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We consider the data fitting problem, that is, the problem of approximating a function of several variables, given by tabulated data,
and the corresponding problem for inconsistent (overdetermined) systems of linear algebraic equations. Such problems, connected
with measurement of physical quantities, arise, for example, in physics, engineering, and so forth. A traditional approach for
solving these two problems is the discrete least squares data fitting method, which is based on discrete ℓ

2
-norm. In this paper,

an alternative approach is proposed: with each of these problems, we associate a nondifferentiable (nonsmooth) unconstrained
minimization problem with an objective function, based on discrete ℓ

1
- and/or ℓ

∞
-norm, respectively; that is, these two norms are

used as proximity criteria. In other words, the problems under consideration are solved by minimizing the residual using these two
norms. Respective subgradients are calculated, and a subgradient method is used for solving these two problems. The emphasis is
on implementation of the proposed approach. Some computational results, obtained by an appropriate iterative method, are given
at the end of the paper.These results are compared with the results, obtained by the iterative gradient method for the corresponding
“differentiable” discrete least squares problems, that is, approximation problems based on discrete ℓ

2
-norm.

1. Introduction: Statement of
Problems under Consideration

1.1. Problem Number 1. Let 𝑓 : R𝑝 → R be a real-valued
function in 𝑝 real variables and let the following tabulated
data be given:

x ∈ R𝑝 x
1

x
2

⋅ ⋅ ⋅ x
𝑚

𝑓 (x) 𝑓 (x
1
) 𝑓 (x

2
) ⋅ ⋅ ⋅ 𝑓 (x

𝑚
)
. (1)

Find a generalized polynomial 𝑃
𝑛
(x) = ∑𝑛

𝑗=0
𝑎
𝑗
𝜑
𝑗
(x), based

on the system of linearly independent functions {𝜑
𝑗
(x)}𝑛
𝑗=0

,
that is, a polynomial of generalized degree 𝑛, which approx-
imates function 𝑓(x) with respect to some distance (norm).
Depending on the distance (norm) used, 𝑃

𝑛
(x) is an optimal

solution to various problems. In this paper, we discuss the
approximation with respect to weighted discrete ℓ

1
-norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩ℓ
1

=

𝑚

∑

𝑖=1

𝑤
𝑖

󵄨󵄨󵄨󵄨𝑓 (x𝑖)
󵄨󵄨󵄨󵄨 (2)

and weighted discrete ℓ
∞
-norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩ℓ
∞

= sup
1≤𝑖≤𝑚

𝑤
𝑖

󵄨󵄨󵄨󵄨𝑓 (x𝑖)
󵄨󵄨󵄨󵄨 , (3)

and, only for comparison, a weighted discrete ℓ
2
-norm (“dis-

crete least squares norm”)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩ℓ
2

= (

𝑚

∑

𝑖=1

𝑤
𝑖
𝑓
2
(x
𝑖
))

1/2

, (4)

where 𝑤
𝑖
> 0, 𝑖 = 1, . . . , 𝑚, are weights.

In order to ensure uniqueness of the solution to problems
under consideration, it is known that the following condition
must be satisfied:𝑚 ≥ 𝑛 + 1. This requirement means that we
must have at least 𝑛+1 values of 𝑓, where 𝑛+1 is the number
of the unknown coefficients 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛
of the generalized

polynomial 𝑃
𝑛
(x).
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Thus, the polynomial 𝑃
𝑛
(x) of best approximation to

function 𝑓(x) with respect to ℓ
1
-norm is an optimal solution

to the minimization problem

mina
{

{

{

Φ
1
(a) def= 󵄩󵄩󵄩󵄩𝑃𝑛 − 𝑓

󵄩󵄩󵄩󵄩ℓ
1

=

𝑚

∑

𝑖=1

𝑤
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓 (x

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

,

(5)

and the best approximation to 𝑓(x) with respect to ℓ
∞
-norm

is an optimal solution to the minimization problem

mina
{

{

{

Φ
2
(a)def= 󵄩󵄩󵄩󵄩𝑃𝑛 − 𝑓

󵄩󵄩󵄩󵄩ℓ
∞

=max
1≤𝑖≤𝑚

𝑤
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓 (x

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

.

(6)

The corresponding discrete least squares data fitting problem,
which can be associated with (1), is

mina
{{

{{

{

Φ
3
(a) def= 󵄩󵄩󵄩󵄩𝑃𝑛 − 𝑓

󵄩󵄩󵄩󵄩ℓ
2

= (

𝑚

∑

𝑖=1

𝑤
𝑖
(

𝑛

∑

𝑗=0

𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓 (x

𝑖
))

2

)

1/2

}}

}}

}

.

