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Many researches have identified that differential evolution algorithm (DE) is one of the most powerful stochastic real-parameter
algorithms for global optimization problems. However, a stagnation problem still exists in DE variants. In order to overcome
the disadvantage, two improvement ideas have gradually appeared recently. One is to combine multiple mutation operators for
balancing the exploration and exploitation ability. The other is to develop convergent DE variants in theory for decreasing the
occurrence probability of the stagnation. Given that, this paper proposes a subspace clustering mutation operator, called SC qrtop.
Five DE variants, which hold global convergence in probability, are then developed by combining the proposed operator and five
mutation operators of DE, respectively. The SC qrtop randomly selects an elite individual as a perturbation’s center and employs
the difference between two randomly generated boundary individuals as a perturbation’s step. Theoretical analyses and numerical
simulations demonstrate that SC qrtop prefers to search in the orthogonal subspace centering on the elite individual. Experimental
results on CEC2005 benchmark functions indicate that all five convergent DE variants with SC qrtop mutation outperform the
corresponding DE algorithms.

1. Introduction

The classical optimizationmethods, frequently used in scien-
tific application, consist of strategies based onHessianMatrix
[1] and based on Gradient [2]. It can be probed that the
solution obtained by using the classical methods is globally
optimum [3]. However, if the derivation of an objective
function cannot be calculated, it gets difficult to search the
optimal solution for classical optimization methods [4]. So
metaheuristic algorithms have been popularly used in the
scientific application associated with solving nondifferen-
tiable nonlinear-objective functions. The greatest interesting
methods in metaheuristic algorithms include genetic algo-
rithm (GA), particle swarm optimization algorithm (PSO),
differential evolution algorithm (DE), artificial bee colony
algorithm (ABC), and Cuckoo search (CK) algorithm.

Among those metaheuristic algorithms, DE has been
identified as one of the most powerful optimizers. DE,
proposed by Stron and Price in 1995 [5], is the only one

which is able to still secure competitive ranking in opti-
mization competitions of all IEEE International Conferences
on Evolutionary Computation (CEC) [6–8] since 1996. The
competitiveness of DE is also supported bymany comparison
researches [9–12].

However, the stagnation problem still exists in DE vari-
ants [13, 14]. In order to overcome the disadvantage, two
kinds of ideas for improving DE algorithms have gradually
appeared in the latest studies. One is to develop DE variants
based on composite trial vector generation strategies. The
other is to develop convergent DE variants in theory.

1.1. DE Variants Based on Composite Trial Vector Generation
Strategy. The classical mutation operators of DE algorithm
prefer the exploration ability or the exploitation ability on
some level, which easily results in a blind search over
feasible region or insufficient diversity of a population. So the
population is easy to be trapped in a stagnation when using
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single mutation operator to generate trial vector generation
strategies. In order to solve this problem, a natural idea is to
combine different learning strategies for the tradeoff between
the exploration and exploitation ability. Wang et al. [10]
proposed a composite DE, which generates trial vectors by
combining three mutation operators, that is, DE/rand/1/bin,
DE/rand/2/bin, and DE/current-to-rand/1. Rahnamayan et
al. [15] proposed an opposition-basedDE,which combines an
opposition-based learningmethod and the classical mutation
operators to generate trial vectors. Monamed et al. [16]
proposed a directed mutation rule based on the weight
difference vector between the best and the worst individuals
and then developed an alternative DE by combining the
directed mutation and the classical mutation strategies.

1.2. DE Variants Holding Convergence in Probability. Taking
into account that a convergent algorithm may have stronger
robustness, so its probability of trapping in a stagnation can
get smaller than those algorithms which cannot guarantee
global convergence. With the progresses of the theoretical
researches on DE, some convergent DE algorithms based on
mathematical theory have been proposed.

In [17], Hu et al. proved that the classical DE cannot
converge to the global optimal set with probability 1 and
then proposed a convergent DE algorithm. In [18], Hu et al.
summarized the theoretical works of DE on three aspects,
that is, (1) theoretical researches on the timing complexity,
(2) theoretical researches on the dynamical behavior of DE’s
population, and (3) researches on the convergence properties
of DE. The paper then proved a sufficient condition for
global convergence of DE and proposed a convergent DE
algorithm framework. In [19], Hu et al. proposed a self-
adaptive DE algorithm and then proved the algorithmic
convergence by using the sufficient condition presented in
[18]. Ter Braak [20] proposed a differential evolutionMarkov
chain algorithm (DE-MC) and proved that its population
sequence is a unique joint stationary distribution. Zhao
[21] presented a convergent DE using a hybrid optimization
strategy and a transform function and proved its convergence
by theMarkov process. Zhan and Zhang [22] presented a DE-
RW algorithm which applied a random-walk mechanism to
the basic DE variants (the convergence of DE-RW was not
proved, but it can be easily proved byTheorem 2 in Section 4
below). Li et al. [23] proposed a convergent DE algorithm
by incorporating Gaussian mutation, a diversity-triggered
reverse sampling into DE/rand/1/bin.

Based on the above two research lines, the main contri-
butions of this paper can be summarized as follows.

(i) Firstly, this paper proposes a subspace clustering
mutation operator, called SC qrtop, which randomly
selects an elite individual as a perturbation’s center
and employs the difference between two randomly
generated boundary individuals as a perturbation’s
step. Theoretical analyses and numerical simulations
demonstrate that SC qrtopmutation prefers to search
in the orthogonal subspace centering on the elite
individual.

(ii) Secondly, this paper presents a convergent DE model
by combining SC qrtop mutation and the classical
mutation operators of DE and gives the theoretical
proof of the algorithm convergence.

(iii) Finally, numerical experiments on CEC2005 bench-
mark functions validate that SC qrtopmutation oper-
ator has positive effect on the performance of all five
classical mutation operators of DE.

The rest of this paper is structured as follows. Section 2
briefly introduces the basic DE algorithm. Section 3 presents
and analyzes the subspace clustering mutation operator.
Section 4 gives theDE variants based on the subspace cluster-
ingmutation and proves its convergence in theory. Numerical
experiments on CEC2005 benchmark functions are then
presented in Section 5. Section 6 discuses the theoretical
significance of the proposed operator, followed by conclusion
and future work in Section 7.

2. Classical Differential Evolution

DE is used for dealing with the continuous optimization
problem. This paper supposes that the objective function to
be minimized is 𝑓(�⃗�), �⃗� = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ R𝑛, and the

feasible solution space is Ψ = ∏
𝑗=𝑛

𝑗=1
[𝐿
𝑗
, 𝑈
𝑗
]. The classical

DE [19, 24, 25] works through a simple cycle of operators
including mutation, crossover, and selection operator after
initialization. The classical DE procedures are described in
detail as follows.

Initialization.Thefirst step of DE is the initialization of a pop-
ulation of 𝑚 𝑛-dimensional potential solutions (individuals)
over the optimization search space. We will symbolize each
individual by �⃗�𝑔

𝑖
= (𝑥
𝑔

𝑖,1
, 𝑥
𝑔

𝑖,2
, . . . , 𝑥

𝑔

𝑖,𝑛
), for 𝑖 = 1, . . . , 𝑚, where

𝑔 = 0, 1, . . . , 𝑔max is the current generation and 𝑔max is the
maximum number of generations. For the first generation
(𝑔 = 0), the population should be sufficiently scaled to cover
the optimization search space as much as possible. Initial-
ization is implemented by using a uniformly sampling to
generate the potential individuals in the optimization search
space. We can initialize the 𝑗th dimension of the 𝑖th individ-
ual according to

𝑥
0

𝑖,𝑗
= 𝐿
𝑗
+ rand (0, 1) ⋅ (𝑈

𝑗
− 𝐿
𝑗
) , (1)

where rand(0, 1) is a uniformly distributed random number
confined on the range [0, 1].

Mutation Operators. After initialization, DE creates a donor
vector V⃗𝑔

𝑖
corresponding to each individual �⃗�𝑔

𝑖
in the 𝑔th

generation through the mutation operator. Several most fre-
quently referred mutation strategies are presented as follows:

DE/rand/1:

V⃗𝑔
𝑖
= �⃗�
𝑔

𝑟
1

+ 𝐹 (�⃗�
𝑔

𝑟
2

− �⃗�
𝑔

𝑟
3

) ; (2)

DE/best/1:

V⃗𝑔
𝑖
= �⃗�
𝑔

best + 𝐹 (�⃗�
𝑔

𝑟
1

− �⃗�
𝑔

𝑟
2

) ; (3)
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DE/current-to-best/1:

V⃗𝑔
𝑖
= �⃗�
𝑔

𝑖
+ 𝐹 (�⃗�

𝑔

best − �⃗�
𝑔

𝑖
) + 𝐹 (�⃗�

𝑔

𝑟
1

− �⃗�
𝑔

𝑟
2

) ; (4)

DE/best/2:

V⃗𝑔
𝑖
= �⃗�
𝑔

best + 𝐹 (�⃗�
𝑔

𝑟
1

− �⃗�
𝑔

𝑟
2

) + 𝐹 (�⃗�
𝑔

𝑟
3

− �⃗�
𝑔

𝑟
4

) ; (5)

DE/rand/2:

V⃗𝑔
𝑖
= �⃗�
𝑔

𝑟
1

+ 𝐹 (�⃗�
𝑔

𝑟
2

− �⃗�
𝑔

𝑟
3

) + 𝐹 (�⃗�
𝑔

𝑟
4

− �⃗�
𝑔

𝑟
5

) , (6)

where �⃗�𝑔best denotes the best individual of the current gen-
eration, the indices 𝑟

1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
5
∈ 𝑆
𝑟
= {1, 2, . . . , 𝑚} \ {𝑖}

are uniformly random integersmutually different anddistinct
from the running index 𝑖, and 𝐹 ∈ (0, 1] is a real parameter,
calledmutation or scaling factor.

If the element values of the donor vector V⃗
𝑖
exceed the

prespecified upper bound or lower bound, we can change the
element values by the periodic mode rule as follows:

V
𝑖,𝑗
=
{

{

{

𝑈
𝑗
− (𝐿
𝑗
− V
𝑖,𝑗
)% 

𝑈
𝑗
− 𝐿
𝑗


if V
𝑖,𝑗
< 𝐿
𝑗

𝐿
𝑗
+ (V
𝑖,𝑗
− 𝑈
𝑗
)% 

𝑈
𝑗
− 𝐿
𝑗


if V
𝑖,𝑗
> 𝑈
𝑗
.

(7)

Crossover Operator. Following mutation, the crossover oper-
ator is applied to further increase the diversity of the pop-
ulation. In crossover, a trial vector, �⃗�𝑔

𝑖
, is generated by the

binomial crossover, which combines the elements of the target
vectors, �⃗�𝑔

𝑖
, and the donor vector, V⃗𝑔

𝑖
:

𝑢
𝑔

𝑖,𝑗
= {

V𝑔
𝑖,𝑗

if rand (0, 1) ≤ CR or 𝑗 = 𝑗rand
𝑥
𝑔

𝑖,𝑗
otherwise,

(8)

where CR ∈ (0, 1) is the probability of crossover and 𝑗rand is
a random integer on [1, 𝑛].

