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This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave
system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new
hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed
finite time synchronization scheme.

1. Introduction

Chaos synchronization has attracted increasing attention
since the pioneering work of Pecora and Carroll [1] for its
potential applications in secure communications, biological
systems, chemical reactions, biological networks, and so on.
Different notations of synchronization have been proposed,
such as complete synchronization [2], generalized synchro-
nization [3, 4], phase synchronization [5, 6], lag synchro-
nization [7, 8], antisynchronization [9, 10], and projective
synchronization [11, 12]. The idea of synchronization is to
use the output of the master system to control the slave
system so that the output of the slave system follows the
output of the master system asymptotically. A wide variety
of synchronization approaches have been developed such as
impulsive control [13], feedback control [14], active control
[15], adaptive control [16, 17], sliding mode control [18],
model predictive control [19–22], and impulsive control [23,
24] and others [25, 26]. In the last thirty years, as hyperchaos
has more than one positive Lyapunov exponent and has more
complex dynamical behavior than chaos, many researches
have focused their attention on the synchronization of hyper-
chaotic systems [27–31].

However, in real-world application, it is usually expected
that two systems can synchronize as quickly as possible
and the finite-time control is an efficient technique [32–
37]. Furthermore, the finite-time control techniques have

demonstrated better robustness and disturbance rejection
properties [38]. However, most of the results are derived
based on the hypothesis that the system’s parameters are
precisely known. But in practice, most of the system’s param-
eters cannot be exactly known in advance. The designed
synchronization will be destroyed with the effects of these
uncertainties. To the best of our knowledge, there is no work
on the problem of finite-time adaptive synchronization of
hyperchaotic systems with uncertain parameters. Motivated
by the above discussions, in this paper, we are concernedwith
the finite-time adaptive synchronization for hyperchaotic
systems. Via adaptive control method, finite-time adaptive
synchronization between two identical hyperchaotic systems
with unknown parameters is achieved and we prove that the
suggested approach can realize finite-time synchronization.
Simulation results show the effectiveness of the proposed
method.

2. The Dadras System and Lemmas

Recently, a new 4D dynamical system is proposed [39], which
can generate a four-ring hyperchaotic attractor and a four-
wing chaotic attractor. The system is called Dadras system in
this paper and it is described by

�̇� = 𝑎𝑥 − 𝑦𝑧 + 𝑤

̇𝑦 = 𝑥𝑧 − 𝑏𝑦
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Figure 1: Phase portraits of the four-wing hyperchaotic attractor for 𝑎 = 8, 𝑏 = 40, and 𝑐 = 14.9.

�̇� = 𝑥𝑦 − 𝑐𝑧 + 𝑥𝑤

�̇� = −𝑦,

(1)

where [𝑥, 𝑦, 𝑧, 𝑤]𝑇 ∈ 𝑅4 is the state vector and 𝑎, 𝑏, and 𝑐 are
positive constant parameters of the system. When 𝑎 = 8, 𝑏 =
40, 𝑐 = 14.9, and the initial condition is set to [10, 1, 10, 1]𝑇,
the system has generated a four-wing hyperchaotic attractor
which is shown in Figure 1.

Lemma 1 (see [40]). Assume that a continuous, positive-
definite function 𝑉(𝑡) satisfies the following differential
inequality:

̇

𝑉 (𝑡) ≤ −𝛾𝑉

𝜂
(𝑡) ∀𝑡 ≥ 𝑡

0
, 𝑉 (𝑡

0
) ≥ 0, (2)

where 𝛾 > 0, 0 < 𝜂 < 1, are all constants. Then, for any given
𝑡

0
, 𝑉(𝑡) satisfies the following inequality:

𝑉

1−𝜂
(𝑡) ≤ 𝑉

1−𝜂
(𝑡

0
) − 𝛾 (1 − 𝜂) (𝑡 − 𝑡

0
) , 𝑡

0
≤ 𝑡 ≤ 𝑡

1
, (3)

𝑉 (𝑡) ≡ 0 ∀𝑡 ≥ 𝑡

1 (4)

with 𝑡
1
given by

𝑡

1
= 𝑡

0
+

𝑉

1−𝜂
(𝑡

0
)

𝛾 (1 − 𝜂)

. (5)

3. The Proposed Synchronization Method

In order to achieve master-slave synchronization of Dadras
system, the master and slave systems are defined with the
subscripts𝑚 and 𝑠 below, respectively:

�̇�

𝑚
= 𝑎𝑥

𝑚
− 𝑦

𝑚
𝑧

𝑚
+ 𝑤

𝑚

̇𝑦

𝑚
= 𝑥

𝑚
𝑧

𝑚
− 𝑏𝑦

𝑚

�̇�

𝑚
= 𝑥

𝑚
𝑦

𝑚
− 𝑐𝑧

𝑚
+ 𝑥

𝑚
𝑤

𝑚

�̇�

𝑚
= −𝑦

𝑚
,

(6)
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Figure 2: States of the master and slave systems without control.

