2. One calls a weak 𝛿-approximate polynomial
solution of (1) an approximate polynomial solution 𝑦app
satisfying the relation:

∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑦app) 𝑑𝑡 ≤ 𝛿. (4)

One also considers the following type of convergence.

Definition 3. One considers the sequence of polynomials
𝑃
𝑚
(𝑡) = 𝑎

0
+ 𝑎
1
𝑡+ ⋅ ⋅ ⋅ +𝑎

𝑚
𝑡
𝑚, 𝑎
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑚. One calls

the sequence of polynomials 𝑃
𝑚
(𝑡) convergent to the solution

of (1) if lim
𝑚→∞

𝐷(𝑃
𝑚
(𝑡)) = 0.

The aim of PLSM is to find a weak 𝜖-polynomial solution
of the type:

𝑦 (𝑡) =

𝑚

∑

𝑘=0

𝑐
𝑘
𝑡
𝑘
, 𝑚 > 𝑛. (5)

The values of the constants 𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚
are calculated

using the following steps.

Step 1. By substituting the approximate solution (5) in (1), we
obtain the following expression:

R (𝑡, 𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚
)

= 𝑅 (𝑡, 𝑦) = 𝑦 (𝑡) − 𝑓 (𝑡) − 𝜆
1
∫

𝑡

𝑎

𝑘
1
(𝑡, 𝑠) 𝑔

1
(𝑠, 𝑦 (𝑠)) 𝑑𝑠

− 𝜆
2
∫

𝑏

𝑎

𝑘
2
(𝑡, 𝑠) 𝑔

2
(𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(6)

Step 2. Next, we attach to (1) the following real functional:

𝐽 (𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚
) = ∫

𝑏

𝑎

R
2
(𝑡, 𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚
) 𝑑𝑡. (7)

Step 3. We compute 𝑐0
0
, 𝑐
0

1
, . . . , 𝑐

0

𝑚
as the values which give

the minimum of the functional (7). We remark that the
computation of the minimum can be performed in many
ways and some examples are presented in the next section.

Step 4. Using the constants 𝑐0
0
, 𝑐
0

1
, . . . , 𝑐

0

𝑚
determined in the

previous step, we consider the polynomial:

𝑇
𝑚
(𝑡) =

𝑚

∑

𝑘=0

𝑐
0

𝑘
𝑡
𝑘
. (8)

The following convergence theorem holds.

Theorem 4. The necessary condition for (1) to admit a
sequence of polynomials 𝑃

𝑚
(𝑡) convergent to the solution of this

equation is

lim
𝑚→∞

∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑇
𝑚
) 𝑑𝑡 = 0. (9)

Moreover, ∀𝜖 > 0, ∃𝑚
0
∈ N such that for ∀𝑚 ∈ N, 𝑚 > 𝑚

0
, it

follows that𝑇
𝑚
(𝑡) is a weak 𝜖-approximate polynomial solution

of (1).

Proof. Based on the way the coefficients of polynomial 𝑇
𝑚
(𝑡)

are computed and taking into account the relations (5)–(8),
the following inequality holds:

0 ≤ ∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑇
𝑚
(𝑡)) 𝑑𝑡 ≤ ∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑃
𝑚
(𝑡)) 𝑑𝑡, ∀𝑚 ∈ N.

(10)

It follows that

0 ≤ lim
𝑚→∞

∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑇
𝑚
(𝑡)) 𝑑𝑡 ≤ lim

𝑚→∞
∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑃
𝑚
(𝑡)) 𝑑𝑡 = 0.

(11)

We obtain

lim
𝑚→∞

∫

𝑏

𝑎

𝑅
2
(𝑡, 𝑇
𝑚
(𝑡)) 𝑑𝑡 = 0. (12)

From this limit, we obtain that ∀𝜖 > 0, ∃𝑚
0
∈ N such that

for ∀𝑚 ∈ N, 𝑚 > 𝑚
0
, it follows that 𝑇

𝑚
(𝑡) is a weak 𝜖-

approximate polynomial solution of (1).