Selection Operator. Finally, the selection operator is employed
to maintain the most promising trial individuals in the
next generation. The classical DE adopts a simple selection
scheme. It compares the objective value of the target �⃗�𝑔

𝑖
with

that of the trial individual �⃗�𝑔
𝑖
. If the trial individual reduces

the value of the objective function then it is accepted for the
next generation, otherwise the target individual is retained in
the population. The selection operator is defined as

�⃗�
𝑔+1

𝑖
= {

�⃗�
𝑔

𝑖
, if 𝑓 (�⃗�𝑔

𝑖
) < 𝑓 (�⃗�

𝑔

𝑖
)

�⃗�
𝑔

𝑖
, otherwise.

(9)

The pseudocode of the classical DE algorithm (DE/
rand/1) is illustrated in Pseudocode 1.

3. Subspace Clustering Mutation Operator

DE variants with global convergence are attracting more and
more attention.A common convergentmodel of evolutionary
algorithm (EA) is identified by two characteristics. One is

that each population has the ergodic. The other is that the
best solution of each generation will be reserved to the
next generation. Since the greedy selection strategy of DE
algorithm can reserve the best solution to the next generation,
the ergodic of the population turns into the key problem for
developing convergent DE variants. In addition, considering
the balance of exploration and exploitation, we propose a
subspace clusteringmutation operator, called SC qrtop. It can
be formulated as follows:

SC qrtop:

V⃗𝑔
𝑖
= �⃗�
𝑔

qrtop + rand (0, 1) ⋅ (�⃗�
𝑏
1

− �⃗�
𝑏
2

) , (10)

where �⃗�𝑔qrtop is an individual selected by randomly sampling
from the top 𝑞% of the 𝑔th population. �⃗�

𝑏
1

and �⃗�
𝑏
2

are two
boundary individuals, each element of which is equal to
the upper, 𝑈

𝑖
, or lower boundary value, 𝐿

𝑖
, with an equal

probability.
The characteristics of SC qrtop can be summarized as

follows.

(i) Employing SC qrtop mutation can make the pop-
ulation ergodic. In fact, SC qrtop mutation makes
the probability of the donor individual locating in
any small regions of the whole search space to be
greater than 0.This paper calls the probability ergodic
probability.

(ii) SC qrtop mutation can reproduce the �⃗�
𝑔

qrtop with
a small probability, and the probability equals the
ergodic probability. This characteristic benefits the
balance of the exploration and exploitation ability on
some level.

(iii) The individuals, which are generated by SC qrtop
mutation, prefer to locate in the orthogonal subspace
of the �⃗�𝑔qrtop. So the mutation operator improves the
search capacity in the orthogonal subspace of the out-
standing individuals. Given that, we call the operator
subspace clustering mutation (short as SC qrtop).

(iv) The implementation of SC qrtop mutation is very
simple. It is also easy to unite the SC qrtop mutation
with the mutation operators of the classical DE.

The reasons that SC qrtop mutation has the above char-
acteristics can be analyzed both theoretically and experimen-
tally as the following three subsections, that is, probability
analyses, statistical experiments, and implementation tips of
SC qrtop mutation.

3.1. Probability Analysis of SC qrtopMutation. In this subsec-
tion, we analyze the probabilities of the individuals generated
by SC qrtop locating in each subspace of the search space.

Let SC donor vector denote the individual generated by
SC qrtop mutation. Let 𝐸𝑛

𝑗
, for 𝑗 = 1, 2, . . . , 𝑛, denote the

event that SC donor vector locates in the 𝑗 dimensional
subspace and does not locate in the (𝑗 − 1) dimensional
subspace, where 𝑛 is the dimension of the search space. Let
𝑃
𝑛

𝑗
, for 𝑗 = 1, 2, . . . , 𝑛, denote the probability of the event 𝐸𝑛

𝑗
.
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𝑋 = initial. population (𝑚), 𝐹, CR = initial. parameters
while ! termination condition do

for 𝑔 = 0 to 𝑚
V⃗𝑔
𝑖
= �⃗�
𝑔

𝑟1
+ 𝐹(�⃗�

𝑔

𝑟2
− �⃗�
𝑔

𝑟3
) // mutation

�⃗�
𝑔

𝑖
= binomial crossover(�⃗�𝑔

𝑖
, V⃗𝑔
𝑖
) // crossover

if 𝑓(�⃗�𝑔
𝑖
) ≤ 𝑓(�⃗�

𝑔

𝑖
) then // selection

�⃗�
𝑔

𝑖
= �⃗�
𝑔

𝑖

end if
𝑔 = 𝑔 + 1

end for
end while

Pseudocode 1: Pseudocode of classical DE (DE/rand/1).

A
B B

L Uxqrtop

Figure 1: Subspace sketch on 1 dimension. “L, U” denote the lower
and upper boundary values, respectively.

Let 𝐸𝑛
0
denote the event that an individual locates in a null

space, and let 𝑃𝑛
0
denotes the probability of the event 𝐸𝑛

0
.

(i) Supposing the Search Space Is OneDimensional. In this case
𝑛 = 1, we establish a coordinate system with an origin �⃗�qrtop,
and then the search space has two subspaces. One is a null
space, the other is itself. As shown in Figure 1, the region A
is the null space, which just includes a point �⃗�qrtop. That is to
say,

A = {�⃗� | �⃗� = �⃗�qrtop} . (11)

The B is a set including all points except for �⃗�qrtop

B = {�⃗� | 𝐿 ≤ �⃗� ≤ 𝑈, �⃗� ̸= �⃗�qrtop} . (12)

That the SC donor vector locates in the subspaceAmeans
V⃗
𝑖
= �⃗�qrtop. That is, the boundary individual �⃗�

𝑏
1

equals the
other individual �⃗�

𝑏
2

. So we get

𝑃
1

0
= 𝑃 {V⃗

𝑖
∈ A | V⃗

𝑖
= �⃗�qrtop + rand (0, 1) ⋅ (�⃗�

𝑏
1

− �⃗�
𝑏
2

)}

= 𝑃 {�⃗�
𝑏
1

= 𝐿, �⃗�
𝑏
2

= 𝐿}

+ 𝑃 {�⃗�
𝑏
1

= 𝑈, �⃗�
𝑏
2

= 𝑈}

= 0.5 ⋅ 0.5 + 0.5 ⋅ 0.5

= 0.5.

(13)

In addition, from the above definition of 𝑃𝑛
𝑗
, the 𝑃1

1
is the

probability of SC donor vector locating in the region [𝐿, 𝑈]
except for the null spaceA.That is to say, 𝑃1

1
is the probability

of the SC donor locating in the region B. So

𝑃
1

1
= 𝑃 {V⃗

𝑖
∈ B | V⃗

𝑖
= �⃗�qrtop + rand (0, 1) ⋅ (�⃗�

𝑏
1

− �⃗�
𝑏
2

)} ,

(14)

E
D E

EE

xqrtop

x1

x2

U1

U2

L1

L2

D

D

D
C

Figure 2: Subspace sketch on 2 dimensions. “𝐿
𝑗
, 𝑈
𝑗
”, for 𝑗 = 1 or 2,

denote the lower and upper boundary values of the 𝑗th dimension,
respectively.

and we then get

𝑃
1

1
= 𝑃 {�⃗�

𝑏
1

= 𝐿, �⃗�
𝑏
2

= 𝑈}

+ 𝑃 {�⃗�
𝑏
1

= 𝑈, �⃗�
𝑏
2

= 𝐿}

= 0.5 ⋅ 0.5 + 0.5 ⋅ 0.5

= 0.5.

(15)

(ii) Supposing the Search Space Is Two Dimensional. In this
case 𝑛 = 2, a rectangular coordinate system with an origin
�⃗�qrtop is established as shown in Figure 2. The regions C,D,E
in Figure 2 can be represented as follows:

C = {�⃗� | �⃗� = �⃗�qrtop} ,

D = {�⃗� | �⃗�
1
= �⃗�prtop,1, �⃗�2 ̸= �⃗�prtop,2

or �⃗�
1
̸= �⃗�prtop,1, �⃗�2 = �⃗�prtop,2}

E = {�⃗� | �⃗�
1
̸= �⃗�prtop,1, �⃗�2 ̸= �⃗�prtop,2} .

(16)

Next, we analyze the probability of SC donor locating in
each subspace.
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−5 0 5
−5

0

5

(a) Two dimensions, 100 points, and 1 top individual

−5 0 5
−5

0

5

(b) Two dimensions, 300 points, and 3 top individuals

−5

0

5

−5

0

5
−5

0

5

(c) Three dimensions, 300 points, and 1 top individual

Figure 3: Sampling survey of SC qrtop. “∘” denotes a top individual; in the 2-dimensional space, “∗, +, ×” are corresponding with the events
𝐸
2

0
, 𝐸2
1
, and 𝐸2

2
, respectively. In the 3-dimensional space, “∗, +, ∙, ×” are corresponding with the events 𝐸3

0
, 𝐸3
1
, 𝐸3
2
, and 𝐸3

3
, respectively.

Firstly, the probability of SC donor locating in the region
C equals the concurrence probability of the independent
events 𝐸1

0
on the 𝑥

1
axis and 𝑥

2
axis together. So

𝑃
2

0
= 𝑃
1

0
⋅ 𝑃
1

0
= 0.5 ⋅ 0.5 = 0.25. (17)

Secondly, that SC donor locates in the region D means
the concurrence of two events 𝐸1

0
on the 𝑥

1
axis and 𝐸1

1
on

the 𝑥
2
axis, or the concurrence of two events 𝐸1

1
on the 𝑥

1

axis and 𝐸1
0
on the 𝑥

2
axis. So

𝑃
2

1
= 𝑃
1

0
⋅ 𝑃
1

1
+ 𝑃
1

1
⋅ 𝑃
1

0

= 0.5 ⋅ 0.5 + 0.5 ⋅ 0.5

= 0.5.

(18)

Similarly, we can get the probability of the SC donor
locating in the region E

𝑃
2

2
= 𝑃
1

1
⋅ 𝑃
1

1
= 0.5 ⋅ 0.5 = 0.25. (19)

(iii) Supposing the Search Space Is 𝑛 Dimensional. According
to the same procedure as the case 𝑛 = 2, we can get the
probabilities 𝑃𝑛

𝑗
, for 𝑗 = 0, 1, . . . , 𝑛, as follows:

𝑃
𝑛

0
= C
𝑛

𝑛
⋅ (𝑃
1

0
)
𝑛

⋅ (𝑃
1

1
)
0

,

𝑃
𝑛

1
= C
𝑛−1

𝑛
⋅ (𝑃
1

0
)
𝑛−1

⋅ (𝑃
1

1
)
1

,

...

