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The bilinear operator and F-expansion method are applied jointly to study (2 + 1)-dimensional Kadomtsev-Petviashvili (KP)
equation. An exact cusped solitary wave solution is obtained by using the extended single-soliton test function and its mechanical
feature which blows up periodically in finite time for cusped solitary wave is investigated. By constructing the extended double-
soliton test function, a new type of exact traveling wave solution describing the assimilation of solitary wave and periodic traveling
wave is also presented. Our results validate the effectiveness for joint application of the bilinear operator and F-expansion method.

1. Introduction

In the past few decades, much effort has been devoted to the
investigation of dynamical behaviours of nonlinear evolution
equation. Traveling wave, one of the spatial dynamics analy-
ses, always plays a significant role and attracts more andmore
of the experts’ and scholars’ attention. There has been much
literature on traveling wave of nonlinear evolution equation
due to the abundant type of nonlinear traveling wave and
somewell-known concepts (e.g., solitary wave [1–3], periodic
wave [4, 5], kink wave [6], cusped wave [7], etc.) have
been used and generalized extensively. To understand the
inherent essence and evolutionmechanismof these nonlinear
traveling waves, seeking the exact traveling wave solutions
has been recognized. In recent years, much efforts have been
spent on this task and many significant methods have been
established such as variational iteration method [8], homo-
topy perturbation method [9, 10], Fan subequation method
[11, 12], exp-function method [13], Hirota’s bilinear method
[14, 15], 𝐺󸀠/𝐺-expansion method [16, 17], and F-expansion
method [18–21]. In most of the existing literature, authors
always study the improvement of the adopted method to
obtain more forms of solutions. However, to the best of
our knowledge, how to realize the joint applications of
different methods is still challenging and open work. In this
paper, we choose the classical nonlinear evolution equation,

(2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation,
as an example to validate the effectiveness of the proposed
method.

The (2 + 1)-dimensional KP equation [14] is written as

𝑢
𝑥𝑡
− 𝑢
𝑥𝑥𝑥𝑥

− 3 (𝑢
2
)
𝑥𝑥

= 3𝑝
2
𝑢
𝑦𝑦
, (1)

where 𝑢 : 𝑅
𝑥
× 𝑅
𝑦
× 𝑅
𝑡

→ 𝑅 and 𝑝
2
= ±1 measure the

positive and negative transverse dispersion effects. Equation
(1) with 𝑝

2
= 1 and 𝑝

2
= −1 are called KP-I equation

and KP-II equation, respectively. In recent years, kinds of
research fields and solution types of KP equation have been
studied extensively in various aspects [22–24]; exact multiple
solitary wave solution, periodic solitary wave solution, quasi-
periodic solutions, and so forth have been obtained. In the
past works, the resonance interaction phenomenon between
periodic solitary wave and line soliton was investigated and
spatial-temporal bifurcation and deflexion of solitary wave
were exhibited [14, 15].

The rest of the paper is organized as follows. In Section 2,
we combine the bilinear operator with F-expansion method
to solve KP equation. By single-soliton test approach, a new
type of solitary wave solution which possesses cusped struc-
ture is obtained. In Section 3, an exact expression describing
the interaction of solitary wave and periodic traveling wave
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is obtained by the extending of double-soliton test approach.
Conclusions are drawn in Section 4.

2. Cusped Solitary Wave Solution

Introduce an independent transformation

𝑢 (𝑥, 𝑦, 𝑡) = 2 (ln𝐹)
𝑥𝑥

, (2)

where 𝐹 = 𝐹(𝑥, 𝑦, 𝑡) is an unknown real function. Substi-
tuting (2) into (1), we can obtain the bilinear form of KP
equation:

(𝐷
𝑥
𝐷
𝑡
− 𝐷
4

𝑥
− 𝐷
2

𝑥
− 𝑝
2
𝐷
2

𝑦
) 𝐹 ⋅ 𝐹 = 0, (3)

where Hirota’s bilinear operator “𝐷” is defined by

𝐷
𝑘

𝑥
𝐷
𝑚

𝑦
𝐷
𝑛

𝑡
𝑓 (𝑥, 𝑦, 𝑡) ⋅ 𝑔 (𝑥, 𝑦, 𝑡)

=
𝜕
𝑘

𝜕𝑠
𝑘

𝜕
𝑚

𝜕𝜎
𝑚

𝜕
𝑛

𝜕𝜏
𝑛

× (𝑓(𝑥 + 𝑠, 𝑦 + 𝜎, 𝑡 + 𝜏)𝑔(𝑥 − 𝑠, 𝑦 − 𝜎, 𝑡 − 𝜏))
󵄨󵄨󵄨󵄨𝑠=0,𝜎=0,𝜏=0

.