�̇�

𝑠
= 𝑎

𝑠
𝑥

𝑠
− 𝑦

𝑠
𝑧

𝑠
+ 𝑤

𝑠
+ 𝑢

1

̇𝑦

𝑠
= 𝑥

𝑠
𝑧

𝑠
− 𝑏

𝑠
𝑦

𝑠
+ 𝑢

2

�̇�

𝑠
= 𝑥

𝑠
𝑦

𝑠
− 𝑐

𝑠
𝑧

𝑠
+ 𝑥

𝑠
𝑤

𝑠
+ 𝑢

3

�̇�

𝑠
= −𝑦

𝑠
+ 𝑢

4
,

(7)

where 𝑎
𝑠
, 𝑏
𝑠
, and 𝑐

𝑠
are uncertain parameters, which need to

be estimated in the slave system, and 𝑢
1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
are the

designed controllers to realize the two hyperchaotic systems’
finite-time synchronization.

Let
𝑒

1
= 𝑥

𝑠 (
𝑡) − 𝑥𝑚 (

𝑡)

𝑒

2
= 𝑦

𝑠 (
𝑡) − 𝑦𝑚 (

𝑡)

𝑒

3
= 𝑧

𝑠 (
𝑡) − 𝑧𝑚 (

𝑡)

𝑒

4
= 𝑤

𝑠 (
𝑡) − 𝑤𝑚 (

𝑡) .

(8)

Then the error dynamical system between (2) and (3) is

̇𝑒

1
= 𝑎

𝑠
𝑥

𝑠
− 𝑦

𝑠
𝑧

𝑠
+ 𝑤

𝑠
− 𝑎𝑥

𝑚
+ 𝑦

𝑚
𝑧

𝑚
− 𝑤

𝑚
+ 𝑢

1

̇𝑒

2
= 𝑥

𝑠
𝑧

𝑠
− 𝑏

𝑠
𝑦

𝑠
− 𝑥
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𝑧
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+ 𝑏𝑦

𝑚
+ 𝑢

2

̇𝑒

3
= 𝑥

𝑠
𝑦

𝑠
− 𝑐

𝑠
𝑧

𝑠
+ 𝑥

𝑠
𝑤
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+ 𝑐𝑧

𝑚
− 𝑥

𝑚
𝑤

𝑚
+ 𝑢

3

̇𝑒

4
= −𝑦

𝑠
+ 𝑦

𝑚
+ 𝑢

4
.

(9)

Our goal is to design controllers 𝑢
𝑖
(𝑖 = 1, 2, 3, 4)

to realize finite-time synchronization between the master
system (6) and the slave system (7) with the uncertain slave
system parameters; that is, ‖𝑒(𝑡)‖ = 0 when 𝑡 > 𝑇

0
, where

𝑒 = [𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
]

𝑇.
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Figure 3: States of the master and slave systems with the designed controller.

Define

𝑒

𝑎
= 𝑎

𝑠
− 𝑎

𝑒

𝑏
= 𝑏

𝑠
− 𝑏

𝑒

𝑐
= 𝑐

𝑠
− 𝑐.

(10)

Then (5) can be converted to the following form:

̇𝑒

1
= 𝑒

𝑎
𝑥

𝑠
+ 𝑎𝑒

1
− 𝑦

𝑚
𝑒

3
− 𝑧

𝑠
𝑒

2
+ 𝑒

4
+ 𝑢

1

̇𝑒

2
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3
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1
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𝑒

2
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2
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𝑒

4
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𝑚
𝑒

1
+ 𝑢

3
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4
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2
+ 𝑢

4
.

(11)

In order to achieve the synchronization, we select the fol-
lowing control laws and the update rules for three uncertain
parameters 𝑎

𝑠
, 𝑏
𝑠
, and 𝑐

𝑠
:

𝑢

1
= −𝑎𝑒

1
+ 𝑦

𝑚
𝑒

3
+ 𝑧

𝑠
𝑒

2
− 𝑒

4
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𝛽

1

𝑢

2
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1
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2
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2

𝑢

3
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𝑒

2
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𝑚
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4
,

(12)

̇𝑒

𝑎
= −𝑒

1
𝑥

𝑠
− 𝑒

𝛽

𝑎

̇𝑒

𝑏
= 𝑦

𝑚
𝑒

2
− 𝑒

𝛽

𝑏
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𝑐
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𝛽

𝑐
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(13)

Then, the following result is obtained.
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Figure 4: Synchronization errors between the master and slave systems with the designed controller.

