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In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves
the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network
is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just
one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

1. Introduction

The analysis and control of complex behavior in complex
networks, which consist of dynamical nodes, have become
a point of great interest in the recent studies, [1–3]. The
complexity in networks comes not only from their structure
and dynamics but also from their topology, which often
affects their function.

Recurrent neural networks have been widely used in the
fields of optimization, pattern recognition, signal processing
and control systems, among others.They have to be designed
in such a way that there is one equilibrium point that is
globally asymptotically stable. In biological and artificial
neural networks, time delays arise in the processing of infor-
mation storage and transmission. Also, it is known that these
delays can create oscillatory or even unstable trajectories, [4].
Trajectory tracking is a very interesting problem in the field
of theory of systems control; it allows the implementation
of important tasks for automatic control such as: high speed
target recognition and tracking, real-time visual inspection,
and recognition of context sensitive and moving scenes,
among others.We present the results of the design of a control
law that guarantee the tracking of general complex dynamical
networks.

2. Mathematical Models

2.1. General Complex Dynamical Networks. Consider a net-
work consisting of 𝑁 linearly and diffusively coupled nodes,
with each node being an 𝑛-dimensional dynamical system,
described by

�̇�
𝑖

= 𝑓
𝑖
(𝑥
𝑖
) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑥
𝑗

− 𝑥
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑥
𝑖

= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑛

)
𝑇

∈ R𝑛 are the state vectors of the
node 𝑖,𝑓

𝑖
: R𝑛 → R𝑛 represents the self-dynamics of the node

𝑖, and the constants 𝑐
𝑖𝑗

> 0 are the coupling strengths between
node 𝑖 and node 𝑗, with 𝑖, 𝑗 = 1, 2, . . . , 𝑁. Γ = (𝜏

𝑖𝑗
) ∈ R𝑛×𝑛

is a constant internal matrix that describes the way of linking
the components in each pair of connected node vectors (𝑥

𝑗
−

𝑥
𝑖
): this means that for some pairs (𝑖, 𝑗) with 1 ≤ 𝑖, 𝑗 ≤ 𝑛

and 𝜏
𝑖𝑗

̸= 0, the two coupled nodes are linked through their
𝑖th and 𝑗th substate variables, respectively, while the coupling
matrix 𝐴 = (𝑎

𝑖𝑗
) ∈ R𝑁×𝑁 denotes the coupling configuration

of the entire network: this means that if there is a connection
between node 𝑖 and node 𝑗 (𝑖 ̸= 𝑗), then 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖

= 1; other-
wise, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖

= 0.
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2.2. Delayed Recurrent Neural Networks. Consider a delayed
recurrent neural network in the following form:

�̇�
𝑛𝑖

= 𝐴
𝑛𝑖

𝑥
𝑛𝑖

+ 𝑊
𝑛𝑖

𝜎 (𝑥
𝑛𝑖

(𝑡 − 𝜏)) + 𝑢
𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

Γ (𝑥
𝑛𝑗

− 𝑥
𝑛𝑖

) ,

𝑖 = 1, 2, . . . , 𝑁,

(2)

where 𝜏 is the fixed known time delay [5, 6], 𝑥
𝑛𝑖

= (𝑥
𝑛𝑖1
,

𝑥
𝑛𝑖2

, . . . , 𝑥
𝑛𝑖𝑛

)
𝑇

∈ R𝑛 is the state vector of the neural network 𝑖,
𝑢
𝑛𝑖

∈ R𝑛 is the input of the neural network 𝑖, 𝐴
𝑛𝑖

= −𝜆
𝑛𝑖

𝐼
𝑛×𝑛

,
𝑖 = 1, 2, . . . , 𝑁, is the state feedback matrix, with 𝜆

𝑛𝑖
being

a positive constant, 𝑊
𝑛𝑖

∈ R𝑛×𝑛 is the connection weight
matrix with 𝑖 = 1, 2, . . . , 𝑁, and 𝜎(⋅) ∈ R𝑛 is a Lipschitz
sigmoid vector function [7, 8], such that 𝜎(𝑥

𝑛𝑖
) = 0 only at

𝑥
𝑛𝑖

= 0, with Lipschitz constant 𝐿
𝜎𝑖
, 𝑖 = 1, 2, . . . , 𝑁, and

neuron activation functions 𝜎
𝑖
(⋅) = tanh(⋅), 𝑖 = 1, 2, . . . , 𝑛.