(7)

Here, a = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) ∈ R𝑛+1. When the tabulated data is

given by the same confidence (reliability) for all 𝑖 = 1, . . . , 𝑚,
then 𝑤

𝑖
are chosen to be equal to 1 for all 𝑖 = 1, . . . , 𝑚.

Recall that the system of functions {𝜑
0
, . . . , 𝜑

𝑛
} is said to

be linearly independent if whenever

𝑐
0
𝜑
0
(x) + 𝑐

1
𝜑
1
(x) + ⋅ ⋅ ⋅ + 𝑐

𝑛
𝜑
𝑛
(x) = 0, (8)

then 𝑐
0
= 𝑐
1
= ⋅ ⋅ ⋅ = 𝑐

𝑛
= 0. Otherwise, the set of functions is

said to be linearly dependent.
For the problems under consideration, the system

{𝜑
𝑗
(x)}𝑛
𝑗=0

of linearly independent functions can be chosen as
follows:

𝜑
𝑗
(x) =

𝑝

∑

𝑘=1

𝑥
𝑗

𝑘
, 𝑗 = 0, 1, . . . , 𝑛; (9)

that is,

𝜑
0
(x) = 1 + 1 + ⋅ ⋅ ⋅ + 1 = 𝑝,

𝜑
1
(x) = 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝
,

𝜑
2
(x) = 𝑥2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑝
,

.

.

.

𝜑
𝑛
(x) = 𝑥𝑛

1
+ 𝑥
𝑛

2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛

𝑝
.

(10)

It is proved that functions {𝜑
𝑗
(x)}𝑛
𝑗=0

, defined by (10), are
linearly independent (Theorem 1, Section 2.1).

1.2. Problem Number 2. Given an inconsistent (overdeter-
mined) system of linear algebraic equations,

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
= 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑚; 𝑚 > 𝑛. (11)

This system does not have a solution in the general case when
𝑚 > 𝑛 and all the equations are linearly independent.

We can associate the following minimization problems
with (11):

min
{

{

{

Φ
4
(x) def= max

1≤𝑖≤𝑚

𝑤
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

(12)

or

min
{

{

{

Φ
5
(x) def=

𝑚

∑

𝑖=1

𝑤
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

, (13)

where x = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛.The corresponding discrete least

squares data fitting problem, which can be associated with
(11), is

min
{{

{{

{

Φ
6
(x) def= (

𝑚

∑

𝑖=1

𝑤
𝑖
(

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑖
)

2

)

1/2

}}

}}

}

. (14)

Problem (12) is a special case of the problem of best Cheby-
shev approximation, based on ℓ

∞
-norm (3), and problem (13)

is based on ℓ
1
-norm.

Approximationswith respect to ℓ
1
-norm are known as ℓ

1
-

(or absolute deviation) approximations, and approximations
with respect to ℓ

∞
-norm, as Chebyshev, or minimax, or

uniform, approximations.

1.3. Bibliographical Notes and Organization of the Paper.
Problems like (1) and (11), connected with measurement of
physical quantities, arise, for example, in physics, engineer-
ing, and so forth. The weights 𝑤

𝑖
, 𝑖 = 1, . . . , 𝑚, mean the

reliability, with which each value (measurement, empirical
datum) 𝑓(x

𝑖
) at x
𝑖
for Problem Number 1, or each equation

for Problem Number 2, can be accepted.
Problems, discussed in this paper and related to them, are

considered in [1–32] and so forth.
The ℓ

1
-approximation is considered, for example, in

papers of Barrodale and Roberts [2, 3] and Coleman and Li
[13], and the ℓ

1
-solution to overdetermined linear systems

is discussed in Bartels et al. [4]. ℓ
𝑝
-approximations are

considered, for example, in papers of Calamai and Conn [9],
Fischer [15], Li [19], Merle and Späth [21],Watson [27],Wolfe
[28], and so forth. A global quadratically convergent method
for linear ℓ

∞
problems is suggested in the paper of Coleman

and Li [12].
Papers of Andersen [1], Calamai and Conn [8], Overton

[22], and Xue and Ye [29] consider minimization of sum of
Euclidean norms.

Books of Clarke [11] and Demyanov and Vasiliev [14]
are devoted to nondifferentiable optimization and book of
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Korneichuk [17] is devoted to optimization problems of the
approximation theory.

Numerical methods for best Chebyshev approximation
are suggested, for example, in the book of Remez [23].

A subgradient algorithm for certain minimax and min-
isumproblems is suggested in the paper ofChatelon et al. [10].

Least squares approach is discussed by Bertsekas [6],
Björck [7], Lawson and Hanson [18], and so forth.

A quasi-Newton approach to nonsmooth convex opti-
mization problems in machine learning is considered in Yu
et al. [31]. Nonsmooth optimizationmethods in the problems
of constructing a linear classifier are proposed in Zhuravlev
et al. [32].