𝑃
𝑛

𝑗
= C
𝑗

𝑛
⋅ (𝑃
1

0
)
𝑗

⋅ (𝑃
1

1
)
𝑛−𝑗

,

...

𝑃
𝑛

𝑛
= C
0

𝑛
⋅ (𝑃
1

0
)
0

⋅ (𝑃
1

1
)
𝑛

.

(20)

Here C𝑗
𝑛
, for 𝑗 = 0, 1, . . . , 𝑛, is a combination, which

equals 𝑛!/[(𝑛 − 𝑗)! ⋅ 𝑗!]. “!” denotes the usual factorial.
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Table 1: Statistical analysis of Figure 3.

Event 𝑁 top S T O T Pro sub Pra sub
𝐸2
0

1 100
28 28.0% 0.25

𝐸2
1

44 44.0% 0.50
𝐸
2

2
28 28.0% 0.25

𝐸
2

0

3 300
79 26.3% 0.25

𝐸2
1

129 43.0% 0.50
𝐸2
2

92 30.7% 0.25
𝐸3
0

1 300

36 12.0% 0.125
𝐸
3

1
128 42.7% 0.375

𝐸
3

2
105 35.0% 0.375

𝐸3
3

31 10.3% 0.125
“𝑁 top” denotes the number of top individuals; “S T, O T” denote the
sampling times and occurrence times, respectively. “Pro sub” denotes
the proportion of individuals locating in each subspace in experiments;
“Pra sub” denotes the probability of individuals locating in each subspace in
theory.

3.2. Statistical Experiment of SC qrtop Mutation. The sta-
tistical experiments are conducted to give the distribu-
tion landscapes of sampling experiments associated with
SC qrtop mutation. As shown in Figure 3, we show three
distribution landscapes at the different cases, that is, (1) two
dimensional space, one top individual, and 100 independent
repetitions; (2) two-dimensional space, three top individuals,
and 300 independent repetitions; and (3) three-dimensional
space, one top individual, and 300 independent repetitions.
The figure shows the clustering feature of subdonor points
in the subspaces. Taking Figure 3(a) as an example, some
subdonor points (marked by “∗”) locate at the origin while
some (marked by “+”) locate on the two vertical axises,
and the remainder (marked by “×”) distribute uniformly
in the two-dimensional search space. These three cases
are corresponding with the occurrence of events, that is,
𝐸
2

0
, 𝐸2
1
, and 𝐸2

2
. As shown in Table 1, at 100 independent

repetitions, the occurrence times are 28, 44, and 28 in order.
The experimental proportions are close to the theoretical
probabilities 𝑃2

0
, 𝑃2
1
, 𝑃2
2
, that is, 0.25, 0.50, 0.25.

In Table 1, the “Pra sub” values of 𝐸3
0
, 𝐸3
1
, 𝐸3
2
, 𝐸3
3
are equal

to 𝑃3
0
, 𝑃3
1
, 𝑃3
2
, and 𝑃3

3
, respectively, which can be calculated as

follows:

𝑃
3

0
= C
3

3
⋅ (𝑃
1

0
)
3

⋅ (𝑃
1

1
)
0

= 0.125,

𝑃
3

1
= C
2

3
⋅ (𝑃
1

0
)
2

⋅ (𝑃
1

1
)
1

= 0.375,

𝑃
3

2
= C
1

3
⋅ (𝑃
1

0
)
1

⋅ (𝑃
1

1
)
2

= 0.375,

𝑃
3

3
= C
0

3
⋅ (𝑃
1

0
)
0

⋅ (𝑃
1

1
)
3

= 0.125.

(21)

3.3. Implementation Tips of SC qrtop Mutation. It is easy to
incorporate SC qrtop into other classical mutation operators.
Taking the DE/rand/1 mutation as an example, we increase
the region of the random integer 𝑟

1
to (1 + 𝑞%) times; that

is, 𝑟
1

∈ [1, ⌊𝑚 ⋅ (1 + 𝑞%)⌋]. If 𝑟
1

≤ 𝑚, then execute
the classical DE/rand/1 or else execute SC qrtop mutation
operator. That is to say, the modified algorithm will employ
SC qrtop mutation operator with the probability 𝑞% (con-
sidering the balance of exploration and exploitation, we
suggest this probability is equal to the one generating the
top individual �⃗�qrtop). For other classical mutation operators,
there is a random integer 𝑟

1
we have to generate. So we can

process the application of SC qrtop mutation operator in the
same way.

4. Convergent DE Algorithm Based on
Subspace Clustering Mutation

In this section, this paper proposes a convergent DE algo-
rithm framework and proves its global convergence in prob-
ability.

4.1. Algorithmic Framework. This section proposes a con-
vergent DE algorithm based on SC qrtop mutation operator,
called CDE/SC qrtop. The pseudocode of CDE/SC qrtop
rand/1 is demonstrated in Pseudocode 2. In the same way,
it is easy to develop the other convergent variants, that
is, CDE/SC qrtop best/1, CDE/SC qrtop current-to-best/1,
CDE/SC qrtop best/2, and CDE/SC qrtop rand/2.

4.2. Convergence Proof. There are some different kinds of
definitions of convergence for analyzing asymptotic conver-
gence of random algorithms. A frequently used convergence
definition, that is, convergence in probability, will be used in
this paper.

Definition 1. Let {𝑋(𝑡), 𝑡 = 0, 1, 2, . . .} be a population
sequence associated with a random algorithm.The algorithm
holds global convergence in probability for a certain opti-
mization problem, if and only if

lim
𝑡→∞

𝑝 {𝑋 (𝑡) ∩ 𝑆
∗

𝛿
̸= 0} = 1, (22)

where 𝛿 is a small positive real, 𝑆∗
𝛿
denotes an expanded

optimal solution set, that is, 𝑆∗
𝛿
= {�⃗� | |𝑓(�⃗�) −𝑓(�⃗�∗)| < 𝛿}, �⃗�∗

is an optimum of the objective function 𝑓(�⃗�).
Several important theorems for the global convergence

of evolutionary algorithms have been presented. Rudolph
[26] generalized the convergence conditions for binary and
Euclidean search space to a general search space. Under
the convergence condition, the EAs with an elitist selection
rule will converge to the global optimum. The measure
associated with a Markovian kernel function, which needs
to be estimated in the convergence condition, seems not to
be very convenient. He and Yu [27] presented a theoretical
analysis of the convergence conditions for EAs. The conver-
gence conditions are based on certain probability integral
of the offspring entering the optimal set. Perhaps, the best
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Table 2: Experimental results of CDE/SC qrtop best/1, DE/best/1 over 25 runs on 25 test functions with 150000 FEs.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
𝑓1 𝑓2 𝑓3 𝑓4

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.2740𝐸 − 13 3.1264𝐸 − 12 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.2169𝐸 − 12 5.6843𝐸 − 12 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 4.3201𝐸 − 12 1.2506𝐸 − 11 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 8.9244𝐸 − 12 3.6550𝐸 − 11 0.0000𝐸 + 00 0.0000𝐸 + 00

25th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.0009𝐸 − 11 5.6900𝐸 − 11 0.0000𝐸 + 00 0.0000𝐸 + 00

Mean 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 6.2050𝐸 − 12 2.1362𝐸 − 11 0.0000𝐸 + 00 0.0000𝐸 + 00

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 5.4443𝐸 − 12 1.8265𝐸 − 11 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈ ≈ − ≈

𝑓5 𝑓6 𝑓7 𝑓8

1st 4.9898𝐸 − 07 2.1079𝐸 − 07 0.0000𝐸 + 00 0.0000𝐸 + 00 3.7853𝐸 − 01 7.3960𝐸 − 03 2.0222𝐸 + 01 2.0018𝐸 + 01

7th 8.5076𝐸 − 07 4.8743𝐸 − 07 0.0000𝐸 + 00 0.0000𝐸 + 00 4.6003𝐸 − 01 1.1064𝐸 − 01 2.0464𝐸 + 01 2.0114𝐸 + 01

13th 1.2109𝐸 − 06 6.5199𝐸 − 07 0.0000𝐸 + 00 0.0000𝐸 + 00 4.9257𝐸 − 01 2.5207𝐸 − 01 2.0514𝐸 + 01 2.0173𝐸 + 01

19th 2.0045𝐸 − 06 1.0638𝐸 − 06 0.0000𝐸 + 00 0.0000𝐸 + 00 5.3845𝐸 − 01 3.1878𝐸 − 01 2.0548𝐸 + 01 2.0291𝐸 + 01

25th 4.0842𝐸 − 06 4.0034𝐸 − 06 0.0000𝐸 + 00 0.0000𝐸 + 00 6.1594𝐸 − 01 5.3531𝐸 − 01 2.0672𝐸 + 01 2.0418𝐸 + 01

Mean 1.5655𝐸 − 06 9.6266𝐸 − 07 0.0000𝐸 + 00 0.0000𝐸 + 00 4.9782𝐸 − 01 2.2763𝐸 − 01 2.0498𝐸 + 01 2.0204𝐸 + 01

Std. 9.8143𝐸 − 07 8.1196𝐸 − 07 0.0000𝐸 + 00 0.0000𝐸 + 00 6.0243𝐸 − 02 1.3284𝐸 − 01 9.7813𝐸 − 02 1.2009𝐸 − 01

Compare + ≈ + +
𝑓9 𝑓10 𝑓11 𝑓12

1st 1.3989𝐸 + 01 0.0000𝐸 + 00 2.0033𝐸 + 01 3.9798𝐸 + 00 7.5701𝐸 + 00 3.2641𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 1.7426𝐸 + 01 2.7720𝐸 − 06 2.7952𝐸 + 01 5.5449𝐸 + 00 8.7921𝐸 + 00 1.1872𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 2.0413𝐸 + 01 9.9496𝐸 − 01 3.0260𝐸 + 01 1.0360𝐸 + 01 8.9472𝐸 + 00 1.5006𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 2.5715𝐸 + 01 1.9899𝐸 + 00 3.1222𝐸 + 01 1.5018𝐸 + 01 9.2551𝐸 + 00 4.4507𝐸 + 00 2.2740𝐸 − 13 5.6800𝐸 − 14

25th 2.9949𝐸 + 01 5.3386𝐸 + 00 3.9253𝐸 + 01 2.0807𝐸 + 01 9.9340𝐸 + 00 7.9865𝐸 + 00 1.0003𝐸 + 01 2.0949𝐸 + 01

Mean 2.1212𝐸 + 01 1.2381𝐸 + 00 2.9811𝐸 + 01 1.0694𝐸 + 01 8.9061𝐸 + 00 2.7270𝐸 + 00 8.0024𝐸 − 01 3.4982𝐸 + 00