3. Trajectory Tracking

The objective is to develop a control law such that the 𝑖th
neural network (2) tracks the trajectory of the 𝑖th dynamical
system (1). We define the tracking error as 𝑒

𝑖
= 𝑥
𝑛𝑖

− 𝑥
𝑖
,

𝑖 = 1, 2, . . . , 𝑁, whose derivative with respect to time is

̇𝑒
𝑖

= �̇�
𝑛𝑖

− �̇�
𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (3)

Substituting (1) and (2) in (3), we obtain

̇𝑒
𝑖

= 𝐴
𝑛𝑖

𝑥
𝑛𝑖

+ 𝑊
𝑛𝑖

𝜎 (𝑥
𝑛𝑖

(𝑡 − 𝜏)) + 𝑢
𝑛𝑖

− 𝑓
𝑖
(𝑥
𝑖
)

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

Γ (𝑥
𝑛𝑗

− 𝑥
𝑛𝑖

)

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑥
𝑗

− 𝑥
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(4)

Adding and subtracting 𝑊
𝑛𝑖

𝜎(𝑥
𝑖
(𝑡 − 𝜏)), 𝛼

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑁,

to (4), where 𝛼
𝑖
will be determined below, and considering

that 𝑥
𝑛𝑖

= 𝑒
𝑖

+ 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, then

̇𝑒
𝑖

= 𝑊
𝑛𝑖

(𝜎 (𝑥
𝑛𝑖

(𝑡 − 𝜏)) − 𝜎 (𝑥
𝑖 (𝑡 − 𝜏)))

+ (𝑢
𝑛𝑖

− 𝛼
𝑖 (𝑡)) + 𝐴

𝑛𝑖
𝑒
𝑖

+ (𝐴
𝑛𝑖

𝑥
𝑖

+ 𝑊
𝑛𝑖

𝜎 (𝑥
𝑖 (𝑡 − 𝜏)) + 𝛼

𝑖 (𝑡)) − 𝑓
𝑖
(𝑥
𝑖
)

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

Γ (𝑥
𝑛𝑗

− 𝑥
𝑛𝑖

)

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑥
𝑗

− 𝑥
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(5)

In order to guarantee that the 𝑖th neural network (2)
tracks the 𝑖th reference trajectory (1), the following assump-
tion has to be satisfied:

Assumption 1. There exist functions 𝜌
𝑖
(𝑡) and 𝛼

𝑖
(𝑡), 𝑖 = 1,

2, . . . , 𝑁, such that

𝑑𝜌
𝑖 (𝑡)

𝑑𝑡
= 𝐴
𝑛𝑖

𝜌
𝑖 (𝑡) + 𝑊

𝑛𝑖
𝜎 (𝜌
𝑖 (𝑡)) + 𝛼

𝑖 (𝑡) ,

𝜌
𝑖 (𝑡) = 𝑥

𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(6)

Let us define

�̃�
𝑛𝑖

= (𝑢
𝑛𝑖

− 𝛼
𝑖 (𝑡)) ,

𝜙
𝜎 (𝑡 − 𝜏) = 𝜎 (𝑥

𝑛𝑖
(𝑡 − 𝜏)) − 𝜎 (𝑥

𝑖 (𝑡 − 𝜏)) ,

𝑖 = 1, 2, . . . , 𝑁.