Step 5. Taking into account the fact that any 𝜖-approximate
polynomial solution of (1) is also aweak 𝜖2(𝑏−𝑎)-approximate
polynomial solution (but the opposite is not always true),
it follows that the set of weak approximate solutions of (1)
also contains the approximate solutions of the equation. As
a consequence, in order to find 𝜖-approximate polynomial
solutions of (1) by PLSM, we will first compute weak approx-
imate polynomial solutions, 𝑦app. If |𝑅(𝑡, 𝑦app)| < 𝜖 then 𝑦app
is also an 𝜖-approximate polynomial solution of the problem.

3. Applications

In this section, we compute approximate polynomial solu-
tions for several test problems previously solved using other
methods and compare the results.
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3.1. Application 1. Our first application is a simple nonlinear
Fredholm integral equation ([6, 10]):

𝑦 (𝑡) = 1 −
5

12
𝑡 + ∫

1

0

𝑡𝑠𝑦
2
(𝑠) 𝑑𝑠. (13)

This equation is obtained from (1) by choosing the constants
𝑎 = 0, 𝑏 = 1, 𝜆

1
= 0, and 𝜆

2
= 1 and the functions 𝑓(𝑡) =

1 − (5/12)𝑡, 𝑘
2
(𝑡, 𝑠) = 𝑡𝑠, and 𝑔

2
(𝑠, 𝑦(𝑠)) = 𝑦

2
(𝑠).

The exact solution of (13) presented in [6, 10] is 𝑦
𝑒
(𝑡) =

1 + 𝑡/3. In [6], approximate solutions of (13) were computed
using two Sinc-collocation-type methods and, in [10] the
exact solution, 𝑦

𝑒
(𝑡)was determined using a Bernoulli matrix

method.
Since the solution is a polynomial, we expected that,

by using PLSM, we would be able to find, if not the exact
solution, at least a very accurate approximation.

In the following, in order to obtain our approximation, we
will perform the steps described in the previous section. The
computations were performed using the SAGE open source
software (v5.5, available at http://www.sagemath.org/).

We choose the polynomial (5) as

𝑦 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡. (14)

In Step 1, the expression (6) is

R (𝑡, 𝑐
0
, 𝑐
1
) = −

1

2
𝑐
2

0
𝑡 −

2

3
𝑐
0
𝑐
1
𝑡 −

1

4
𝑐
2

1
𝑡 + 𝑐
1
𝑡 + 𝑐
0
+
5

12
𝑡 − 1.

(15)

The corresponding functional (7) from Step 2 is

𝐽 (𝑐
0
, 𝑐
1
) =

1

18
(2𝑐
0
− 3) 𝑐

3

1
+
1

12
𝑐
4

0
+
1

48
𝑐
4

1

+
1

216
(50𝑐
2

0
− 150𝑐

0
+ 111) 𝑐

2

1

−
1

2
𝑐
3

0
+
1

54
(12𝑐
3

0
− 54𝑐
2

0
+ 80𝑐
0
− 39) 𝑐

1

+
49

36
𝑐
2

0
−
19

12
𝑐
0
+
277

432
.

(16)

In Step 3, we must compute the minimum of 𝐽 with
respect to 𝑐

0
, 𝑐
1
. As mentioned in the previous section, the

minimization can be performed in more than one way. The
algorithms used in our computations include the following
three possible approaches.

3.1.1.Minimization Based on the Exact Computation of Critical
Points. For relatively simple problems such as (13), it is
possible to compute directly the critical points of 𝐽 and
subsequently select the value corresponding to theminimum.

The critical points corresponding to a functional 𝐽 =

𝐽(𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚
) are the solution of the system:

𝜕𝐽

𝜕𝑐
0

= 0

𝜕𝐽

𝜕𝑐
1

= 0

.

.

.

𝜕𝐽

𝜕𝑐
𝑚

= 0.