Theorem2. For any initials, the two systems (6) and (7) realize
finite-time adaptive synchronization under the control laws
(12) and the parameters’ update laws (13).

Proof. Choose the following Lyapunov function candidate:

𝑉 =

1

2

(𝑒

2

1
+ 𝑒

2

2
+ 𝑒

2

3
+ 𝑒

2

4
+ 𝑒

2

𝑎
+ 𝑒

2

𝑏
+ 𝑒

2

𝑐
) . (14)

The differential of the Lyapunov function along the
trajectory of the error system (13) is

𝑑𝑉

𝑑𝑡

= 𝑒

1
(𝑒

𝑎
𝑥

𝑠
− 𝑒

𝛽

1
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2
) + 𝑒
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4
) + 𝑒
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𝑚
𝑒

2
− 𝑒

𝛽

𝑏
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𝑐
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𝑚
𝑒
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− 𝑒

𝛽

𝑐
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− 𝑒

1+𝛽

2
− 𝑒
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− 𝑒
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− 𝑒

1+𝛽

𝑐

= −2

(𝛽+1)/2
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1
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)
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)
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)

(𝛽+1)/2

+(

1

2

𝑒

2

𝑐
)

(𝛽+1)/2

)
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+
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+
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+
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+
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+
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.
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From Lemma 1, it follows that the error system (11) is
finite-time stabilized.Then the uncertain slave system (7) can
synchronize the master system (6) in finite time.

Remark 3. From the proof of Theorem 2, it is found that
𝑑𝑉/𝑑𝑡 ≤ −2

(𝛽+1)/2
𝑉

(𝛽+1)/2. Using Lemma 1, we can get𝑉(𝑡) ≡
0, ∀𝑡 ≥ 𝑡

1
, where 𝑡

1
= 2

(1−𝛽)/2
⋅ (1/(1 − 𝛽))[𝑉(0)]

(1−𝛽)/2.
So the synchronization time is influenced by not only the
parameters and initial values’ mismatch but also the control
parameter 𝛽.

Remark 4. Although the synchronization scheme is designed
for Dadras systems, it can be used in two other identical
hyperchaotic systems and even two different hyperchaotic
systems.

4. Simulation Results

Numerical simulation results are presented to show the
effectiveness of the proposed finite-time synchronization
method. Fourth-order Runge-Kutta method is used and the
time step size is 0.001 s. The master system’s parameters and
initial conditions are the same as in Figure 1. The initial
states of the response system are 𝑥

𝑠
(0) = 1, 𝑦

𝑠
(0) = −5,

𝑧

𝑠
(0) = −8, and 𝑤

𝑠
(0) = 12. Furthermore, the initial values

of estimated parameters are 𝑎 = 9, 𝑏 = 38, and 𝑐 = 12 and
the parameter 𝛽 = 0.8. The simulations of the two Dadras
systems without control are shown in Figure 2, followed by
the simulation with the designed finite-time adaptive control
shown in Figure 3. Figure 4 shows that the trajectories of
𝑒

1
(𝑡), 𝑒
2
(𝑡), 𝑒
3
(𝑡), and 𝑒

4
(𝑡) tended to zero in finite time. The

changes of parameters of 𝑎
𝑠
, 𝑏
𝑠
, and 𝑐

𝑠
are shown in Figure 5.

Obviously, the synchronization errors converge to zero and
the estimations of parameters converge to some constants in
finite time.

5. Conclusion

This paper has addressed the finite-time adaptive synchro-
nization of Dadras hyperchaotic systems. Based on finite-
time stability theory, the proposed scheme can assure the
states of slave system to track the states of the master system
in finite time. From the process of proof we can see that this
method can be extended to other hyperchaotic systems such
as Rössler hyperchaotic system and Lü hyperchaotic system.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[2] C. Li and X. Liao, “Complete and lag synchronization of
hyperchaotic systems using small impulses,”Chaos, Solitons and
Fractals, vol. 22, no. 4, pp. 857–867, 2004.

[3] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abar-
banel, “Generalized synchronization of chaos in directionally
coupled chaotic systems,” Physical Review E, vol. 51, no. 2, pp.
980–994, 1995.

[4] S. S. Yang and C. K. Duan, “Generalized synchronization in
chaotic systems,” Chaos, Solitons and Fractals, vol. 9, no. 10, pp.
1703–1707, 1998.

[5] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase
synchronization of chaotic oscillators,” Physical Review Letters,
vol. 76, no. 11, pp. 1804–1807, 1996.

[6] G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, and J. Kurths,
“Phase synchronization effects in a lattice of nonidentical
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