Std. 4.5235𝐸 + 00 1.2700𝐸 + 00 4.1074𝐸 + 00 5.0739𝐸 + 00 5.5432𝐸 − 01 2.3085𝐸 + 00 2.7138𝐸 + 00 7.2033𝐸 + 00

Compare + + + −

𝑓13 𝑓14 𝑓15 𝑓16

1st 1.8665𝐸 + 00 3.6753𝐸 − 01 3.3382𝐸 + 00 1.7977𝐸 + 00 1.5446𝐸 + 02 0.0000𝐸 + 00 1.3303𝐸 + 02 9.2767𝐸 + 01

7th 2.0780𝐸 + 00 5.1304𝐸 − 01 3.5746𝐸 + 00 2.9342𝐸 + 00 2.0910𝐸 + 02 9.0900𝐸 + 00 1.5440𝐸 + 02 1.0124𝐸 + 02

13th 2.3576𝐸 + 00 6.4630𝐸 − 01 3.6918𝐸 + 00 3.3251𝐸 + 00 2.4413𝐸 + 02 5.8137𝐸 + 01 1.6166𝐸 + 02 1.1314𝐸 + 02

19th 2.5639𝐸 + 00 7.4785𝐸 − 01 3.7939𝐸 + 00 3.6587𝐸 + 00 2.6441𝐸 + 02 8.3102𝐸 + 01 1.6741𝐸 + 02 1.2632𝐸 + 02

25th 2.8029𝐸 + 00 1.3235𝐸 + 00 3.9639𝐸 + 00 3.8859𝐸 + 00 4.8578𝐸 + 02 4.0851𝐸 + 02 1.7659𝐸 + 02 1.3936𝐸 + 02

Mean 2.3136𝐸 + 00 6.9567𝐸 − 01 3.6786𝐸 + 00 3.1669𝐸 + 00 2.5160𝐸 + 02 1.0231𝐸 + 02 1.5973𝐸 + 02 1.1337𝐸 + 02

Std. 2.8437𝐸 − 01 2.3864𝐸 − 01 1.5636𝐸 − 01 5.9926𝐸 − 01 7.2860𝐸 + 01 1.3504𝐸 + 02 1.0530𝐸 + 01 1.3692𝐸 + 01

Compare + + + +
𝑓17 𝑓18 𝑓19 𝑓20

1st 1.4737𝐸 + 02 9.2259𝐸 + 01 3.0000𝐸 + 02 3.0000𝐸 + 02 8.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02

7th 1.6679𝐸 + 02 1.0246𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

13th 1.7369𝐸 + 02 1.1241𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

19th 1.7999𝐸 + 02 1.1759𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

25th 1.9823𝐸 + 02 1.4576𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

Mean 1.7328𝐸 + 02 1.1338𝐸 + 02 7.8000𝐸 + 02 7.8000𝐸 + 02 8.0000𝐸 + 02 7.8000𝐸 + 02 7.8000𝐸 + 02 7.8000𝐸 + 02

Std. 1.1180𝐸 + 01 1.4716𝐸 + 01 9.7980𝐸 + 01 9.7980𝐸 + 01 0.0000𝐸 + 00 9.7980𝐸 + 01 9.7980𝐸 + 01 9.7980𝐸 + 01

Compare + ≈ + ≈

𝑓21 𝑓22 𝑓23 𝑓24

1st 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.6886𝐸 + 02 7.6619𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.7079𝐸 + 02 7.7020𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.7274𝐸 + 02 7.7353𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

25th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.7736𝐸 + 02 7.7854𝐸 + 02 7.2122𝐸 + 02 7.2122𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02
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Table 2: Continued.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
Mean 4.6800𝐸 + 02 4.7600𝐸 + 02 7.5174𝐸 + 02 7.1445𝐸 + 02 5.8535𝐸 + 02 5.7888𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

Std. 7.3321𝐸 + 01 6.4992𝐸 + 01 9.2289𝐸 + 01 1.5309𝐸 + 02 5.9298𝐸 + 01 5.2562𝐸 + 01 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare − + + ≈

𝑓25 𝑓2 𝑓3 𝑓4

1st 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 2.0000𝐸 + 02 2.0000𝐸 + 02 Statistical analysis
25th 2.0000𝐸 + 02 2.0000𝐸 + 02 + ≈ −

Mean 2.0000𝐸 + 02 2.0000𝐸 + 02 14 8 3
Std. 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈

“+, ≈, −” denote that the results of CDE/SC qrtop are “better,” “approximate,” and “worse” than the corresponding DE, respectively.

𝑋 = initial. population (𝑚), 𝐹, CR = initial. parameters
while ! termination condition do

for 𝑔 = 0 to 𝑚
+ generate a random integer 𝑟

1
∈ [1, ⌊𝑚 ⋅ (1 + 𝑞%)⌋]

+ if 𝑟
1
≤ 𝑚, then
V⃗𝑔
𝑖
= �⃗�𝑔
𝑟1
+ 𝐹(�⃗�𝑔

𝑟2
− �⃗�𝑔
𝑟3
) //mutation

+ else
+ V⃗𝑔

𝑖
= �⃗�
𝑔

qrtop + rand(0, 1) ⋅ (�⃗�
𝑏1
− �⃗�
𝑏2
) //SC qrtop

�⃗�
𝑔

𝑖
= binomial crossover(�⃗�𝑔

𝑖
, V⃗𝑔
𝑖
) //crossover

if 𝑓(�⃗�𝑔
𝑖
) ≤ 𝑓(�⃗�

𝑔

𝑖
), then //selection

�⃗�
𝑔

𝑖
= �⃗�
𝑔

𝑖

end if
𝑔 = 𝑔 + 1

end for
end while

“+” marks the added operator. “𝑞%” is the probability using SC qrtop mutation.

Pseudocode 2: Pseudocode of CDE/SC qrtop rand/1.

convenient theorem for proving the global convergence of
DE variants is the one recently presented by Hu et al. [19].
The theorem is based on the previous two. It just needs to
check whether or not the probability, of the offspring in any
subsequence population entering the optimum solution set, is
big enough.The theorem can be described in detail as follows.

Theorem 2 (see [19]). Consider {𝑋(𝑡), 𝑡 = 0, 1, 2, . . .} to be a
population sequence of a DE variant with a greedy selection
operator. In the 𝑡𝑡ℎ

𝑘
target population𝑋(𝑡

𝑘
), there exists at least

one individual �⃗�, which corresponds to the trial individual �⃗�,
such that

𝑝 {�⃗� ∈ 𝑆
∗

𝛿
} ≥ 𝜁 (𝑡

𝑘
) > 0, (23)

and the series ∑∞
𝑘=1

𝜁(𝑡
𝑘
) diverges; then the DE variant holds

global convergence.
Where {𝑡

𝑘
, 𝑘 = 1, 2, . . .} denotes any subsequence of natural

number set, 𝑝{�⃗� ∈ 𝑆∗
𝛿
} denotes the probability that �⃗� belongs to

the optimal solution set 𝑆∗
𝛿
, and 𝜁(𝑡

𝑘
) is a small positive real

which depends on 𝑡
𝑘
.

FromTheorem 2, we can get that if the probability enter-
ing into the optimal set in a certain subsequence population is
large enough, then the DE variant holds global convergence.

In fact, for each generation population of CDE/SC qrtop,
the probability of each SC donor individual locating in any
subspace can be calculated by the following expression:

𝑃
𝑛

𝑗
= C
𝑗

𝑛
⋅ (𝑃
1

0
)
𝑗

⋅ (𝑃
1

1
)
𝑛−𝑗

, for 𝑗 = 1, 2, . . . , 𝑛. (24)

Let 𝑃𝑛min = min{𝑃𝑛
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛}; then whether or

not the classicalmutation operator generates an optimum, the
probability that at least one donor individual V⃗ locates in the
optimal set 𝑆∗

𝛿
, can be estimated as follows:

𝑝 {V⃗ ∈ 𝑆∗
𝛿
} ≥ 𝑚 ⋅ 𝑞% ⋅ 𝑃

𝑛

min ⋅
𝜇 (𝑆∗
𝛿
)

𝜇 (Ψ)
, (25)
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Table 3: Experimental results of CDE/SC qrtop cur-best/1, DE/cur-best/1 over 25 runs on 25 test functions with 150000 FEs.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
𝑓1 𝑓2 𝑓3 𝑓4

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 5.5012𝐸 − 07 0.0000𝐸 + 00 4.8876𝐸 + 02 6.9964𝐸 + 01 2.2740𝐸 − 13 0.0000𝐸 + 00

7th 8.5509𝐸 − 05 0.0000𝐸 + 00 1.7350𝐸 − 02 2.4534𝐸 − 08 1.8972𝐸 + 03 1.1059𝐸 + 03 9.2872𝐸 − 08 1.7050𝐸 − 13

13th 2.2838𝐸 − 03 0.0000𝐸 + 00 6.3674𝐸 − 01 2.0188𝐸 − 05 1.1546𝐸 + 04 3.3109𝐸 + 03 4.1183𝐸 − 05 3.7005𝐸 − 11

19th 2.5952𝐸 − 02 0.0000𝐸 + 00 2.6371𝐸 + 01 8.7243𝐸 − 03 2.9816𝐸 + 04 8.2096𝐸 + 03 1.6850𝐸 − 03 3.1553𝐸 − 08

25th 1.1445𝐸 + 01 4.0470𝐸 − 05 6.3312𝐸 + 02 6.0204𝐸 + 01 1.7102𝐸 + 05 4.5983𝐸 + 04 4.0571𝐸 − 02 1.3858𝐸 − 02

Mean 7.9045𝐸 − 01 1.6188𝐸 − 06 6.5165𝐸 + 01 2.5578𝐸 + 00 2.5307𝐸 + 04 7.3975𝐸 + 03 3.3446𝐸 − 03 6.2877𝐸 − 04

Std. 2.5409𝐸 + 00 7.9305𝐸 − 06 1.4716𝐸 + 02 1.1782𝐸 + 01 3.9782𝐸 + 04 1.0388𝐸 + 04 8.7005𝐸 − 03 2.7146𝐸 − 03

Compare + + + +
𝑓5 𝑓6 𝑓7 𝑓8

1st 1.2767𝐸 + 02 1.2120𝐸 + 00 3.9877𝐸 + 00 0.0000𝐸 + 00 1.7236𝐸 − 02 2.7106𝐸 − 02 2.0079𝐸 + 01 2.0079𝐸 + 01

7th 3.5284𝐸 + 02 2.2154𝐸 + 01 8.3525𝐸 + 00 6.0990𝐸 + 00 7.1386𝐸 − 02 1.0819𝐸 − 01 2.0196𝐸 + 01 2.0177𝐸 + 01

13th 9.3649𝐸 + 02 1.0686𝐸 + 02 1.9794𝐸 + 01 7.0970𝐸 + 00 3.1264𝐸 − 01 1.5494𝐸 − 01 2.0236𝐸 + 01 2.0242𝐸 + 01

19th 1.4980𝐸 + 03 2.6612𝐸 + 02 6.7292𝐸 + 01 9.0506𝐸 + 00 3.6444𝐸 − 01 3.3028𝐸 − 01 2.0279𝐸 + 01 2.0278𝐸 + 01