(17)

For the problem (13), the system (17) becomes

25

108
(2𝑐
0
− 3) 𝑐

2

1
+
1

3
𝑐
3

0
−
3

2
𝑐
2

0
+
1

9
𝑐
3

1

+
2

27
(9𝑐
2

0
− 27𝑐
0
+ 20) 𝑐

1
+
49

18
𝑐
0
−
19

12
= 0

1

6
(2𝑐
0
− 3) 𝑐

2

1
+
2

9
𝑐
3

0
+
1

12
𝑐
3

1

+
1

108
(50𝑐
2

0
− 150𝑐

0
+ 111) 𝑐

1

− 𝑐
2

0
+
40

27
𝑐
0
−
13

18
= 0.

(18)

Using the “solve” command in SAGE and excluding the
complex solutions, we find the critical points:

𝑐
0
= 1, 𝑐

1
=
1

3
,

𝑐
0
= 1, 𝑐

1
= 1

𝑐
0
= 0.997942386831, 𝑐

1
= 0.669410080769.

(19)

In order to find the minimum, we use the second partial
derivative test, which is easy enough to be implemented in
SAGE, and find that both 𝑐

0
= 1, 𝑐

1
= 1/3 and 𝑐

0
= 1, 𝑐

1
= 1

are local minima.
Moreover, we find that 𝐽(1, 1/3) = 𝐽(1, 1) = 0, which

means that, by using PLSM, we found not one but two exact
solutions of (13):

𝑦PLSM
1

= 1 +
𝑡

3
,

𝑦PLSM
2

= 1 + 𝑡.

(20)

We remark that the exact solutions can be found this way
even if the initial polynomial 𝑦(𝑡) has a degree greater than
one. For example, for the given problem (13) using a third
degree polynomial leads to the local minima 𝑐

0
= 1, 𝑐

1
=

1/3, 𝑐
2
= 0, 𝑐
3
= 0 and 𝑐

0
= 1, 𝑐
1
= 1, 𝑐
2
= 0, 𝑐
3
= 0.

Generally speaking, if the degree of 𝑦(𝑡) is too high or if
the problem studied is too complicated (e.g., with a strong
nonlinearity), then the exact solution of (17) cannot be found
exactly. In the case of SAGE, the command “solve” fails to find
the solutions exiting with some kind of error message.
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In this situation, it is still possible to find good approx-
imations of the solutions of the problem solving the system
(17) by means of a numerical method.

3.1.2. Minimization Based on Approximate Computation of
Critical Points. In this subsection, we will find approximate
solutions for the given problem (13) solving (17) by means of
a SAGE implementation of the well-known Newton method.
We will use the same problem (13) and the same initial
polynomial𝑦(𝑡) = 𝑐

0
+𝑐
1
𝑡 for the sake of simplicity and clarity,

even though we already found exact solutions.
As the following results will show, the Newton method is

able to find approximate solutions of (17) which can lead to
highly accurate approximate solutions of the problem (13).

In order for the sequence of approximations given by
Newtons’ formula to converge to the solution(s) of the system
(17), the starting point (𝑠

0
, 𝑠
1
, . . . , 𝑠

𝑚
) of the sequencewill take

successively values on a given grid of the type 𝐺 = 𝐼
0
× 𝐼
1
×

⋅ ⋅ ⋅ × 𝐼
𝑚
, where 𝐼

𝑖
is a division of an interval [−𝛼, 𝛼].

In the case of the problem (13) and of the polynomial
𝑦(𝑡) = 𝑐

0
+ 𝑐
1
𝑡, the grid 𝐺 = {−1, 0, 1} × {−1, 0, 1} is large

enough in the sense that if the starting point (𝑠
0
, 𝑠
1
) scans

𝐺, we can obtain using Newtons’ formula approximations for
both solutions 𝑦PLSM

1

= 1 + 𝑡/3 and 𝑦PLSM
2

= 1 + 𝑡.
More precisely, we found the following approximate

solutions:

𝑦
𝑎

PLSM
1

= 0.333333333333336𝑡 + 1.00000000000000,

𝑦
𝑎

PLSM
2

= 0.999999999999991𝑡 + 1.00000000000000.