(7)

Considering (6) and (7), equation (5) is reduced to

̇𝑒
𝑖

= 𝐴
𝑛𝑖

𝑒
𝑖

+ 𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) + �̃�

𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

Γ (𝑥
𝑛𝑗

− 𝑥
𝑛𝑖

)

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑥
𝑗

− 𝑥
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(8)

Writing the summations as

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

Γ (𝑥
𝑛𝑗

− 𝑥
𝑛𝑖

)

= Γ (

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

𝑥
𝑛𝑗

− 𝑥
𝑛𝑖

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑛𝑖𝑛𝑗

𝑎
𝑛𝑖𝑛𝑗

)

×

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑥
𝑗

− 𝑥
𝑖
)

= Γ (

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑥
𝑗

− 𝑥
𝑖

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

) ,

𝑖 = 1, 2, . . . , 𝑁

(9)

and using that 𝑐
𝑛𝑖𝑛𝑗

= 𝑐
𝑖𝑗
and 𝑎

𝑛𝑖𝑛𝑗
= 𝑎
𝑖𝑗
, then, using the

equations above, (8) becomes

̇𝑒
𝑖

= 𝐴
𝑛𝑖

𝑒
𝑖

+ 𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) + �̃�

𝑛𝑖

+ Γ (

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑒
𝑗

− 𝑒
𝑖

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

)
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= 𝐴
𝑛𝑖

𝑒
𝑖

+ 𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) + �̃�

𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑒
𝑗

− 𝑒
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(10)
It is clear that 𝑒

𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑁, is an equilibrium point

of (10), when �̃�
𝑛𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑁. In this way, the tracking
problem can be restated as a global asymptotic stabilization
problem for the system (10).

4. Tracking Error Stabilization and
Control Design

In order to establish the convergence of (10) to 𝑒
𝑖

= 0,
𝑖 = 1, 2, . . . , 𝑁, which ensures the desired tracking, first, we
propose the following Lyapunov function:

𝑉
𝑁 (𝑒) =

𝑁

∑

𝑖=1

𝑉 (𝑒
𝑖
)

=

𝑁

∑

𝑖=1

(
1

2

𝑒
𝑖



2
+ ∫

𝑡

𝑡−𝜏

(𝜙
𝑇

𝜎
(𝑠) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑠)) 𝑑𝑠) ,

𝑒 = (𝑒
𝑇

1
, . . . , 𝑒

𝑇

𝑁
)
𝑇

.

(11)

The time derivative of (11), along the trajectories of (10), is

�̇�
𝑁 (𝑒) =

𝜕𝑉
𝑁 (𝑒)

𝜕𝑒
̇𝑒 =

𝑁

∑

𝑖=1

𝜕𝑉
𝑁 (𝑒)

𝜕𝑒
𝑖

̇𝑒
𝑖

=

𝑁

∑

𝑖=1

(𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡)

− 𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏)

+ 𝑒
𝑇

𝑖
(𝐴
𝑛𝑖

𝑒
𝑖

+ 𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) + �̃�

𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ (𝑒
𝑗

− 𝑒
𝑖
))) .

(12)
Reformulating (12), we get

�̇�
𝑁 (𝑒) =

𝑁

∑

𝑖=1

(− 𝜆
𝑛𝑖

𝑒
𝑖



2
+ 𝑒
𝑇

𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏)

+ 𝑒
𝑇

𝑖
�̃�
𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑒
𝑇

𝑖
Γ (𝑒
𝑗

− 𝑒
𝑖
)

+ 𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡)

− 𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏)) .

(13)

Next, let us consider the following inequality, proved in [9,
10]:

𝑋
𝑇

𝑌 + 𝑌
𝑇

𝑋 ≤ 𝑋
𝑇

Λ𝑋 + 𝑌
𝑇

Λ
−1

𝑌, (14)

which holds for all matrices 𝑋, 𝑌 ∈ R𝑛×𝑘 and Λ ∈ R𝑛×𝑛

with Λ = Λ
𝑇

> 0. Applying (14) with Λ = 𝐼
𝑛×𝑛

to the term
𝑒
𝑇

𝑖
𝑊
𝑛𝑖

𝜙
𝜎
(𝑡 − 𝜏), 𝑖 = 1, 2, . . . , 𝑁, we get

𝑒
𝑇

𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏)

≤
1

2
𝑒
𝑇

𝑖
𝑒
𝑖

+
1

2
𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏)

×
1

2

𝑒
𝑖



2
+

1

2
𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) ,

𝑖 = 1, 2, . . . , 𝑁.