(4)

Consider the traveling wave transformation

𝐹 (𝑥, 𝑦, 𝑡) = 𝐹 (𝜉) , 𝜉 = 𝑘𝑥 + 𝑙𝑦 + 𝜔𝑡 + 𝛾
0
, (5)

where 𝑘, 𝑙, and 𝜔 are nonzero constants and 𝛾
0
is a phase

constant. Equation (3) is converted to an ODE:

(𝑘
2
+ 𝑙
2
𝑝
2
− 𝑘𝜔)𝐹

󸀠2
− 3𝑘
4
𝐹
󸀠󸀠2

+ 4𝑘
4
𝐹
󸀠
𝐹
󸀠󸀠󸀠

− 𝐹 ((𝑘
2
+ 𝑙
2
𝑝
2
− 𝑘𝜔)𝐹

󸀠󸀠
+ 𝑘
4
𝐹
(4)
) = 0.

(6)

Generally, letting 𝐹(𝜉) = 1 + 𝑒
𝜉, we can obtain an exact

single solitary wave solution of bilinear equation (3). In this
case, we consider the extended single-soliton test function

𝐹 (𝜉) =

𝑛

∑

𝑗=1

𝑎
𝑗
𝐺
𝑗

(𝜉) , (7)

where 𝐺(𝜉) satisfies the following auxiliary equation:

(𝐺
󸀠

(𝜉))
2

=

𝑟

∑

𝑘=0

𝑏
𝑗
𝐺
𝑗

(𝜉) . (8)

The coefficients 𝑎
𝑗
, 𝑏
𝑘
(𝑗 = 0, 1, . . . , 𝑛; 𝑘 = 0, 1, . . . , 𝑟) are

undetermined constants and 𝑛 and 𝑟 are undetermined pos-
itive integers. To determine the values of 𝑛 and 𝑟, balancing
the lowest order nonlinear term with the highest nonlinear
terms in (6), we have a relation of 𝑛 and 𝑟:

2𝑛 + 𝑟 − 2 = 2𝑛 + 2𝑟 − 4. (9)

From (9), we conclude that 𝑟 = 2 and 𝑛 is an arbitrary
positive integer. As a test, 𝑛 = 2 is taken into account; (7) and
(8) are reduced into

𝐹 (𝜉) = 𝑎
0
+ 𝑎
1
𝐺 (𝜉) + 𝑎

2
𝐺
2

(𝜉) ,

(𝐺
󸀠

(𝜉))
2

= ℎ
0
+ ℎ
1
𝐺 (𝜉) + ℎ

2
𝐺
2

(𝜉) ,

(10)

where 𝑎
2

̸= 0 and ℎ
2

̸= 0.

Substituting (10) into (6), setting the coefficients of all
powers of 𝐺(𝜉) to zero, we get a nonlinear algebraic system
of coefficients 𝑎

0
, 𝑎
1
, 𝑎
2
, ℎ
0
, ℎ
1
, and ℎ

2
and 𝑘, 𝑙, and 𝜔. Solving

it, we obtain

𝑎
0
= 𝑎
0
, 𝑎

1
= 𝑎
1
, 𝑎

2
=

𝑎
1
ℎ
2

ℎ
1

,

ℎ
0
=

ℎ
2

1

4ℎ
2

, ℎ
1
= ℎ
1
, ℎ

2
= ℎ
2
,

𝜔 =
−𝑘
2
− 𝐿
2
𝑝
2
− 4𝑘
4
ℎ
2

𝑘
,

(11)

where 𝑎
0
, 𝑎
1
, ℎ
1
, 𝑘, and 𝐿 are arbitrary nonzero reals and ℎ

2
>

0. Under the condition of ℎ
0
= ℎ
2

1
/4ℎ
2
to solve (10), we get

𝐺 (𝜉) = −
ℎ
1

2ℎ
2

+ 𝑒
𝜎√ℎ
2
𝜉
, (12)

where 𝜎 = ±1.
Substituting (11) and (12) into (10), by (2), we obtain an

exact traveling wave solution of KP equation as follows:

𝑢 (𝑥, 𝑦, 𝑡) =
32𝑘
2
𝑎
1
ℎ
1
ℎ
3

2
(4𝑎
0
ℎ
2
− 𝑎
1
ℎ
1
) 𝑒
2𝜎√ℎ

2
(𝑘𝑥+𝐿𝑦−𝜔𝑡+𝛾

0
)

(4𝑎
0
ℎ
1
ℎ
2
− 𝑎
1
ℎ
2

1
+ 4𝑎
1
ℎ
2

2
𝑒
2𝜎√ℎ

2
(𝑘𝑥+𝐿𝑦−𝜔𝑡+𝛾

0
)
)
2
.