(21)

The absolute errors for these approximations, computed
as the differences in absolute value between the approximate
solutions and the corresponding exact solutions, are of the
order of 10−15.

We remark that, for polynomials 𝑦(𝑡) of higher degree, in
principle the grid 𝐺 presented above can become quite large.
However, in practice, we observed that, in all the examples
tested, two or three values in each division 𝐼

𝑖
were enough to

arrive at the approximation sought.

3.1.3. Minimization Based on a Dedicated Solver. A third
approach in finding the minimum of the functional 𝐽 from
(7), and probably the most convenient one, is the use of a
specialized optimization package. In SAGE, we can use the
“minimize” command which is based on the well-known
open-source SciPy/NumPy libraries (http://www.scipy.org/).
The “minimize” command allows us to choose the mini-
mization algorithm used in the computation, the possible
choices including among others the Nelder-Mead method,
Powell’s method, the conjugate gradient method, and simu-
lated annealing method.

In the case of the problem (13) and of the polynomial
𝑦(𝑡) = 𝑐

0
+ 𝑐
1
𝑡, choosing the Powell’s method in the “mini-

mize” command, we obtain the following approximations:

𝑦
𝑎

PLSM
1

= 0.333333264594𝑡 + 1.00000000881,

𝑦
𝑎

PLSM
2

= 0.99999992986𝑡 + 0.999999992207.

(22)

The absolute errors corresponding to these approximations
are of the order of 10−8.

In the conclusion of this first application, we remark that,
in the following applications, depending on the problem and
also depending on the precision sought for the approximate
solution, we presented one of the three approaches presented
above. If the known solution of the problem is polynomial
one, we search for the exact solution. If the solution is not
polynomial, from the other two approaches, we presented the
one which gave the most accurate approximation, as in the
case of application 4.

3.2. Application 2. Our second application is a nonlinear
Volterra integral equation ([3, 4]):

𝑦 (𝑡) =
1

15
(2𝑡
6
− 5𝑡
4
+ 15𝑡
2
− 8𝑡 − 20)

+ ∫

𝑡

−1

(𝑡 − 2𝑠) 𝑦
2
(𝑠) 𝑑𝑠.

(23)

This equation is obtained from (1) by choosing the constants
𝑎 = −1, 𝜆

1
= 1, 𝜆

2
= 0 and the functions 𝑓(𝑡) = (1/15)(2𝑡6 −

5𝑡
4
+ 15𝑡
2
− 8𝑡 − 20), 𝑘

1
(𝑡, 𝑠) = 𝑡 − 2𝑠, 𝑔

1
(𝑠, 𝑦(𝑠)) = 𝑦

2
(𝑠).

The exact solution of (23) is 𝑦
𝑒
(𝑡) = 𝑡

2
− 1. In [3] and

[4], approximate solutions of (23) were computed using
approximations methods based on Chebyshev polynomials.
The absolute errors of the approximate solutions obtained are
of the order of 10−2 in [3] and of 10−15 in [4].

In the following, we will compute the exact solution of the
problem (23) using PLSM. We choose the polynomial (5) as

𝑦 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
. (24)

The critical points of the corresponding functional (7) are
the solutions of the system:

𝜕𝐽

𝜕𝑐
0

=
1

315
(682𝑐
0
− 357) 𝑐

2

1
+

1

315
(3622𝑐

0
+ 273) 𝑐

2

1

+
1

14175
(19745𝑐

0
− 15588𝑐

1
− 9450) 𝑐

2

2

+
1

14175
(81695𝑐

0
− 62964𝑐

1
− 24570) 𝑐

2

2

+
32

3
𝑐
3

0
− 12𝑐
2

0
−
136

45
𝑐
3

1
+
944

693
𝑐
3

2

−
1

2100
(6090𝑐

2

0
− 7700𝑐

0
− 983) 𝑐

1

−
1

6300
(112770𝑐

2

0
− 27300𝑐

0
− 37627) 𝑐

1

−
1

62370
(99 (10531𝑐

0
− 1491) 𝑐

1
− 723492𝑐

2

0
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− 373868𝑐
2

1
+ 461538𝑐

0
+ 165152) 𝑐

2

−
1

62370
(99 (2173𝑐

0
− 1085) 𝑐

1
− 141372𝑐

2

0

− 83732𝑐
2

1
+ 170478𝑐

0
+ 30248) 𝑐

2

−
1828

315
𝑐
0
+
88

21
,

𝜕𝐽

𝜕𝑐
1

= −
1

120
(199𝑐
0
− 80) 𝑐

2

1
−

1

120
(889𝑐
0
+ 240) 𝑐

2

1

−
1

12600
(13856𝑐

0
− 11240𝑐

1
− 4725) 𝑐

2

2

−
1

4200
(18656𝑐

0
− 14984𝑐

1
− 1785) 𝑐

2

2

−
104

15
𝑐
3

0
+
832

405
𝑐
3

1
−
88

75
𝑐
3

2

+
2

31185
(33759𝑐

2

0
− 35343𝑐

0
− 7562) 𝑐

1

+
2

31185
(179289𝑐

2

0
+ 27027𝑐

0
− 41288) 𝑐

1

+
1

113400
(40 (33988𝑐

0
+ 4347) 𝑐

1
− 947790𝑐

2

0

− 481464𝑐
2

1
+ 268380𝑐

0
+ 380295) 𝑐

2

+
1

113400
(40 (7612𝑐

0
− 2835) 𝑐

1
− 195570𝑐

2

0

− 121608𝑐
2

1
+ 195300𝑐

0
+ 50553) 𝑐

2

+ 4𝑐
2

0
+
10144

1575
𝑐
0
+
32

45
,

𝜕𝐽

𝜕𝑐
2

=
1

5670
(7612𝑐

0
− 2835) 𝑐

2

1

+
1

5670
(33988𝑐

0
+ 4347) 𝑐

2

1

+
1

13860
(12612𝑐

0
− 10395𝑐

1
− 3850) 𝑐

2

2

+
1

69300
(220140𝑐

0
− 191961𝑐

1
− 60830) 𝑐

2

2

+
208

45
𝑐
3

0
−
2792

1575
𝑐
3

1
+
6176

6825
𝑐
3

2

−
1

2520
(21062𝑐

2

0
− 5964𝑐

0
− 8451) 𝑐

1

−
1

12600
(21730𝑐

2

0
− 21700𝑐

0
− 5617) 𝑐

1

−
1

8108100
(3861 (18656𝑐

0
− 1785) 𝑐

1

− 46729540𝑐
2

0
− 28926612𝑐

2

1

+ 28108080𝑐
0
+ 14355168) 𝑐

2

−
1

8108100
(1287 (13856𝑐

0
− 4725) 𝑐

1

− 11294140𝑐
2

0
− 7232940𝑐

2

1

+ 10810800𝑐
0
+ 3256080) 𝑐

2

−
76

15
𝑐
2

0
−
19540

6237
𝑐
0
+
1048

945
.

(25)

Using the “solve” command in SAGE and excluding the
complex solutions, we obtain the following critical points:

𝑐
0
= −1, 𝑐

1
= 0, 𝑐

2
= 1

𝑐
0
= 5.63142580019, 𝑐

1
= 5.9171539961,

𝑐
2
= −3.41555711282

𝑐
0
= 3.62669864109, 𝑐

1
= 2.43201607502,

𝑐
2
= −2.53283458022

𝑐
0
= 4.30719794344, 𝑐

1
= 4.67369589345,

𝑐
2
= −3.24057971014

𝑐
0
= 5.97333772219, 𝑐

1
= 5.19967444384,

𝑐
2
= −2.21509009009.