Polynomial algorithms for projecting a point onto a
region defined by a linear constraint and box constraints in
R𝑛 are proposed in Stefanov [25], and well-posedness and
primal-dual analysis of some convex separable optimization
problems is considered in Stefanov [26].

Rest of the paper is organized as follows. In Section 2,
some results for calculation of subgradients of particular
types of functions are formulated and proved, and solvability
of the problems under consideration is analyzed. In Section 3,
the iterative subgradient method for solving nondifferen-
tiable unconstrained optimization problems is formulated
and its convergence is proved. In Section 4, results of compu-
tational experiments are presented. In Section 5,Conclusions,
the proposed approach and the obtained computational
results are discussed. In the appendix, some known propo-
sitions, used in the paper, are formulated without proofs, and
only for comparison purposes, the iterative gradient method
for solving differentiable unconstrained optimization prob-
lems is presented and convergence theorem is formulated.

2. Preliminaries

2.1. Theoretical Matters. Some known results, called propo-
sitions, which are used in subsequent sections, are recalled
without proofs in Appendix A.1 at the end of the paper.

We prove below some results, which guarantee solv-
ability of considered problems (Theorem 1, combined with
Proposition A.11 of the appendix) and which are used for
calculating subgradients in Section 3.2 (Theorems 2 and 3).

Theorem 1 (linear independence of a system of multivariate
functions). If 𝜑

𝑗
(x) is a polynomial of degree 𝑗 for each 𝑗 =

0, 1, . . . , 𝑛, then the set of functions {𝜑
0
, . . . , 𝜑

𝑛
} is linearly

independent.

Proof. Let 𝑐
0
, . . . , 𝑐

𝑛
be real numbers such that

𝑃 (x) def=
𝑛

∑

𝑗=0

𝑐
𝑗
𝜑
𝑗
(x) = 0. (15)

Since the generalized polynomial 𝑃(x) of degree 𝑛 van-
ishes, the coefficients of 𝑥𝑛

𝑘
, 𝑘 = 1, . . . , 𝑝, are equal to zero.

Since 𝑐
𝑛
𝜑
𝑛
(x) is the only term in 𝑃(x), containing 𝑥𝑛

𝑘
, then 𝑐

𝑛

must be equal to zero. Therefore

𝑃 (x) =
𝑛−1

∑

𝑗=0

𝑐
𝑗
𝜑
𝑗
(x) . (16)

In this representation of 𝑃(x), the only term that contains
powers of 𝑥𝑛−1

𝑘
is 𝑐
𝑛−1
𝜑
𝑛−1
(x). Hence, we must have 𝑐

𝑛−1
= 0,

and

𝑃 (x) =
𝑛−2

∑

𝑗=0

𝑐
𝑗
𝜑
𝑗
(x) . (17)

Continuing in this way, we obtain that the remaining coef-
ficients 𝑐

𝑛−2
, . . . , 𝑐

1
, 𝑐
0
are also equal to zero. Therefore, the

functions {𝜑
0
, . . . , 𝜑

𝑛
} are linearly independent by defini-

tion.

The following two theorems give the rules for calculating
subgradients for some types of functions.

Theorem 2 (subgradient of a sum of univariate convex
functions). Let 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) = ∑

𝑛

𝑗=1
𝑓
𝑗
(𝑥
𝑗
), 𝑓
𝑗
(𝑥
𝑗
) be a

convex function of 𝑥
𝑗
for each 𝑗 = 1, . . . , 𝑛. Then f̂(x) =

(𝑓
𝑥
1

(𝑥
1
), . . . , 𝑓

𝑥
𝑛

(𝑥
𝑛
)), where

𝑓
𝑥
𝑗

(𝑥
𝑗
) = 𝜆
𝑗
𝑓
+

𝑗
(𝑥
𝑗
) + (1 − 𝜆

𝑗
) 𝑓
−

𝑗
(𝑥
𝑗
) ,

0 ≤ 𝜆
𝑗
≤ 1, 𝑗 = 1, . . . , 𝑛,

(18)

𝑓
+

𝑗
(𝑥
𝑗
) = lim

𝜀→0
𝑓
󸀠

𝑗
(𝑥
𝑗
+𝜀),𝑓−

𝑗
(𝑥
𝑗
) = lim

𝜀→0
𝑓
󸀠

𝑗
(𝑥
𝑗
−𝜀) are the

derivatives of 𝑓
𝑗
on the right and on the left at 𝑥

𝑗
, respectively,

and f̂(x) denotes the subgradient of function 𝑓 at point x.