25th 3.6540𝐸 + 03 6.2407𝐸 + 02 5.7027𝐸 + 03 7.7533𝐸 + 01 2.3178𝐸 + 00 1.7309𝐸 + 00 2.0410𝐸 + 01 2.0357𝐸 + 01

Mean 1.1433𝐸 + 03 1.7052𝐸 + 02 2.7656𝐸 + 02 1.1989𝐸 + 01 4.9784𝐸 − 01 3.2179𝐸 − 01 2.0230𝐸 + 01 2.0226𝐸 + 01

Std. 8.9540𝐸 + 02 1.8190𝐸 + 02 1.1098𝐸 + 03 1.8099𝐸 + 01 6.1270𝐸 − 01 4.1704𝐸 − 01 7.5873𝐸 − 02 6.9201𝐸 − 02

Compare + + + +
𝑓9 𝑓10 𝑓11 𝑓12

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 3.9798𝐸 + 00 2.9849𝐸 + 00 3.5206𝐸 − 02 1.3602𝐸 − 01 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 3.9798𝐸 + 00 0.0000𝐸 + 00 7.9597𝐸 + 00 5.9698𝐸 + 00 3.7062𝐸 − 01 7.6144𝐸 − 01 1.0003𝐸 + 01 4.7378𝐸 + 00

13th 4.9748𝐸 + 00 7.9580𝐸 − 13 1.1939𝐸 + 01 7.9597𝐸 + 00 1.3421𝐸 + 00 1.3768𝐸 + 00 1.5151𝐸 + 01 1.0262𝐸 + 01

19th 6.1666𝐸 + 00 9.9496𝐸 − 01 1.2934𝐸 + 01 1.0945𝐸 + 01 2.1262𝐸 + 00 2.0536𝐸 + 00 7.1231𝐸 + 02 7.1618𝐸 + 02

25th 1.2934𝐸 + 01 2.9849𝐸 + 00 1.9899𝐸 + 01 1.6914𝐸 + 01 3.1120𝐸 + 00 3.9347𝐸 + 00 2.1264𝐸 + 03 1.8022𝐸 + 03

Mean 5.3045𝐸 + 00 6.0971𝐸 − 01 1.1263𝐸 + 01 8.7556𝐸 + 00 1.3147𝐸 + 00 1.5349𝐸 + 00 4.3055𝐸 + 02 4.3360𝐸 + 02

Std. 2.8690𝐸 + 00 8.3752𝐸 − 01 3.8454𝐸 + 00 3.7334𝐸 + 00 9.5778𝐸 − 01 9.8325𝐸 − 01 7.0497𝐸 + 02 6.9513𝐸 + 02

Compare + + − +
𝑓13 𝑓14 𝑓15 𝑓16

1st 2.7975𝐸 − 01 4.4744𝐸 − 01 1.0964𝐸 + 00 1.2231𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 9.2723𝐸 + 01 7.2255𝐸 + 01

7th 5.4172𝐸 − 01 5.6187𝐸 − 01 1.7595𝐸 + 00 1.9520𝐸 + 00 7.8103𝐸 + 01 4.0917𝐸 + 01 1.0482𝐸 + 02 9.8302𝐸 + 01

13th 7.1231𝐸 − 01 6.3925𝐸 − 01 2.3004𝐸 + 00 2.1503𝐸 + 00 1.3625𝐸 + 02 7.1410𝐸 + 01 1.1385𝐸 + 02 1.0466𝐸 + 02

19th 7.8302𝐸 − 01 8.5414𝐸 − 01 2.5534𝐸 + 00 2.3544𝐸 + 00 4.2542𝐸 + 02 4.1683𝐸 + 02 1.2572𝐸 + 02 1.1618𝐸 + 02

25th 1.2451𝐸 + 00 1.4004𝐸 + 00 3.0760𝐸 + 00 2.7215𝐸 + 00 6.2097𝐸 + 02 4.4506𝐸 + 02 1.4815𝐸 + 02 1.2591𝐸 + 02

Mean 7.2334𝐸 − 01 7.3784𝐸 − 01 2.1448𝐸 + 00 2.1437𝐸 + 00 2.6016𝐸 + 02 2.0761𝐸 + 02 1.1556𝐸 + 02 1.0593𝐸 + 02

Std. 2.4114𝐸 − 01 2.4612𝐸 − 01 5.1681𝐸 − 01 3.5030𝐸 − 01 2.1155𝐸 + 02 1.9217𝐸 + 02 1.4146𝐸 + 01 1.1930𝐸 + 01

Compare − − + +
𝑓17 𝑓18 𝑓19 𝑓20

1st 9.3661𝐸 + 01 9.4580𝐸 + 01 8.0000𝐸 + 02 6.7511𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 6.7524𝐸 + 02

7th 1.0164𝐸 + 02 1.0446𝐸 + 02 8.0056𝐸 + 02 8.0000𝐸 + 02 8.0069𝐸 + 02 8.0000𝐸 + 02 8.0056𝐸 + 02 8.0000𝐸 + 02

13th 1.1396𝐸 + 02 1.0815𝐸 + 02 9.2115𝐸 + 02 8.0032𝐸 + 02 9.2098𝐸 + 02 8.0009𝐸 + 02 9.2098𝐸 + 02 8.0000𝐸 + 02

19th 1.2693𝐸 + 02 1.1825𝐸 + 02 9.7578𝐸 + 02 9.0928𝐸 + 02 9.8845𝐸 + 02 9.4347𝐸 + 02 9.8853𝐸 + 02 9.4347𝐸 + 02

25th 1.6350𝐸 + 02 1.4853𝐸 + 02 1.0656𝐸 + 03 1.0598𝐸 + 03 1.0308𝐸 + 03 1.0253𝐸 + 03 1.0299𝐸 + 03 1.0253𝐸 + 03

Mean 1.1513𝐸 + 02 1.1227𝐸 + 02 9.0848𝐸 + 02 8.5281𝐸 + 02 9.0948𝐸 + 02 8.6336𝐸 + 02 9.0496𝐸 + 02 8.5465𝐸 + 02

Std. 1.7603𝐸 + 01 1.3206𝐸 + 01 8.6355𝐸 + 01 8.7914𝐸 + 01 8.9426𝐸 + 01 7.5808𝐸 + 01 8.5545𝐸 + 01 8.4184𝐸 + 01

Compare − + + +
𝑓21 𝑓22 𝑓23 𝑓24

1st 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0100𝐸 + 02 3.0000𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 8.7473𝐸 + 02 3.0002𝐸 + 02 7.3512𝐸 + 02 7.2885𝐸 + 02 9.7050𝐸 + 02 7.2122𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 9.7087𝐸 + 02 8.0000𝐸 + 02 7.5512𝐸 + 02 7.5298𝐸 + 02 1.0789𝐸 + 03 7.2160𝐸 + 02 2.0093𝐸 + 02 2.0000𝐸 + 02

19th 1.1272𝐸 + 03 1.0048𝐸 + 03 8.0000𝐸 + 02 8.0000𝐸 + 02 1.1769𝐸 + 03 1.0372𝐸 + 03 5.4088𝐸 + 02 5.0000𝐸 + 02

25th 1.1953𝐸 + 03 1.1654𝐸 + 03 9.6299𝐸 + 02 9.0646𝐸 + 02 1.2564𝐸 + 03 1.1930𝐸 + 03 1.2261𝐸 + 03 5.0712𝐸 + 02
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Table 3: Continued.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
Mean 9.0387𝐸 + 02 7.0600𝐸 + 02 7.5726𝐸 + 02 7.2752𝐸 + 02 1.0348𝐸 + 03 8.1381𝐸 + 02 4.6484𝐸 + 02 2.8447𝐸 + 02

Std. 2.8644𝐸 + 02 3.2632𝐸 + 02 1.0880𝐸 + 02 1.3216𝐸 + 02 1.8765𝐸 + 02 2.0400𝐸 + 02 3.3548𝐸 + 02 1.3546𝐸 + 02

Compare + + + +
𝑓25 𝑓2 𝑓3 𝑓4

1st 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 2.0093𝐸 + 02 2.0000𝐸 + 02

19th 5.4088𝐸 + 02 5.0000𝐸 + 02 Statistical analysis
25th 1.2261𝐸 + 03 5.0712𝐸 + 02 + ≈ −

Mean 4.6484𝐸 + 02 2.8447𝐸 + 02 21 0 4

Std. 3.3548𝐸 + 02 1.3546𝐸 + 02

Compare +
“+, ≈, −” denote that the results of CDE/SC qrtop are “better,” “approximate,” and “worse” than the corresponding DE, respectively.

where 𝜇(⋅) denotes the measure of a measurable set. If the
crossover probability CR < 1, then

𝑝 {�⃗� ∈ 𝑆
∗

𝛿
} ≥ 𝑚 ⋅ 𝑞% ⋅ 𝑃

𝑛

min ⋅
𝜇 (𝑆∗
𝛿
)

𝜇 (Ψ)
⋅ (1 − CR) > 0. (26)

So if 𝜁 (𝑡) takes

𝜁 (𝑡) ≡ 𝑚 ⋅ 𝑞% ⋅ 𝑃
𝑛

min ⋅
𝜇 (𝑆∗
𝛿
)

𝜇 (Ψ)
⋅ (1 − CR) > 0, (27)

we can get that ∑
∞

𝑡=1
𝜁(𝑡) diverges. Hence, we draw a

conclusion that the CDE/SC qrtop algorithm holds global
convergence.

5. Numerical Experiments

The main purpose of numerical experiments is to reveal
that the proposed SC qrtop operator can enhance the search
ability of all five classical mutation operators, that is, rand/1,
best/1, current-to-best/1, best/2, and rand/2. So this paper
compared CDE/SC qrtop algorithms and the corresponding
classical DE algorithms with five classical mutations, respec-
tively. The experiments were conducted on 25 test instances
proposed in the CEC2005 special session on real-parameter
optimization [28]. These benchmark function set includes
four classes:

(i) 5 unimodal functions f 1–f 5,
(ii) 7 basic multimodal functions f 6–f 12,
(iii) 2 expanded multimodal functions f 13-f 14,
(iv) 11 hybrid composition functions f 15–f 25.

The number of decision variables, 𝑛, was set to 10 for
all the 25 test functions. The population size, 𝑚, was set to
be 60 for all the algorithms. The mutation factor, 𝐹, was set
to be 0.5 while the crossover probability, CR, was set to be
0.9. The probability using SC qrtop mutation was suggested
to be 20%. For each algorithm and each test function,

25 independent runs were conducted with 150000 function
evaluations (FEs) as the termination criterion.