(26)

Using the second partial derivative test, we deduce that
only the first two critical points are minimum points. Com-
puting the values of 𝐽 for these two minimum points, we
see that the global minimum is obtained for 𝑐

0
= −1, 𝑐

1
=

0, and 𝑐
2
= 1 and thus the solution obtained using PLSM is in

fact the exact solution of (23):

𝑦PLSM = 𝑡
2
− 1. (27)

3.3. Application 3. The third application is a nonlinear mixed
Volterra-Fredholm integral equation ([2, 5, 9]):

𝑦 (𝑡) = −
1

30
𝑡
6
+
1

3
𝑡
4
− 𝑡
2
+
5

3
𝑡 −

5

4

+ ∫

𝑡

0

(𝑡 − 𝑠) (𝑦 (𝑠))
2

𝑑𝑠 + ∫

1

0

(𝑡 + 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(28)

The exact solution of (2) is 𝑦
𝑒
= 𝑡
2
−2. In [2], approximate

solutions of (28) were computed using a Rationalized Haar
functions method, in [5], approximate solutions of (28)
were computed using a Triangular functions method, in [9],
approximate solutions of (28) were computed using a Radial
basis functions method, and, in [8], approximate solutions
of (28) were computed using an Optimal control method.
The values of the absolute errors of the approximate solutions
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obtained varied from 10
−3 to 10−15 but none of thesemethods

could find the exact solution.
We will compute the exact solution of the problem (23)

using PLSM. We choose again the polynomial (5) as

𝑦 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
. (29)

The critical points of the corresponding functional (7) are
the solutions of the system:

𝜕𝐽

𝜕𝑐
0

= (0.0135802469136𝑐
0
+ 0.00555555555556𝑐

1

− 0.00886243386243) 𝑐
2

2
+ 0.2𝑐

3

0

+ 0.0555555555556𝑐
0
𝑐
2

1
+ 0.25𝑐

2

0

+ 0.00694444444444𝑐
3

1
+ 0.0010101010101𝑐

3

2

+ (0.166666666667𝑐
2

0
+ 0.0722222222222𝑐

0

− 0.155) 𝑐
1

+ ( (0.0527777777778𝑐
0
− 0.0186507936508) 𝑐

1

+ 0.0714285714286𝑐
2

0
) 𝑐
2

+ (0.0104938271605𝑐
2

1
− 0.0222222222222𝑐

0

− 0.138135321469) 𝑐
2

− 0.145502645503𝑐
0
+ 0.151984126984,

𝜕𝐽

𝜕𝑐
1

= 3 (0.00694444444444𝑐
0
− 0.00277777777778) 𝑐

2

1

+ (0.00555555555556𝑐
0
+ 0.00282828282828𝑐

1

− 0.00813492063492) 𝑐
2

2
+ 0.0555555555556𝑐

3

0

+ 0.00308641975309𝑐
3

1
+ 0.000555555555556𝑐

3

2

+ 2 (0.0277777777778𝑐
2

0
+ 0.014265672599) 𝑐

1

+ (2 (0.0104938271605𝑐
0
− 0.00939153439153) 𝑐

1

+ 0.0263888888889𝑐
2

0
+ 0.005𝑐

2

1
) 𝑐
2

× (− 0.0186507936508𝑐
0
+ 0.0565079365079) 𝑐

2

+ 0.0361111111111𝑐
2

0
− 0.155𝑐

0
− 0.190674603175,

𝜕𝐽

𝜕𝑐
2

= (0.0104938271605𝑐
0
− 0.00939153439153) 𝑐

2

1

+ 3 (0.0010101010101𝑐
0
+ 0.000555555555556𝑐

1

− 0.00224867724868) 𝑐
2

2

+ 0.0238095238095𝑐
3

0
+ 0.00166666666667𝑐

3

1

+ 0.00034188034188𝑐
3

2
+ (0.0263888888889𝑐

2

0

− 0.0186507936508𝑐
0

+ 0.0565079365079) 𝑐
1

+ 2 ( (0.00555555555556𝑐
0
− 0.00813492063492) 𝑐

1

+ 0.00679012345679𝑐
2

0
) 𝑐
2

+ (0.00141414141414𝑐
2

1
− 0.00886243386243𝑐

0

+ 0.045963018463) 𝑐
2
− 0.0111111111111𝑐

2

0

− 0.138135321469𝑐
0
− 0.210582010582.