Proof. Since convex functions have derivatives on the right
and on the left at each interior feasible point, then we can
assume that 𝑓+

𝑗
(𝑥
𝑗
) and 𝑓−

𝑗
(𝑥
𝑗
) exist.

According to Proposition A.8 of the appendix, about the
vectors f+(x) and f−(x) of the right and the left derivatives of
𝑓 at x, respectively, we have

𝑓 (y) − 𝑓 (x) ≥ ⟨f± (x) , y − x⟩ ; (19)

that is, f±(x) ∈ 𝜕𝑓(x) by the definition of subgradient.
Since the subdifferential 𝜕𝑓(x) of a convex function

𝑓(x) is a nonempty, convex, and compact set, and since
𝑓
+

𝑗
(𝑥
𝑗
), 𝑓
−

𝑗
(𝑥
𝑗
) ∈ 𝜕𝑓(𝑥

𝑗
) according to the above discussion,

then

𝜆
𝑗
𝑓
+

𝑗
(𝑥
𝑗
) + (1 − 𝜆

𝑗
) 𝑓
−

𝑗
(𝑥
𝑗
) ∈ 𝜕𝑓

𝑗
(𝑥
𝑗
) , 𝑗 = 1, . . . , 𝑛.

(20)

Therefore

𝑓 (x) − 𝑓 (x) ≡
𝑛

∑

𝑗=1

𝑓
𝑗
(𝑥
𝑗
) −

𝑛

∑

𝑗=1

𝑓
𝑗
(𝑥
𝑗
)

≡

𝑛

∑

𝑗=1

[𝑓
𝑗
(𝑥
𝑗
) − 𝑓
𝑗
(𝑥
𝑗
)]
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≥

𝑛

∑

𝑗=1

[𝜆
𝑗
𝑓
+

𝑗
(𝑥
𝑗
) + (1 − 𝜆

𝑗
) 𝑓
−

𝑗
(𝑥
𝑗
)] (𝑥
𝑗
− 𝑥
𝑗
)

≡ ⟨f̂ (x) , x − x⟩ ;
(21)

that is, 𝑓(x) = (𝑓
𝑥
1

(𝑥
1
), . . . , 𝑓

𝑥
𝑛

(𝑥
𝑛
)) with 𝑓

𝑥
𝑗

(𝑥
𝑗
), defined

above, is a subgradient of𝑓(𝑥
1
, . . . , 𝑥

𝑛
) at x by definition.

Theorem 3 (subgradient of a function in two variables). Let
𝑓(𝑥, 𝑦) be a convex function of 𝑥 for each 𝑦, let there exist a
𝑦(𝑥) such that

𝑓 (𝑥)
def
= max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦 (𝑥)) (22)

and let the subgradient 𝑓
𝑥
(𝑥, 𝑦) of 𝑓(𝑥, 𝑦) with respect to 𝑥 be

known for each 𝑦. Then

𝑓
𝑥
(𝑥) = 𝑓

𝑥
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑦=𝑦(𝑥) . (23)

Proof. Since 𝑓(𝑥, 𝑦) is a convex function of 𝑥 for each 𝑦 and
since 𝑦(𝑥) is an optimal solution to problem max

𝑦∈𝑌
𝑓(𝑥, 𝑦),

then

𝑓 (𝑧) − 𝑓 (𝑥) ≡ 𝑓 (𝑧, 𝑦 (𝑧)) − 𝑓 (𝑥, 𝑦 (𝑥))

≥ 𝑓 (𝑧, 𝑦 (𝑥)) − 𝑓 (𝑥, 𝑦 (𝑥))

≥ ⟨𝑓
𝑥
(𝑥, 𝑦 (𝑥)) , 𝑧 − 𝑥⟩ .

(24)

Therefore 𝑓
𝑥
(𝑥) = 𝑓

𝑥
(𝑥, 𝑦)|

𝑦=𝑦(𝑥)
according to definition of

subgradient.

2.2. Some Properties of Objective Functions and Solvability of
the Problems under Consideration. Functions∑𝑛

𝑗=0
𝑎
𝑗
𝜑
𝑗
(x
𝑖
) −

𝑓(x
𝑖
), 𝑖 = 1, . . . , 𝑚, are linear functions of 𝑎

𝑗
, 𝑗 = 0, 1, . . . , 𝑛;

the “absolute value” function |𝑓| = max{𝑓, −𝑓} is convex
(Proposition A.4 of the appendix) when𝑓 is a linear function
(and therefore, both 𝑓 and −𝑓 are convex). Hence, Φ

1
(a)

is a convex function of a as a linear combination with
nonnegative coefficients 𝑤

𝑖
, 𝑖 = 1, . . . , 𝑚, of convex functions

(Proposition A.3 of the appendix).
Using the same reasoning, we obtain that Φ

5
(x) is a

convex function of x.
According to Proposition A.4 of the appendix, Φ

2
(a) is a

convex function of a as maximum of the convex functions
𝑤
𝑖
| ∑
𝑛

𝑗=0
𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓(x

𝑖
)|, where 𝑤

𝑖
> 0, because functions

∑
𝑛

𝑗=0
𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓(x

𝑖
) are both convex and concave as linear

functions of 𝑎
𝑗
, 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑛. Also, Φ

4
(x) is a

convex function of𝑥
𝑗
, 𝑗 = 1, . . . , 𝑛, because of similar reasons.