(13)

A solitary wave which possesses a cusped structure is
shown by (13), whose amplitude oscillates with the evolution
of time. To guarantee the regularity of solitary wave, we
should avoid the denominator of (13) equalling zero. So, an
inequality is taken into account:

(4𝑎
0
ℎ
1
ℎ
2
− 𝑎
1
ℎ
2

1
) 𝑎
1
ℎ
2

2
> 0. (14)

For simplicity, if 𝑎
1

> 0, we can conclude that 𝑎
0

<

𝑎
1
ℎ
1
/4ℎ
2
when ℎ

1
< 0; 𝑎

0
> 𝑎
1
ℎ
1
/4ℎ
2
when ℎ

1
> 0. Choosing

a set of parameters

𝑘 = 0.2, 𝐿 = 1.2, 𝑝 = 1, 𝛾
0
= 0.5,

𝑎
1
= 0.2, ℎ

1
= 0.8, ℎ

2
= 0.4,

𝑎
0
= 0.2, 𝜎 = 1,

(15)

we exhibit a waveform of regular cusped solitary wave
expressed by (13). From Figure 1, it is observed that the
amplitude of cusped solitary wave periodically oscillates
along the 𝑥-axis.

However, if (4𝑎
0
ℎ
1
ℎ
2
− 𝑎
1
ℎ
2

1
)𝑎
1
ℎ
2

2
< 0, it is inevitable that

the denominator of (13) equals zero for some values of 𝑥, 𝑦,
and 𝑡. In other words, the equation

𝑘𝑥 + 𝐿𝑦 − 𝜔𝑡 + 𝛾
0
=

1

2𝜎√ℎ
2

ln(
ℎ
1
(𝑎
1
ℎ
1
− 4𝑎
0
ℎ
2
)

4𝑎
1
ℎ
2

2

) (16)

is satisfied; the irregularity of cusped solitary wave appears.
From Figures 2, 3, and 4, these singular phenomena exhibit
that irregular solitary wave blows up in finite time, where we
only change 𝑎

0
= 0.2 to 𝑎

0
= −0.2 in (15).
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Figure 1: A snapshot of regular cusped solitary wave expressed by
(13) at 𝑡 = 1.2, where 𝑥 ∈ [−60, 70] and 𝑦 ∈ [−40, 20].
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Figure 2: A snapshot of irregular cusped solitary wave expressed by
(13) at 𝑡 = 0.84, where 𝑥 ∈ [−50, 50] and 𝑦 ∈ [−30, 10].

3. Interaction of Solitary Wave and
Periodic Wave

Let

𝐹 (𝜉, 𝜂) = 1 + 𝑒
𝜉
+ 𝑒
𝜂
+ 𝐴𝑒
𝜉+𝜂

, (17)

where 𝜂 = 𝑘
1
𝑥 + 𝐿
1
𝑦 −𝜔
1
𝑡 + 𝛾
1
and 𝜉 = 𝑘

2
𝑥 + 𝐿
2
𝑦 −𝜔
2
𝑡 + 𝛾
2
.

Theoretically, we can obtain the double solitary wave solution
of KP equation (1).

In this case, we introduce an extended double-soliton test
function:

𝐹 (𝑥, 𝑦, 𝑡) = 1 + 𝑒
𝜂
+ 𝐺 (𝜉) + 𝐴𝐺 (𝜉) 𝑒

𝜂
, (18)

where 𝜂 = 𝑘
1
𝑥+𝐿
1
𝑦−𝜔
1
𝑡+𝛾
1
and 𝜉 = 𝑘

2
𝑥+𝐿
2
𝑦−𝜔
2
𝑡+𝛾
2
.The

unknown real function 𝐺(𝜂) satisfies the following auxiliary
equation:

(𝐺
󸀠
(𝜉))
2

= ℎ
0
+ ℎ
1
𝐺 (𝜉) + ℎ

2
𝐺
2

(𝜉) . (19)

The parameters 𝑘
1
, 𝑘
2
, 𝐿
1
, 𝐿
2
, 𝜔
1
, and𝜔

2
are nonzero con-

stants to be determined, and 𝛾
1
, and 𝛾

2
are phase constants.𝐴

is a real number that stands for the resonant factor of traveling
wave.

Substituting (18) and (19) into (3) and collecting the
coefficients of 𝑒

𝜂, 𝐺(𝜉), and 𝐺
󸀠
(𝜉), one yields a nonlinear

algebraic system of parameters ℎ
0
, ℎ
1
, ℎ
2
, 𝑘
1
, 𝑘
2
, 𝐿
1
, 𝐿
2
, 𝜔
1
,

and 𝜔
2
.
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Figure 3: A snapshot of irregular cusped solitary wave expressed by
(13) at 𝑡 = 0.85.
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Figure 4: A snapshot of irregular cusped solitary wave expressed by
(13) at 𝑡 = 1.1.