Generally speaking, due to using the best solution of the
current population, the DE variants with a mutation strategy
based on the best solution, that is, DE/best/1, DE/cur-to-
best/1, DE/best/2, have more powerful exploitation ability,
while the other random mutation strategies make the DE
variant possess more powerful exploration ability. Given
that, this section will analyze the experimental results from
the following two aspects, that is, the comparison on three
mutation strategies based on the best solution and the
comparison on the other two random mutation strategies.

5.1. Comparison onThreeMutation Strategies Based on the Best
Solution. The experimental results of CDE/SC qrtop best/1
& DE/best/1, CDE/SC qrtop cur-best/1 &DE/cur-best/1, and
CDE/SC qrtop best/2 & DE/best/2 were reported in Tables
2, 3, and 4, respectively. The bottom right corner in every
table summarized the statistical analyses of the experimental
results. The priority of the comparison analyses is the best
solution, the mean, and the standard deviation in turn.

From Tables 2, 3, and 4, the number of the benchmark
functions, on which the three CDE/SC qrtop variants out-
perform the corresponding DE algorithms, is 14, 21, and 12
in turn. Meanwhile, the number of the benchmark functions,
on which CDE/SC qrtop variants are below than the cor-
responding DE algorithms, is 3, 4, and 6 in turn. Figure 4
showed the evolution landscapes of the average error of the
best function values on 25 runnings derived from all the
six algorithms on the benchmark function 1–14. The results
show that the SC qrtop mutation can greatly improve the
search ability of the three mutation strategies based on the
best solution.

Given further analyses of the results, we can get that the
improvement of the three CDE/SC qrtop variants is more
effective on the basic multimodal functions and the hybrid
composition functions. To the unimodal functions, the three
classical DE algorithms, especially for DE/best/2, already
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Table 4: Experimental results of CDE/SC qrtop best/2, DE/best/2 over 25 runs on 25 test functions with 150000 FEs.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
𝑓1 𝑓2 𝑓3 𝑓4

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

25th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

Mean 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈ ≈ ≈ ≈

𝑓5 𝑓6 𝑓7 𝑓8

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 1.2316𝐸 − 02 7.3960𝐸 − 03 2.0196𝐸 + 01 2.0202𝐸 + 01

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 5.1637𝐸 − 02 6.6510𝐸 − 02 2.0262𝐸 + 01 2.0289𝐸 + 01

13th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 7.3852𝐸 − 02 1.2059𝐸 − 01 2.0313𝐸 + 01 2.0351𝐸 + 01

19th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 1.1554𝐸 − 01 3.7557𝐸 − 01 2.0392𝐸 + 01 2.0416𝐸 + 01

25th 0.0000𝐸 + 00 0.0000𝐸 + 00 3.9866𝐸 + 00 3.9866𝐸 + 00 5.2118𝐸 − 01 5.5407𝐸 − 01 2.0468𝐸 + 01 2.0485𝐸 + 01

Mean 0.0000𝐸 + 00 0.0000𝐸 + 00 7.9732𝐸 − 01 7.9732𝐸 − 01 1.4339𝐸 − 01 2.0014𝐸 − 01 2.0328𝐸 + 01 2.0353𝐸 + 01

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00 1.5946𝐸 + 00 1.5946𝐸 + 00 1.6185𝐸 − 01 1.7861𝐸 − 01 7.9339𝐸 − 02 7.4764𝐸 − 02

Compare ≈ ≈ + −

𝑓9 𝑓10 𝑓11 𝑓12

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 2.9849𝐸 + 00 3.9798𝐸 + 00 2.4660𝐸 − 02 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 3.9798𝐸 + 00 2.9849𝐸 + 00 1.6130𝐸 + 01 2.0086𝐸 + 01 8.3154𝐸 + 00 7.4168𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 6.9647𝐸 + 00 6.2445𝐸 + 00 2.3264𝐸 + 01 2.5403𝐸 + 01 9.0461𝐸 + 00 8.4311𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 1.1608𝐸 + 01 8.5729𝐸 + 00 2.4652𝐸 + 01 2.6778𝐸 + 01 9.1732𝐸 + 00 8.8442𝐸 + 00 7.1225𝐸 + 02 1.8835𝐸 + 01

25th 2.4198𝐸 + 01 1.0692𝐸 + 01 2.7916𝐸 + 01 3.4016𝐸 + 01 9.6214𝐸 + 00 9.3434𝐸 + 00 1.6936𝐸 + 03 1.5566𝐸 + 03

Mean 7.9612𝐸 + 00 5.8806𝐸 + 00 2.0632𝐸 + 01 2.2683𝐸 + 01 8.3966𝐸 + 00 6.7638𝐸 + 00 4.2162𝐸 + 02 2.3018𝐸 + 02

Std. 5.3177𝐸 + 00 3.1792𝐸 + 00 6.2041𝐸 + 00 7.3227𝐸 + 00 1.8193𝐸 + 00 3.3402𝐸 + 00 6.4312𝐸 + 02 4.7939𝐸 + 02

Compare + − + +
𝑓13 𝑓14 𝑓15 𝑓16

1st 4.8828𝐸 − 01 1.1758𝐸 + 00 1.7929𝐸 + 00 2.3148𝐸 + 00 4.0451𝐸 + 01 4.1507𝐸 + 01 4.0451𝐸 + 01 4.1507𝐸 + 01

7th 1.3762𝐸 + 00 1.5028𝐸 + 00 2.6461𝐸 + 00 2.7925𝐸 + 00 8.7709𝐸 + 01 9.9287𝐸 + 01 8.7709𝐸 + 01 9.9287𝐸 + 01

13th 1.6172𝐸 + 00 1.7127𝐸 + 00 3.0568𝐸 + 00 3.0957𝐸 + 00 1.5034𝐸 + 02 1.3351𝐸 + 02 1.5034𝐸 + 02 1.3351𝐸 + 02

19th 1.8410𝐸 + 00 1.9313𝐸 + 00 3.4371𝐸 + 00 3.4362𝐸 + 00 4.3184𝐸 + 02 4.2099𝐸 + 02 4.3184𝐸 + 02 4.2099𝐸 + 02

25th 2.5682𝐸 + 00 2.0834𝐸 + 00 3.7421𝐸 + 00 3.7532𝐸 + 00 4.6888𝐸 + 02 4.4556𝐸 + 02 4.6888𝐸 + 02 4.4556𝐸 + 02

Mean 1.5670𝐸 + 00 1.6861𝐸 + 00 3.0140𝐸 + 00 3.1050𝐸 + 00 2.5861𝐸 + 02 2.1208𝐸 + 02 2.5861𝐸 + 02 2.1208𝐸 + 02

Std. 4.2368𝐸 − 01 2.5891𝐸 − 01 5.3617𝐸 − 01 4.2000𝐸 − 01 1.7076𝐸 + 02 1.5444𝐸 + 02 1.7076𝐸 + 02 1.5444𝐸 + 02

Compare − − ≈ +
𝑓17 𝑓18 𝑓19 𝑓20

1st 9.1685𝐸 + 01 0.0000𝐸 + 00 0.0000𝐸 + 00 9.5160𝐸 + 01 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02

7th 1.0440𝐸 + 02 9.3964𝐸 + 01 1.4089𝐸 + 02 1.3219𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

13th 1.1595𝐸 + 02 1.0315𝐸 + 02 1.5470𝐸 + 02 1.4725𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

19th 1.3107𝐸 + 02 1.3585𝐸 + 02 1.6346𝐸 + 02 1.6653𝐸 + 02 8.0009𝐸 + 02 8.9431𝐸 + 02 9.0802𝐸 + 02 8.7774𝐸 + 02

25th 1.6531𝐸 + 02 1.6106𝐸 + 02 1.8794𝐸 + 02 1.9434𝐸 + 02 9.7173𝐸 + 02 9.8588𝐸 + 02 9.4829𝐸 + 02 9.4898𝐸 + 02

Mean 1.2089𝐸 + 02 1.0577𝐸 + 02 1.4384𝐸 + 02 1.4536𝐸 + 02 7.5772𝐸 + 02 7.3834𝐸 + 02 7.4627𝐸 + 02 7.1406𝐸 + 02

Std. 1.9889𝐸 + 01 3.9367𝐸 + 01 3.7758𝐸 + 01 2.4624𝐸 + 01 1.7254𝐸 + 02 2.1726𝐸 + 02 2.0517𝐸 + 02 2.2909𝐸 + 02

Compare − + + +
𝑓21 𝑓22 𝑓23 𝑓24

1st 3.0000𝐸 + 02 3.0000𝐸 + 02 7.5581𝐸 + 02 7.4329𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 3.0000𝐸 + 02 3.0000𝐸 + 02 7.6260𝐸 + 02 7.6467𝐸 + 02 7.2122𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.6614𝐸 + 02 7.6662𝐸 + 02 7.2163𝐸 + 02 7.2122𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 8.4224𝐸 + 02 8.0000𝐸 + 02 7.7046𝐸 + 02 7.7111𝐸 + 02 9.7050𝐸 + 02 9.7050𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

25th 1.0453𝐸 + 03 1.1774𝐸 + 03 8.3558𝐸 + 02 8.3240𝐸 + 02 1.2523𝐸 + 03 1.2197𝐸 + 03 9.0000𝐸 + 02 5.0000𝐸 + 02
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Table 4: Continued.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
Mean 5.4292𝐸 + 02 5.9653𝐸 + 02 7.7037𝐸 + 02 7.7531𝐸 + 02 8.2940𝐸 + 02 7.5938𝐸 + 02 2.6418𝐸 + 02 2.2400𝐸 + 02

Std. 2.6698𝐸 + 02 2.6961𝐸 + 02 1.7061𝐸 + 01 2.3866𝐸 + 01 2.0036𝐸 + 02 2.0843𝐸 + 02 1.6245𝐸 + 02 8.1388𝐸 + 01

Compare − + + +
𝑓25 𝑓2 𝑓3 𝑓4

1st 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 2.0000𝐸 + 02 2.0000𝐸 + 02 Statistical analysis
25th 9.0000𝐸 + 02 5.0000𝐸 + 02 + ≈ −

Mean 2.6418𝐸 + 02 2.2400𝐸 + 02 12 7 6

Std. 1.6245𝐸 + 02 8.1388𝐸 + 01

Compare +
“+, ≈, −” denote that the results of CDE/SC qrtop are “better,” “approximate,” and “worse” than the corresponding DE, respectively.

achieve (or approach) the optimum solution, so the three
CDE/SC qrtop variants just got the similar results with that
achieved by the corresponding DE algorithms.

5.2. Comparison on the Other Two Random Mutation Strate-
gies. The experimental results of CDE/SC qrtop rand/1 &
DE/rand/1, and CDE/SC qrtop rand/2 & DE/rand/2 were
reported in Tables 5 and 6, respectively. As above, the bottom
right corner in every table summarized the statistical analyses
of the experimental results. The priority of the comparison
analyses is the best solution, the mean, and the standard
deviation in turn.