FunctionΦ2
3
(a) is a strictly convex function of a as a linear

combinationwith nonnegative coefficients𝑤
𝑖
, 𝑖 = 1, . . . , 𝑚, of

the quadratic functions (∑𝑛
𝑗=0
𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓(x

𝑖
))
2, 𝑖 = 1, . . . , 𝑚,

which, as it is known, are strictly convex.
Similarly, Φ2

6
(x) is a strictly convex function of x.

Functions Φ
1
(a), Φ

2
(a), Φ

4
(x), and Φ

5
(x) are nondiffer-

entiable (nonsmooth) whereas functionsΦ
3
(a) andΦ

6
(x) are

differentiable.

Functions Φ
1
(a), Φ

2
(a), Φ

3
(a), Φ

4
(x), Φ

5
(x), and Φ

6
(x)

are separable functions; that is, these functions can be
expressed as the sums of single-variable (univariate) func-
tions, which follows from definitions of these six functions.

2.2.1. On Problems Associated with Problem Number 1 (1).
Since (5) is a minimization problem, Φ

1
(a) is a continuous

(and, therefore, both lower and upper semicontinuous) func-
tion, bounded from below from 0 as a sum of nonnegative
terms, and Φ

1
(a) → +∞ as ‖a‖ → ∞, then problem

(5) has an optimal solution according to Corollary A.2 of the
appendix with𝑋 = R𝑛.

Using the same reasoning, we can conclude that problems
(6) and (7) are also solvable.

Since minΦ
3
(a) and minΦ2

3
(a) are attained at the same

point (vector) a = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
), we can consider problem

mina
{

{

{

𝐹
3
(a) def= Φ2

3
(a) =

𝑚

∑

𝑖=1

𝑤
𝑖
(

𝑛

∑

𝑗=0

𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓 (x

𝑖
))

2

}

}

}

(25)

instead of problem (7). Since Φ2
3
(a) is a strictly convex func-

tion, problem (25) has a unique solution (Proposition A.9
of the appendix).

Existence of solutions to these problems can also be
proved by using some general results.

As it is known, ℓ
1
, ℓ
2
, and ℓ

∞
are normed linear spaces;

they are Banach spaces with the norms (2), (4), and (3),
respectively; ℓ

1
, ℓ
2
are separable spaces and ℓ

∞
is not a

separable space (see, e.g., [16, 30], etc.).
Linear independence of {𝜑

𝑗
(x)}𝑛
𝑗=0

, proved in Theorem 1,
guarantees the existence of an element of best approxima-
tion for problems (5), (6), and (7) (Proposition A.11 of the
appendix).

Furthermore, since ℓ
𝑝
, 1 < 𝑝 < ∞, are strictly convex

spaces, then problem (7) (and problem (25)) has a unique
solution (Proposition A.12 of the appendix), and since ℓ

1

and ℓ
∞

are not strictly convex spaces, in the general case
we cannot conclude uniqueness of the optimal solution to
problems (5) and (6).

The 𝑛 + 1-tuple a = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) ∈ R𝑛+1, which is

obtained as an optimal solution to problem (5) (problem
(6), problem (25), resp.), gives coefficients of the generalized
polynomial 𝑃

𝑛
(x) of best approximation for 𝑓(x) (1), x ∈ R𝑝,

with respect to ℓ
1
-norm (ℓ

∞
-norm, ℓ

2
-norm, resp.).

When 𝑝 = 1, that is, when 𝑓(𝑥) is a single-variable
(univariate) function, the generalized polynomial 𝑃

𝑛
(x) =

∑
𝑛

𝑗=0
𝑎
𝑗
𝜑
𝑗
(x) becomes an algebraic polynomial of degree 𝑛:

𝑃
𝑛
(𝑥) = ∑

𝑛

𝑗=0
𝑎
𝑗
𝑥
𝑗 and problem (7) (or equivalently (25)) with

𝑝 = 1 is the well-known discrete least squares data fitting
problem.