(15)

Then, we have that

�̇�
𝑁 (𝑒) ≤

𝑁

∑

𝑖=1

(−𝜆
𝑛𝑖

𝑒
𝑖



2
+

1

2

𝑒
𝑖



2

+
1

2
𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏)

+ 𝑒
𝑇

𝑖
�̃�
𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑒
𝑇

𝑖
Γ (𝑒
𝑗

− 𝑒
𝑖
)

+ 𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡)

− 𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) ) .

(16)

By simplifying (16), we obtain

�̇�
𝑁 (𝑒) ≤

𝑁

∑

𝑖=1

(− 𝜆
𝑛𝑖

𝑒
𝑖



2
+

1

2

𝑒
𝑖



2

−
1

2
𝜙
𝑇

𝜎
(𝑡 − 𝜏) 𝑊

𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡 − 𝜏) + 𝑒

𝑇

𝑖
�̃�
𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑒
𝑇

𝑖
Γ (𝑒
𝑗

− 𝑒
𝑖
)

+ 𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡))

≤

𝑁

∑

𝑖=1

(− 𝜆
𝑛𝑖

𝑒
𝑖



2
+

1

2

𝑒
𝑖



2

+ 𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡) + 𝑒

𝑇

𝑖
�̃�
𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑒
𝑇

𝑖
Γ (𝑒
𝑗

− 𝑒
𝑖
)) .

(17)
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Since 𝜙
𝜎
is Lipschitz with Lipschitz constant 𝐿

𝜙𝜎𝑖
[7], then

𝜙
𝜎 (𝑡)

 =

𝜎 (𝑥
𝑛𝑖

(𝑡)) − 𝜎 (𝑥
𝑖 (𝑡))



≤ 𝐿
𝜙𝜎𝑖


𝑥
𝑛𝑖

(𝑡) − 𝑥
𝑖 (𝑡)



= 𝐿
𝜙𝜎𝑖

𝑒
𝑖 (𝑡)

 , 𝑖 = 1, 2, . . . , 𝑁.

(18)

Applying (18) to 𝜙
𝑇

𝜎
(𝑡)𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎
(𝑡), we obtain

𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡) ≤


𝜙
𝑇

𝜎
(𝑡) 𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎 (𝑡)



≤ (𝐿
𝜙𝜎𝑖

)

2
𝑊
𝑛𝑖



2𝑒
𝑖



2
, 𝑖 = 1, 2, . . . , 𝑁.

(19)

Now, (17) is reduced to

�̇�
𝑁 (𝑒) ≤

𝑁

∑

𝑖=1

(− 𝜆
𝑛𝑖

𝑒
𝑖



2
+

1

2

𝑒
𝑖



2

+ (𝐿
𝜙𝜎𝑖

)

2
𝑊
𝑛𝑖



2𝑒
𝑖



2
+ 𝑒
𝑇

𝑖
�̃�
𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

𝑒
𝑇

𝑖
Γ (𝑒
𝑗

− 𝑒
𝑖
))

=

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(−𝜆
𝑛𝑖

𝑒
𝑖

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑖

+ (
1

2
+ 𝐿
2

𝜙𝜎𝑖


𝑊
𝑛𝑖



2

) 𝑒
𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑗

+ �̃�
𝑛𝑖
) .