As shown in Tables 5 and 6, the numbers of the bench-
mark functions, on which the two CDE/SC qrtop variants
outperform the corresponding DE algorithms, are both 9.
Meanwhile, the numbers of the benchmark functions, on
which CDE/SC qrtop variants are below than the corre-
sponding DE algorithms, are both 7.The results show that the
SC qrtop mutation can weakly improve the search ability of
the three mutation strategies based on the best solution.

In summary, the SC qrtop mutation can improve the
search ability of all the classical mutation operators of DE.
The improvement on the three mutation strategies based on
the best solution is very significant while is small on the
two randommutation strategies.The results also demonstrate
that the SC qrtop mutation focuses on the exploration more
than the exploitation. The experimental results support the
theoretical conclusion that theCDE/SC qrtop algorithms can
guarantee global convergence in probability.

6. Discussion

The previous theoretical analysis proved that the differential
evolution algorithm incorporating the SC qrtop mutation
operator holds convergence in probability. The numerical
experiments showed that these convergent SC qrtop DE

algorithms are significantly better than or at least comparable
to the corresponding DE algorithms, respectively.

Generally, the populations of a convergent algorithm
have more diversity, which can enhance the algorithmic
exploration ability and make the algorithm hold stronger
robustness.TheDE-RW[22] uses a random-walkmechanism
to enhance the population diversity until the individuals are
ergodic, thereby making the algorithm hold global conver-
gence in probability. Also, like the DE-RW algorithm, the
convergent DE algorithm presented in the literature [23] uti-
lizes a Gaussian mutation operator to enhance the algorith-
mic exploration ability.The researches of these convergentDE
algorithms bring the DE field a significant step. However, the
algorithmic performance depends on the balance between
the exploration and exploitation ability. Just enhancing
the exploration abilitymay decrease the convergence speed of
a algorithm.Unlike the random-walk and theGuassianmuta-
tion operators, the proposed SC qrtop mutation operator
takes account of the balance. As shown in Table 1, the occur-
rence probability of the event𝐸𝑛

0
always equals the occurrence

probability of the event 𝐸𝑛
𝑛
. That is to say, the probability (𝑃𝑛

0
)

of reproducing elite individuals equals the probability (𝑃𝑛
𝑛
) of

randomly sampling in the whole solution space. The repro-
duction of elite individuals benefits enhancing the exploita-
tion ability; meanwhile, the randomly sampling in the whole
solution space is conducive to enhancing the exploration
ability.

In addition, the proposed SC qrtop mutation operator
can be incorporated into any state-of-the-art DE algorithms,
thereby developing convergent DE algorithms in theory. Due
to the fact that the SC qrtopmutation operator takes account
of the balance between the exploration and exploitation
ability, the performance of the convergent algorithms based
state-of-the-art DE is expected.

7. Conclusion and Future Work

In many recent literatures, a significant amount of exper-
iments indicated that composite trial vector generation
strategy is an effective way for balancing the exploration



Mathematical Problems in Engineering 13

Table 5: Experimental results of CDE/SC qrtop rand/1, DE/rand/1 over 25 runs on 25 test functions with 150000 FEs.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
𝑓1 𝑓2 𝑓3 𝑓4

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 7.2509𝐸 − 09 6.4688𝐸 − 11 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 4.6462𝐸 − 05 2.0795𝐸 − 04 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 9.8480𝐸 − 02 5.0261𝐸 − 02 0.0000𝐸 + 00 0.0000𝐸 + 00

25th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 6.3817𝐸 + 01 1.0385𝐸 + 03 0.0000𝐸 + 00 0.0000𝐸 + 00

Mean 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.7593𝐸 + 00 4.1958𝐸 + 01 0.0000𝐸 + 00 0.0000𝐸 + 00

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 1.2475𝐸 + 01 2.0343𝐸 + 02 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈ ≈ − ≈

𝑓5 𝑓6 𝑓7 𝑓8

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 7.3960𝐸 − 03 0.0000𝐸 + 00 2.0120𝐸 + 01 2.0082𝐸 + 01

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 1.4772𝐸 − 02 2.2141𝐸 − 02 2.0282𝐸 + 01 2.0291𝐸 + 01

13th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 3.4448𝐸 − 02 4.6729𝐸 − 02 2.0328𝐸 + 01 2.0375𝐸 + 01

19th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 6.8898𝐸 − 02 6.6478𝐸 − 02 2.0366𝐸 + 01 2.0420𝐸 + 01

25th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 9.5930𝐸 − 02 8.8639𝐸 − 02 2.0450𝐸 + 01 2.0516𝐸 + 01

Mean 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 4.1840𝐸 − 02 4.5175𝐸 − 02 2.0322𝐸 + 01 2.0351𝐸 + 01

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 3.0500𝐸 − 02 2.8671𝐸 − 02 6.7207𝐸 − 02 1.0383𝐸 − 01

Compare ≈ ≈ + +
𝑓9 𝑓10 𝑓11 𝑓12

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 2.9849𝐸 + 00 2.9849𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 4.9748𝐸 + 00 5.9698𝐸 + 00 1.1172𝐸 − 02 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 0.0000𝐸 + 00 2.3010𝐸 − 01 5.9698𝐸 + 00 8.2612𝐸 + 00 1.7788𝐸 + 00 9.8396𝐸 − 01 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 9.9496𝐸 − 01 9.9496𝐸 − 01 9.9496𝐸 + 00 1.1939𝐸 + 01 3.3814𝐸 + 00 1.5764𝐸 + 00 0.0000𝐸 + 00 1.0003𝐸 + 01

25th 2.9849𝐸 + 00 1.9899𝐸 + 00 2.1166𝐸 + 01 2.3753𝐸 + 01 7.9811𝐸 + 00 4.0546𝐸 + 00 1.5566𝐸 + 03 1.5566𝐸 + 03

Mean 6.3677𝐸 − 01 5.4889𝐸 − 01 8.1275𝐸 + 00 9.2220𝐸 + 00 2.1499𝐸 + 00 1.1028𝐸 + 00 9.2310𝐸 + 01 1.2773𝐸 + 02

Std. 8.8456𝐸 − 01 6.6579𝐸 − 01 5.2632𝐸 + 00 5.1077𝐸 + 00 2.0152𝐸 + 00 1.2124𝐸 + 00 3.2973𝐸 + 02 4.2139𝐸 + 02

Compare + ≈ + −

𝑓13 𝑓14 𝑓15 𝑓16

1st 3.9937𝐸 − 01 3.6204𝐸 − 01 1.7469𝐸 + 00 2.3071𝐸 + 00 4.0447𝐸 + 01 0.0000𝐸 + 00 4.7061𝐸 + 01 5.6003𝐸 + 01

7th 7.0363𝐸 − 01 5.9017𝐸 − 01 2.4876𝐸 + 00 2.6921𝐸 + 00 9.2339𝐸 + 01 6.3500𝐸 + 01 9.3017𝐸 + 01 9.6730𝐸 + 01

13th 8.1086𝐸 − 01 6.9524𝐸 − 01 2.7899𝐸 + 00 3.0446𝐸 + 00 1.4128𝐸 + 02 6.7911𝐸 + 01 9.6101𝐸 + 01 1.0079𝐸 + 02

19th 1.0757𝐸 + 00 8.0978𝐸 − 01 2.9781𝐸 + 00 3.1802𝐸 + 00 4.0000𝐸 + 02 8.3832𝐸 + 01 1.0333𝐸 + 02 1.0355𝐸 + 02

25th 1.7646𝐸 + 00 1.0166𝐸 + 00 3.2435𝐸 + 00 3.7197𝐸 + 00 4.0626𝐸 + 02 4.0626𝐸 + 02 1.1846𝐸 + 02 1.2520𝐸 + 02

Mean 9.1507𝐸 − 01 6.8775𝐸 − 01 2.6736𝐸 + 00 2.9688𝐸 + 00 2.1325𝐸 + 02 1.2957𝐸 + 02 9.5169𝐸 + 01 9.9173𝐸 + 01

Std. 3.7881𝐸 − 01 1.5413𝐸 − 01 3.8217𝐸 − 01 3.7718𝐸 − 01 1.4492𝐸 + 02 1.3681𝐸 + 02 1.5942𝐸 + 01 1.2987𝐸 + 01

Compare + − + −

𝑓17 𝑓18 𝑓19 𝑓20

1st 0.0000𝐸 + 00 9.2565𝐸 + 01 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02

7th 9.7579𝐸 + 01 9.7428𝐸 + 01 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

13th 1.0339𝐸 + 02 1.0301𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

19th 1.0675𝐸 + 02 1.0844𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

25th 1.6567𝐸 + 02 1.2388𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

Mean 1.0078𝐸 + 02 1.0383𝐸 + 02 7.0000𝐸 + 02 7.0000𝐸 + 02 7.0000𝐸 + 02 6.8000𝐸 + 02 7.0000𝐸 + 02 6.8000𝐸 + 02

Std. 2.4902𝐸 + 01 7.8418𝐸 + 00 2.0000𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02 2.1354𝐸 + 02 2.0000𝐸 + 02 2.1354𝐸 + 02

Compare − ≈ + +
𝑓21 𝑓22 𝑓23 𝑓24

1st 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 7.1007𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 3.0000𝐸 + 02 5.0000𝐸 + 02 7.4467𝐸 + 02 7.4987𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.5384𝐸 + 02 7.6179𝐸 + 02 7.2122𝐸 + 02 7.2122𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 5.0000𝐸 + 02 8.0000𝐸 + 02 7.6028𝐸 + 02 7.6430𝐸 + 02 7.2122𝐸 + 02 7.2122𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

25th 8.0000𝐸 + 02 8.0000𝐸 + 02 7.6702𝐸 + 02 7.7135𝐸 + 02 9.7050𝐸 + 02 1.0445𝐸 + 03 2.0000𝐸 + 02 2.0000𝐸 + 02
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Table 5: Continued.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
Mean 4.6800𝐸 + 02 5.3600𝐸 + 02 7.1547𝐸 + 02 7.5534𝐸 + 02 7.0638𝐸 + 02 6.9289𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

Std. 1.7139𝐸 + 02 1.8304𝐸 + 02 1.2310𝐸 + 02 1.4456𝐸 + 01 1.5058𝐸 + 02 1.4949𝐸 + 02 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare − − + ≈

𝑓25 𝑓2 𝑓3 𝑓4

1st 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 2.0000𝐸 + 02 2.0000𝐸 + 02 Statistical analysis
25th 2.0000𝐸 + 02 2.0000𝐸 + 02 + ≈ −

Mean 2.0000𝐸 + 02 2.0000𝐸 + 02 9 9 7

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈

“+, ≈, −” denote that the results of CDE/SC qrtop are “better,” “approximate,” and “worse” than the corresponding DE, respectively.