2.2.2. On Problems Associated with Problem Number 2 (11).
Solvability of problems (12), (13), and (14) follows from
Corollary A.2 of the appendix: using thatΦ

4
(x) ≥ 0,Φ

5
(x) ≥

0 are continuous functions, 𝑎
𝑖𝑗
, 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛, and
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𝑏
𝑖
, 𝑖 = 1, . . . , 𝑚, are coefficients given by (11), then it follows

thatΦ
4
(x) → +∞, Φ

5
(x) → +∞ when ‖x‖ → ∞.

In addition, using the same reasoning, the following
problem

minΦ2
6
(x) (26)

has also an optimal solution and it is unique (Proposition A.9
of the appendix) because Φ2

6
(x) is a strictly convex function.

Existence and uniqueness of the optimal solution to problem
(2) can also be proved by using an approach, similar to the
alternative approach for problem (25).

Propositions A.7 and A.10 of the appendix imply that a∗
is an optimal solution to problem (6) if and only if

0
𝑛+1
∈ 𝜕Φ
2
(a∗) = co {𝜕𝐹

𝑖2
(a) : 𝑖 ∈ 𝐼 (a)} , (27)

where

𝐹
𝑖2
(a) = 𝑤

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓 (x

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐼 (a) = {𝑖 ∈ {1, . . . , 𝑚} : 𝐹
𝑖2
(a) = Φ

2
(a)} .

(28)

Similarly, x∗ is an optimal solution to problem (12) if and
only if

0
𝑛
∈ 𝜕Φ
4
(x∗) = co {𝜕𝐹

𝑖4
(x) : 𝑖 ∈ 𝐼 (x)} , (29)

where

𝐹
𝑖4
(x) = 𝑤

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐼 (x) = {𝑖 ∈ {1, . . . , 𝑚} : 𝐹
𝑖4
(x) = Φ

4
(x)} ,

(30)

and “co𝑋” denotes the convex hull (convex envelope) of𝑋.

3. Iterative Methods for Solving
Problems under Consideration

3.1. The Subgradient Method. Since Φ
1
(a), Φ

2
(a) and

Φ
4
(x), Φ

5
(x) are nondifferentiable convex functions, we use

the so-called subgradient (generalized gradient) method for
solving problems (5), (6), (12), and (13).

Let 𝑓(x) be a convex proper function defined on R𝑛.
The subgradient method for solving problem

min𝑓 (x) (31)

can be defined as

x
𝑘+1
= x
𝑘
− 𝜌
𝑘
𝛾
𝑘
f̂ (x
𝑘
) , 𝑘 = 0, 1, . . . , (32)

where 𝑥
0
∈ R𝑛 is an arbitrary initial guess (initial approx-

imation); 𝜌
𝑘
is a step size, such that 𝜌

𝑘
→ +0 as 𝑘 →

∞, ∑
∞

𝑘=0
𝜌
𝑘
= +∞, ∑

∞

𝑘=0
𝜌
2

𝑘
< +∞; 𝛾

𝑘
is a norming

multiplier; usually 𝛾
𝑘
= 1/‖f̂(x

𝑘
)‖ or 𝛾

𝑘
= 1; f̂(x

𝑘
) is a

subgradient of 𝑓 at x
𝑘
.

The following theorem guarantees convergence of the
subgradient method (32).

Theorem 4 (convergence of the subgradient method). If
𝜌
𝑘
→ 0 when 𝑘 → ∞, 𝜌

𝑘
≥ 0, ∑∞

𝑘=0
𝜌
𝑘
= +∞, 𝛾

𝑘
= 1

for all 𝑘 and ‖f̂(x
𝑘
)‖ < 𝐶 = 𝑐𝑜𝑛𝑠𝑡 for all x

𝑘
, then there

exists a subsequence {𝑓(x
𝑘
𝑠

)} of the sequence {𝑓(x
𝑘
)} such that

lim
𝑠→∞

𝑓(x
𝑘
𝑠

) = 𝑓(x∗), where x∗ ∈ 𝑀∗,𝑀∗ def
= {x∗ ∈ R𝑛 :

𝑓(x∗) = infx∈R𝑛𝑓(x)}.

Proof. By the assumptions of Theorem 4 we have that

󵄩󵄩󵄩󵄩x
∗
− x
𝑘+1

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
x∗ − x

𝑘
+ 𝜌
𝑘
f̂ (x
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩x
∗
− x
𝑘

󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑘
⟨f̂ (x
𝑘
) , x∗ − x

𝑘
⟩

+ 𝜌
2

𝑘

󵄩󵄩󵄩󵄩󵄩
f̂(x
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩x
∗
− x
𝑘

󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑘
⟨f̂ (x
𝑘
) , x∗ − x

𝑘
⟩ + 𝐶

2
𝜌
2

𝑘
.