(30)

Using the “solve” command in SAGE and again excluding
the complex solutions, we obtain the following critical points:

𝑐
0
= −2, 𝑐

1
= 0, 𝑐

2
= 1,

𝑐
0
= 0.397332877415, 𝑐

1
= 2.25632083697,

𝑐
2
= 2.111946533,

𝑐
0
= −1.25269343781, 𝑐

1
= 4.26258389262,

𝑐
2
= −2.02633451957.

(31)

Using the second partial derivative test, it follows that
only the first two critical points are minimum points and, by
computing the values of 𝐽 for these two minimum points, we
see that the global minimum is obtained for 𝑐

0
= −2, 𝑐

1
=

0, and 𝑐
2
= 1 and the solution obtained using PLSM is the

exact solution of (28):

𝑦PLSM = 𝑡
2
− 2. (32)

3.4. Application 4. The next application is the nonlinear
Volterra-Fredholm integral equation ([1, 7]):

𝑦 (𝑡) = 2 cos (𝑡) − 2 + 3∫
𝑡

0

sin (𝑡 − 𝑠) 𝑦2 (𝑠) 𝑑𝑠

+
6

7 − 6 cos (1)
∫

1

0

(1 − 𝑠) cos2 (𝑠) (𝑠 + 𝑦 (𝑠)) 𝑑𝑠.

(33)

The exact solution of (33) is 𝑦
𝑒
= cos(𝑡). Approximate

solutions for this equation were computed in [1] using the
Rationalized Haar functions method RHM and in [7] using a
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Table 1: Comparison of the absolute errors of the approximate
solutions for Problem (33).

RHM CCM PLSM
𝑡 = 0 5 ⋅ 10

−5
3.1021 ⋅ 10

−5
9.4979 ⋅ 10

−10

𝑡 = 0.2 5 ⋅ 10
−6

3.2341 ⋅ 10
−6

3.1009 ⋅ 10
−08

𝑡 = 0.4 1 ⋅ 10
−4

1.9092 ⋅ 10
−5

3.7752 ⋅ 10
−08

𝑡 = 0.6 1 ⋅ 10
−4

1.5029 ⋅ 10
−5

4.9982 ⋅ 10
−08

𝑡 = 0.8 5 ⋅ 10
−5

3.6499 ⋅ 10
−6

7.0526 ⋅ 10
−08

𝑡 = 1 1 ⋅ 10
−4

2.4290 ⋅ 10
−5

1.0015 ⋅ 10
−07

composite collocation method CCM consisting of a hybrid
of block-pulse functions and Lagrange polynomials. The
solution in [1] contained sixteen termswhile the one in [7] is a
piecewise polynomial solution consisting of two polynomials
of fourth degree.

Using the PLSM, we computed a seventh order poly-
nomial approximate solution of (33). We used the second
approach described in application 1, solving the correspond-
ing system (17) by means of Newton’s method. We obtained
the approximate solution:

𝑦PLSM = 0.000103064070567775𝑡
7

− 0.00157260234848809𝑡
6

+ 0.000179224005722049𝑡
5

+ 0.0415635195906221𝑡
4

+ 0.0000354244251299783𝑡
3

− 0.500006936162663𝑡
2

+ (7.11478876757492 × 10
−7
) 𝑡

+ 1.00000000094979.

(34)

Table 1 presents the comparison of the absolute errors
corresponding to the three approximate solutions 𝑦RHM ([1]),
𝑦CCM ([7]), and 𝑦PLSM. The approximate solution given by
PLSM is much closer to the exact solution and has a simpler
form.

4. Conclusions

The paper presents the computation of approximate poly-
nomial solutions for nonlinear integral equations of mixed
Volterra-Fredholm type by using the polynomial least squares
method, which is presented as a straightforward and efficient
method.

The test problems solved clearly illustrate the accuracy
of the method, since, in all of the cases, we were able to
compute better approximations than the ones computed in
previous papers, and, in most cases, the exact solutions
were found. Moreover, the expressions of the approximations
computed by PLSM are also simpler than the expressions of
the approximations computed by using other methods.
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