In particular, ℎ
0
= −𝑞𝑟, ℎ

1
= 𝑞 + 𝑟, and ℎ

2
= −1 are

taken to solve the nonlinear algebraic system whose 𝑞 and 𝑟

are undetermined constants; we obtain

𝑞 = −2 − 𝑟,

𝐿
1
=

−√3𝑝
2
𝑘
2

2
(𝑘
2

1
+ 𝑘
2

2
) + 𝑝
2
𝑘
1
𝑘
2
𝐿
2

𝑝
2
𝑘
2

2

,

𝐴 = 0,

𝜔
1
=

−𝑘
1
𝑘
3

2
− 4𝑘
3

1
𝑘
3

2
+ 2√3𝑝

2
𝑘
2

2
(𝑘
2

1
+ 𝑘
2

2
) 𝐿
2
− 𝑝
2
𝑘
1
𝑘
2
𝐿
2

2

𝑘
3

2

,

𝜔
2
=

−𝑘
2

2
+ 4𝑘
4

2
− 𝑝
2
𝐿
2

2

𝑘
2

.

(20)

For (19), when ℎ
0
= −𝑞𝑟, ℎ

1
= 𝑞+𝑟, and ℎ

2
= −1, it allows

the fundamental solution as follows:

𝐺 (𝜉) =
1

2
(𝑞 + 𝑟 − (𝑞 − 𝑟) cos (𝜉)) . (21)

According to the expressions of𝜔
1
, and 𝐿

1
in (20) and the

significance of coefficient 𝑝 for KP equation, it is necessary
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Figure 5: A snapshot for assimilation of solitary wave and periodic
traveling wave expressed by (22) at 𝑡 = 3, where 𝑥 ∈ [−8, 8] and
𝑦 ∈ [−8, 8].

that 𝑝2 = 1. Substituting (20) and (21) into (18), by (2), we
obtain an exact traveling wave solution for KP-I equation:

𝑢 (𝑥, 𝑦, 𝑡) = 2 (1 + 𝑟) (𝑘
2

1
𝑒
𝜂 cos (𝜉) + 2𝑘

1
𝑘
2
𝑒
𝜂 sin (𝜉)

− 𝑘
2

2
(1 + 𝑟 + 𝑒

𝜂 cos (𝜉)))

× ((𝑒
𝜂
+ (1 + 𝑟) cos (𝜉))2)

−1

,

(22)

where 𝜂 = 𝑘
1
𝑥 + 𝐿

1
𝑦 − 𝜔

1
𝑡 + 𝛾
1
and 𝜉 = 𝑘

2
𝑥 + 𝐿

2
𝑦 − 𝜔

2
𝑡 +

𝛾
2
, 𝑘
1
, 𝑘
2
, 𝐿
2
, and 𝑟 are arbitrary nonzero real constants, and

𝜔
1
, 𝜔
2
, and 𝐿

1
satisfy

𝜔
1
=

2√3𝑘
2
(𝑘
2

1
+ 𝑘
2

2
) 𝐿
2
− 𝑘
1
𝑘
2

2
− 4𝑘
3

1
𝑘
2

2
− 𝑘
1
𝐿
2

2

𝑘
2

2

,

𝜔
2
=

4𝑘
4

2
− 𝑘
2

2
− 𝐿
2

2

𝑘
2

,

𝐿
1
= −

√3𝑘
2
(𝑘
2

1
+ 𝑘
2

2
) − 𝑘
1
𝐿
2

𝑘
2

.

(23)

The solution expressed by (22) is a new type of traveling
wave solution forKP-I equation. Choosing a set of parameters

𝑘
1
= 0.2, 𝑘

2
= 0.8, 𝐿

2
= 0.4,

𝛾
1
= 0, 𝛾

2
= 0, 𝑟 = 1,

(24)

the assimilation of solitary wave and periodic traveling wave
is exhibited by Figures 5 and 6.

4. Conclusions

In this paper, we consider the joint application of bilinear
operator and F-expansion method. Choosing the KP equa-
tion as an example, we obtain a new type of solitary wave
solution which possesses cusped structure by the single-
soliton test approach. The regular and irregular parametric
relationships of cusped solitary wave solution are discussed;
an interesting phenomenon is found where irregular cusped

5
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−5
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u

Figure 6: A snapshot for assimilation of solitary wave and periodic
traveling wave expressed by (22) at 𝑡 = −3.

solitary wave periodically blows up in finite time. Further-
more, an extended double-soliton test method is applied
to obtain a new type of exact traveling wave solution of
KP-I equation. By numerical simulation of waveform, a
nonlinear phenomenon describing the dynamical behavior
of assimilation for solitary wave and periodic traveling wave
is found. To our knowledge, it has not yet been found until
now. The above results obtained in this paper validate the
effectiveness of joint application of bilinear operator and F-
expansion method.
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