(33)

Choose some 𝛿 > 0. For every 𝑘 = 0, 1, . . ., there are two
possible cases:

(1) 2 ⟨f̂ (x
𝑘
) , x∗ − x

𝑘
⟩ + 𝐶

2
𝜌
𝑘
≤ −𝛿, (34)

(2) 2 ⟨f̂ (x
𝑘
) , x∗ − x

𝑘
⟩ + 𝐶

2
𝜌
𝑘
> −𝛿. (35)

It turns out that there exists a positive integer 𝑁 such that
(35) is satisfied for 𝑘 ≥ 𝑁. Assume, on the contrary, that (34)
is satisfied and 𝑘 ≥ 𝑁. Then from (33) it follows that

󵄩󵄩󵄩󵄩x
∗
− x
𝑘+1

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩x
∗
− x
𝑘

󵄩󵄩󵄩󵄩

2

− 𝛿𝜌
𝑘

≤ (
󵄩󵄩󵄩󵄩x
∗
− x
𝑘−1

󵄩󵄩󵄩󵄩

2

− 𝛿𝜌
𝑘−1
) − 𝛿𝜌

𝑘

≤ ⋅ ⋅ ⋅ ≤
󵄩󵄩󵄩󵄩x
∗
− x
𝑁

󵄩󵄩󵄩󵄩

2

− 𝛿

𝑘

∑

𝑠=𝑁

𝜌
𝑠
.

(36)

The right-hand side of (36) tends to −∞ when 𝑘 → ∞

because ∑∞
𝑘=0
𝜌
𝑘
= ∞ by the assumption, which contradicts

‖x∗ − x
𝑘+1
‖
2
≥ 0. Therefore, there exist sufficiently large

numbers 𝑘
𝑠
, 𝑠 = 1, 2, . . ., such that

2 ⟨f̂ (x
𝑘
𝑠

) , x∗ − x
𝑘
𝑠

⟩ + 𝐶
2
𝜌
𝑘
𝑠

> −𝛿, (37)

which satisfy (35). Since 𝜌
𝑘
𝑠

→ 0, for any 𝜀 > 0, a sequence
{𝑘
𝑠
} and a number 𝑆

𝜀
can be found such that

⟨f̂ (x
𝑘
𝑠

) , x∗ − x
𝑘
𝑠

⟩ > −𝜀 (38)

is satisfied for 𝑠 ≥ 𝑆
𝜀
. Moreover, using the property of convex

functions (Proposition A.8 of the appendix), we have 𝑓(x∗)−
𝑓(x
𝑘
𝑠

) ≥ ⟨f̂(x
𝑘
𝑠

), x∗ − x
𝑘
𝑠

⟩ > −𝜀; that is, 𝑓(x
𝑘
𝑠

) − 𝑓(x∗) < 𝜀.
However, x∗ = argmin𝑓(x); therefore 𝑓(x

𝑘
𝑠

) − 𝑓(x∗) > 0.
Both inequalities imply lim

𝑠→∞
𝑓(x
𝑘
𝑠

) = 𝑓(x∗).

The subgradientmethod (32) can bemodified for the case
of nondifferentiable constrained optimization as follows:

x
𝑘+1
= Π
𝑋
(x
𝑘
− 𝜌
𝑘
𝛾
𝑘
f̂ (x
𝑘
)) , 𝑘 = 0, 1, . . . , (39)
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where Π
𝑋
(y) denotes the projection operation of y onto the

feasible region 𝑋. This modification is not considered here
because the optimization problems, considered in this paper,
are unconstrained.

3.2. Calculation of Subgradients. In order to apply the subgra-
dient method for solving the problems under consideration,
we have to calculate the corresponding subgradients.

Using that Φ
1
(a), Φ

2
(a), Φ

4
(x), Φ

5
(x) are convex separa-

ble functions and statements of PropositionsA.5, A.6, andA.7
of the appendix and statements of Theorems 2 and 3, we can
calculate corresponding subdifferentials (subgradient sets) at
iteration 𝑘 as follows, respectively:

𝜕Φ
(𝑘)

1
(a
𝑘
) =

𝑚

∑

𝑖=1

𝜕f(𝑘)
𝑖
(a
𝑘
) ∈ R
𝑛+1
, (40)

where

𝜕f(𝑘)
𝑖
(a
𝑘
)

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝑤
𝑖
⋅ (𝑝, 𝜑

1
(x
𝑖
) , . . . , 𝜑

𝑛
(x
𝑖
)) ,

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖
)

−𝑓 (x
𝑖
) > 0,

𝑤
𝑖
⋅ (𝑝, 𝜑

1
(x
𝑖
) , . . . , 𝜑

𝑛
(x
𝑖
))

⋅ [−1, 1] ,

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖
)