(20)

We define �̃�
𝑛𝑖

= �̃�
(1)

𝑛𝑖
+ �̃�
(2)

𝑛𝑖
, 𝑖 = 1, 2, . . . , 𝑁, and then (20)

becomes

�̇�
𝑁 (𝑒) ≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(−𝜆
𝑛𝑖

𝑒
𝑖

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑖

+ (
1

2
+ 𝐿
2

𝜙𝜎𝑖


𝑊
𝑛𝑖



2

) 𝑒
𝑖

+ �̃�
(1)

𝑛𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑗

+ �̃�
(2)

𝑛𝑖
) .

(21)

Now, we propose the use of the following control law:

�̃�
𝑛𝑖

= − (
1

2
+ 𝐿
2

𝜙𝜎𝑖


𝑊
𝑛𝑖



2

) 𝑒
𝑖

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑗
, 𝑖 = 1, 2, . . . , 𝑁.

(22)

Then, �̇�
𝑁

(𝑒) < 0 for all 𝑒 ̸= 0. This means that the proposed
control law (22) can globally and asymptotically stabilize the
𝑖th error system (10), therefore ensuring the tracking of (1)
by (2). Finally, the control action driving the recurrent neural
networks is given by

𝑢
𝑛𝑖

= 𝑓
𝑖
(𝑥
𝑖
) + 𝜆
𝑛𝑖

𝑥
𝑖

− 𝑊
𝑛𝑖

𝜎 (𝑥
𝑖 (𝑡 − 𝜏))

− (
1

2
+ 𝐿
2

𝜙𝜎𝑖


𝑊
𝑛𝑖



2

) 𝑒
𝑖

−

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑗
, 𝑖 = 1, 2, . . . , 𝑁.

(23)

5. Simulations

In order to illustrate the applicability of the discussed results,
we consider a dynamical network with just one Lorenz’s node
and three identical Chen’s nodes. The single Lorenz system is
described by

(

�̇�
1

�̇�
2

�̇�
3

) = (

10𝑥
2

− 10𝑥
1

−𝑥
2

− 𝑥
1
𝑥
2

+ 28𝑥
1

𝑥
1
𝑥
2

− (
8

3
) 𝑥
3

)

𝑥
𝑖 (0) = (10, 0, 10)

𝑇
, 𝑖 = 1.

(24)

And the Chen’s oscillator is described by

(

�̇�
𝑖1

�̇�
𝑖2

�̇�
𝑖3

)

=

(
(
(
(
(
(

(

𝑝
1

(𝑥
𝑖2

− 𝑥
𝑖1

) +

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

(𝑥
𝑗1

− 𝑥
𝑖1

)

(𝑝
3

− 𝑝
2
) 𝑥
𝑖1

− 𝑥
𝑖1

𝑥
𝑖3

+ 𝑝
3
𝑥
𝑖2

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

(𝑥
𝑗2

− 𝑥
𝑖2

)

𝑥
𝑖1

𝑥
𝑖2

− 𝑝
2
𝑥
𝑖3

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

(𝑥
𝑗3

− 𝑥
𝑖3

)

)
)
)
)
)
)

)

𝑥
𝑖 (0) = (−10, 0, 37)

𝑇
, 𝑖 = 1, 2, 3, 4.

(25)
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Figure 1: Substate of Lorentz’s attractor with initial condition
𝑋
1
(0) = (10; 0; 10)

𝑇.

If the system parameters are selected as 𝑝
1

= 35, 𝑝
2

= 3,
and 𝑝

3
= 28, then the Lorenz’s system and Chen’s system are

shown in Figures 1 and 2, respectively. In this set of system
parameters, one unstable equilibrium point of the oscillator
(25) is 𝑥 = (7.9373, 7.9373, 21)

𝑇 [11].
Suppose that each pair of two connected Lorenz and

Chen’s oscillators are linked together through their identical
substate variables; that is, Γ = diag(1, 1, 1), and the coupling
strengths are 𝑐

12
= 𝑐
21

= 𝜋, 𝑐
13

= 𝑐
31

= 𝜋, 𝑐
23

= 𝑐
32

= 𝜋,
𝑐
14

= 𝑐
41

= 2𝜋, 𝑐
24

= 𝑐
42

= 2𝜋, and 𝑐
34

= 𝑐
43

= 2𝜋. Figure 3
visualizes this entire dynamical network.