Table 6: Experimental results of CDE/SC qrtop rand/2, DE/rand/2 over 25 runs on 25 test functions with 150000 FEs.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
𝑓1 𝑓2 𝑓3 𝑓4

1st 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.2740𝐸 − 13 4.2434𝐸 − 10 0.0000𝐸 + 00 0.0000𝐸 + 00

7th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.2169𝐸 − 12 1.3975𝐸 − 09 0.0000𝐸 + 00 0.0000𝐸 + 00

13th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 4.3201𝐸 − 12 2.3444𝐸 − 09 0.0000𝐸 + 00 0.0000𝐸 + 00

19th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 8.9244𝐸 − 12 3.7235𝐸 − 09 0.0000𝐸 + 00 0.0000𝐸 + 00

25th 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 2.0009𝐸 − 11 3.4024𝐸 − 08 0.0000𝐸 + 00 0.0000𝐸 + 00

Mean 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 6.2050𝐸 − 12 4.2830𝐸 − 09 0.0000𝐸 + 00 0.0000𝐸 + 00

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00 5.4443𝐸 − 12 6.6080𝐸 − 09 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈ ≈ − ≈

𝑓5 𝑓6 𝑓7 𝑓8

1st 4.9898𝐸 − 07 1.2785𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00 3.7853𝐸 − 01 3.1310𝐸 − 01 2.0129𝐸 + 01 2.0196𝐸 + 01

7th 8.5076𝐸 − 07 2.5671𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00 4.6003𝐸 − 01 5.0315𝐸 − 01 2.0260𝐸 + 01 2.0296𝐸 + 01

13th 1.2109𝐸 − 06 5.4359𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00 4.9257𝐸 − 01 5.2473𝐸 − 01 2.0321𝐸 + 01 2.0321𝐸 + 01

19th 2.0045𝐸 − 06 8.8826𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00 5.3845𝐸 − 01 5.6186𝐸 − 01 2.0381𝐸 + 01 2.0366𝐸 + 01

25th 4.0842𝐸 − 06 3.2888𝐸 − 04 0.0000𝐸 + 00 0.0000𝐸 + 00 6.1594𝐸 − 01 6.1609𝐸 − 01 2.0447𝐸 + 01 2.0430𝐸 + 01

Mean 1.5655𝐸 − 06 7.3581𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00 4.9782𝐸 − 01 5.2876𝐸 − 01 2.0309𝐸 + 01 2.0319𝐸 + 01

Std. 9.8143𝐸 − 07 6.9836𝐸 − 05 0.0000𝐸 + 00 0.0000𝐸 + 00 6.0243𝐸 − 02 6.2836𝐸 − 02 8.4876𝐸 − 02 5.8457𝐸 − 02

Compare − ≈ + −

𝑓9 𝑓10 𝑓11 𝑓12

1st 1.3989𝐸 + 01 9.1535𝐸 + 00 2.0033𝐸 + 01 1.9298𝐸 + 01 7.5701𝐸 + 00 6.3919𝐸 + 00 0.0000𝐸 + 00 5.6800𝐸 − 14

7th 1.7426𝐸 + 01 1.0045𝐸 + 01 2.7952𝐸 + 01 2.7285𝐸 + 01 8.7921𝐸 + 00 7.7927𝐸 + 00 0.0000𝐸 + 00 4.2064𝐸 − 12

13th 2.0413𝐸 + 01 1.1912𝐸 + 01 3.0260𝐸 + 01 2.8504𝐸 + 01 8.9472𝐸 + 00 8.5092𝐸 + 00 0.0000𝐸 + 00 1.6280𝐸 − 10

19th 2.5715𝐸 + 01 1.4184𝐸 + 01 3.1222𝐸 + 01 3.3036𝐸 + 01 9.2551𝐸 + 00 8.9449𝐸 + 00 2.2740𝐸 − 13 1.6034𝐸 − 08

25th 2.9949𝐸 + 01 1.9731𝐸 + 01 3.9253𝐸 + 01 3.4207𝐸 + 01 9.9340𝐸 + 00 9.6045𝐸 + 00 1.0003𝐸 + 01 1.5136𝐸 + 03

Mean 2.1212𝐸 + 01 1.2390𝐸 + 01 2.9811𝐸 + 01 2.8975𝐸 + 01 8.9061𝐸 + 00 8.3061𝐸 + 00 8.0024𝐸 − 01 6.1344𝐸 + 01

Std. 4.5235𝐸 + 00 2.5306𝐸 + 00 4.1074𝐸 + 00 3.7473𝐸 + 00 5.5432𝐸 − 01 8.4253𝐸 − 01 2.7138𝐸 + 00 2.9645𝐸 + 02

Compare + + + −

𝑓13 𝑓14 𝑓15 𝑓16

1st 1.8665𝐸 + 00 2.0175𝐸 + 00 3.3382𝐸 + 00 3.3749𝐸 + 00 1.5446𝐸 + 02 1.4392𝐸 + 02 1.3303𝐸 + 02 1.2942𝐸 + 02

7th 2.0780𝐸 + 00 2.4375𝐸 + 00 3.5746𝐸 + 00 3.5673𝐸 + 00 2.0910𝐸 + 02 1.5703𝐸 + 02 1.5440𝐸 + 02 1.4698𝐸 + 02

13th 2.3576𝐸 + 00 2.5758𝐸 + 00 3.6918𝐸 + 00 3.6977𝐸 + 00 2.4413𝐸 + 02 1.6924𝐸 + 02 1.6166𝐸 + 02 1.5643𝐸 + 02

19th 2.5639𝐸 + 00 2.7026𝐸 + 00 3.7939𝐸 + 00 3.7506𝐸 + 00 2.6441𝐸 + 02 1.7800𝐸 + 02 1.6741𝐸 + 02 1.6791𝐸 + 02

25th 2.8029𝐸 + 00 3.0708𝐸 + 00 3.9639𝐸 + 00 3.8692𝐸 + 00 4.8578𝐸 + 02 4.9276𝐸 + 02 1.7659𝐸 + 02 1.7759𝐸 + 02

Mean 2.3136𝐸 + 00 2.5424𝐸 + 00 3.6786𝐸 + 00 3.6642𝐸 + 00 2.5160𝐸 + 02 1.7968𝐸 + 02 1.5973𝐸 + 02 1.5719𝐸 + 02

Std. 2.8437𝐸 − 01 2.4671𝐸 − 01 1.5636𝐸 − 01 1.1272𝐸 − 01 7.2860𝐸 + 01 6.5249𝐸 + 01 1.0530𝐸 + 01 1.2333𝐸 + 01
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Table 6: Continued.

DE CDE/SC DE CDE/SC DE CDE/SC DE CDE/SC
Mean 4.6800𝐸 + 02 4.7600𝐸 + 02 7.5174𝐸 + 02 7.1445𝐸 + 02 5.8535𝐸 + 02 5.7888𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

Std. 7.3321𝐸 + 01 6.4992𝐸 + 01 9.2289𝐸 + 01 1.5309𝐸 + 02 5.9298𝐸 + 01 5.2562𝐸 + 01 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare − − + +
𝑓17 𝑓18 𝑓19 𝑓20

1st 1.4737𝐸 + 02 1.5492𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 8.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02

7th 1.6679𝐸 + 02 1.7068𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

13th 1.7369𝐸 + 02 1.8053𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

19th 1.7999𝐸 + 02 1.8649𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

25th 1.9823𝐸 + 02 1.9458𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02 8.0000𝐸 + 02

Mean 1.7328𝐸 + 02 1.7782𝐸 + 02 7.8000𝐸 + 02 7.8000𝐸 + 02 8.0000𝐸 + 02 7.8000𝐸 + 02 7.8000𝐸 + 02 7.8000𝐸 + 02

Std. 1.1180𝐸 + 01 1.0827𝐸 + 01 9.7980𝐸 + 01 9.7980𝐸 + 01 0.0000𝐸 + 00 9.7980𝐸 + 01 9.7980𝐸 + 01 9.7980𝐸 + 01

Compare − ≈ + ≈

𝑓21 𝑓22 𝑓23 𝑓24

1st 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 3.0000𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.6886𝐸 + 02 7.6619𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.7079𝐸 + 02 7.7020𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.7274𝐸 + 02 7.7353𝐸 + 02 5.5947𝐸 + 02 5.5947𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

25th 5.0000𝐸 + 02 5.0000𝐸 + 02 7.7736𝐸 + 02 7.7854𝐸 + 02 7.2122𝐸 + 02 7.2122𝐸 + 02 2.0000𝐸 + 02 2.0000𝐸 + 02

Compare ≈ + + ≈

𝑓25 𝑓2 𝑓3 𝑓4

1st 2.0000𝐸 + 02 2.0000𝐸 + 02

7th 2.0000𝐸 + 02 2.0000𝐸 + 02

13th 2.0000𝐸 + 02 2.0000𝐸 + 02

19th 2.0000𝐸 + 02 2.0000𝐸 + 02 Statistical analysis
25th 2.0000𝐸 + 02 2.0000𝐸 + 02 + ≈ −

Mean 2.0000𝐸 + 02 2.0000𝐸 + 02 9 9 7

Std. 0.0000𝐸 + 00 0.0000𝐸 + 00

Compare ≈

“+, ≈, −” denote that the results of CDE/SC qrtop are “better,” “approximate,” and “worse” than the corresponding DE, respectively.

ability and exploitation ability of DE variants. Taking into
account that a convergent algorithm in theory has stronger
robustness, this paper proposed a subspace clustering muta-
tion operator for DE variants. By compositing the proposed
mutation with the classical mutation operators, this paper
developed five convergent DE variants. The experimental
results on CEC2005 benchmark functions indicated that all
five convergent DE variants with the subspace clustering
mutation operator outperform the corresponding DE algo-
rithms and also indicated that the effectiveness, of combining
the subspace clustering mutation operator and any one of
three mutation strategies based on the best solution (i.e.,
DE/best/1, DE/current-to-best/2, and DE/best/2), is more
significant than those of combining the subspace clustering
mutation and the other two randommutation strategies (i.e.,
DE/rand/1, DE/rand/2).

Two possible directions for future work can be summa-
rized as below.

(i) Incorporate the subspace clustering operator into
other outstanding DE variants, that is, differential
evolution utilizing proximity-based mutation oper-
ators (Pro DE) [29], differential evolution using a

neighborhood-based mutation operator [30], and so
forth. A lot of numerical experiments have verified
that these algorithms can get better performance for
themajority of some benchmark problems. Following
the study of this paper, we can incorporate the
subspace clustering operator into these outstanding
DE variants, and it is easy to prove that these incorpo-
rated algorithms can guarantee global convergence in
probability.However, whether the subspace clustering
operator can further enhance performance of these
outstanding DE variants remains to be verified by
numerical experiments.

(ii) Generalize the work to other similar evolutionary
algorithms, such as particle swarm optimization
(PSO), Cuckoo search algorithm (CK), and artificial
bee colony algorithm (ABC).
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Figure 4: Continued.
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Figure 4: Evolution figures of the average error of the best function values on 25 running derived from CDE/SC qrtop best/1,
CDE/SC qrtop cur best/1, and CDE/SC qrtop best/2 and three corresponding DE algorithms.
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