The neural network is selected as

𝐴
𝑛𝑖

= (

−1 0 0

0 −1 0

0 0 −1

) , 𝑊
𝑛𝑖

= (

1 2 0

−3 4 0

0 2 3

) ,

𝜎 (𝑥
𝑛𝑖

(𝑡 − 𝜏)) = (

tanh (𝑥
𝑛𝑖1

(𝑡 − 𝜏))

tanh (𝑥
𝑛𝑖2

(𝑡 − 𝜏))

tanh (𝑥
𝑛𝑖3

(𝑡 − 𝜏))

) ,

𝜏 = 10 seconds,

𝐿
𝜙𝜎𝑖

≜ 𝑛 = 3,

𝑥
𝑛𝑖

(0) = (20, 20, −10)
𝑇

, 𝑖 = 1, 2, 3, 4.

(26)
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Figure 3: Structure of the network with each node being a Lorentz
and Chen’s system.

Theorem 2. For the unknown nonlinear system modeled by
(1), the on-line learning law tr{𝑊

𝑇
𝑊} = −𝑒

𝑇
𝑊𝜎(𝑥) and

the control law (23) ensure the tracking of nonlinear reference
model (4), [12].

Remark 3. From (21), we have �̇�
𝑁

(𝑒) ≤ ∑
𝑁

𝑖=1
𝑒
𝑇

𝑖
(−𝜆
𝑛𝑖

𝑒
𝑖

−

∑
𝑁

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑖
+ ((1/2) + 𝐿

2

𝜙𝜎𝑖

‖𝑊
𝑛𝑖

‖
2
)𝑒
𝑖
+ �̃�
(1)

𝑛𝑖
+ ∑
𝑁

𝑗=1

𝑗 ̸= 𝑖

𝑐
𝑖𝑗

𝑎
𝑖𝑗

Γ𝑒
𝑗

+

�̃�
(2)

𝑛𝑖
) < 0, ∀ 𝑒 ̸= 0, ∀𝑊, and therefore 𝑉 is decreasing and
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Figure 5: Time evolution for sub-state 1 with initial state 𝑋
𝑛1

(0) =

(10; 0; 10)
𝑇.

bounded from below by 𝑉(0). Since 𝑉
𝑁

(𝑒) = ∑
𝑁

𝑖=1
((1/

2)‖𝑒
𝑖
‖
2

+ ∫
𝑡

𝑡−𝜏
(𝜙
𝑇

𝜎
(𝑠)𝑊
𝑇

𝑛𝑖
𝑊
𝑛𝑖

𝜙
𝜎
(𝑠)) 𝑑𝑠), then we conclude that

𝑒, 𝑊 ∈ 𝐿
1
; this means that the weights remain bounded.

The experiment is performed as follows. Both systems, the
delayed neural network (2) and the dynamical networks (24)
and (25), evolve independently until 𝑡 = 10 seconds; at that
time, the proposed control law (23) is incepted. Simulation
results are presented in Figures 4, 5, and 6 for sub-sates of
node 1. As can be seen, tracking is successfully achieved and
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Figure 6: Time evolution for sub-state 2 with initial state 𝑋
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Figure 7: Time evolution for sub-state 4 with initial state 𝑋
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error is asymptotically stable, as it is shown in Figures 7, 8,
and 9 for sub-states of node 4.

6. Conclusions

We have presented the controller design for trajectory track-
ing determined by a general complex dynamical network.
This framework is based on dynamic delayed neural networks
and the methodology is based on V-stability and Lyapunov
theory. The proposed control is applied to a dynamical
networkwith each node being a Lorenz andChen’s dynamical
systems, respectively, being able to also stabilize in asymptotic
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form the tracking error between the two systems. The results
of the simulation clearly show clearly the desired tracking.
In future work, we will consider the stochastic case for the
complex dynamical network.
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