−𝑓 (x
𝑖
) = 0,

−𝑤
𝑖
⋅ (𝑝, 𝜑

1
(x
𝑖
) , . . . , 𝜑

𝑛
(x
𝑖
)) ,

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖
)

−𝑓 (x
𝑖
) < 0,

(41)

𝑖 = 1, . . . , 𝑚.
Let max

1≤𝑖≤𝑚
𝑤
𝑖
| ∑
𝑛

𝑗=0
𝑎
𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓(x

𝑖
)| be attained for 𝑖 =

𝑖(𝑥) ∈ 𝐼(𝑥). Then

𝜕Φ
(𝑘)

2
(a
𝑘
) = co {(𝜕𝑓(𝑘)

0,𝑖(𝑥)
(a
𝑘
) , 𝜕𝑓
(𝑘)

1,𝑖(𝑥)
(a
𝑘
) , . . . ,

𝜕𝑓
(𝑘)

𝑛,𝑖(𝑥)
(a
𝑘
)) : 𝑖 (𝑥) ∈ 𝐼 (𝑥)} ,

(42)

where

𝜕𝑓
(𝑘)

𝑗,𝑖(𝑥)
(a
𝑘
)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑤
𝑖(𝑥)
𝜑
𝑗
(x
𝑖(𝑥)
) ,

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖(𝑥)
)

−𝑓 (x
𝑖(𝑥)
) > 0,

𝑤
𝑖(𝑥)
𝜑
𝑗
(x
𝑖(𝑥)
) ⋅ [−1, 1] ,

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖(𝑥)
)

−𝑓 (x
𝑖(𝑥)
) = 0,

−𝑤
𝑖(𝑥)
𝜑
𝑗
(x
𝑖(𝑥)
) ,

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖(𝑥)
)

−𝑓 (x
𝑖(𝑥)
) < 0,

(43)

𝑗 = 0, 1, . . . , 𝑛.

Let max
1≤𝑖≤𝑚

𝑤
𝑖
| ∑
𝑛

𝑗=1
𝑎
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑖
| be attained for 𝑖 = 𝑖(𝑥) ∈

𝐼(𝑥). Then

𝜕Φ
(𝑘)

4
(x
𝑘
) = co {(𝜕𝑓(𝑘)

1,𝑖(𝑥)
(x
𝑘
) , . . . , 𝜕𝑓

(𝑘)

𝑛,𝑖(𝑥)
(x
𝑘
)) :

𝑖 (𝑥) ∈ 𝐼 (𝑥)} ,

(44)

where

𝜕𝑓
(𝑘)

𝑗,𝑖(𝑥)
(x
𝑘
) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑤
𝑖(𝑥)
𝑎
𝑖(𝑥)𝑗
,

𝑛

∑

𝑗=1

𝑎
𝑖(𝑥)𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖(𝑥)
> 0,

𝑤
𝑖(𝑥)
𝑎
𝑖(𝑥)𝑗
⋅ [−1, 1] ,

𝑛

∑

𝑗=1

𝑎
𝑖(𝑥)𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖(𝑥)
= 0,

−𝑤
𝑖(𝑥)
𝑎
𝑖(𝑥)𝑗
,

𝑛

∑

𝑗=1

𝑎
𝑖(𝑥)𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖(𝑥)
< 0,

(45)

𝑗 = 1, . . . , 𝑛,

𝜕Φ
(𝑘)

5
(x
𝑘
) =

𝑚

∑

𝑖=1

𝜕f(𝑘)
𝑖
(x
𝑘
) ∈ R
𝑛
, (46)

where

𝜕f(𝑘)
𝑖
(x
𝑘
)

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑤
𝑖
⋅ (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
) ,

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖
> 0,

𝑤
𝑖
⋅ (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
) ⋅ [−1, 1] ,

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖
= 0,

−𝑤
𝑖
⋅ (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
) ,

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖
< 0,

(47)

𝑖 = 1, . . . , 𝑚.
Obviously, elements of 𝜕Φ(𝑘)

1
(a
𝑘
), 𝜕Φ(𝑘)

2
(a
𝑘
), 𝜕Φ(𝑘)

4
(x
𝑘
),

𝜕Φ
(𝑘)

5
(x
𝑘
) depend on the sign of the corresponding expression

from (41), (43), (45), and (47), respectively, and therefore
they depend on the current values 𝑎(𝑘)

𝑗
, 𝑗 = 0, . . . , 𝑛; 𝑎(𝑘)

𝑗
,

𝑗 = 0, . . . , 𝑛; 𝑥(𝑘)
𝑗
, 𝑗 = 1, . . . , 𝑛; 𝑥(𝑘)

𝑗
, 𝑗 = 1, . . . , 𝑛, respectively.

We can choose, for example, 𝜌
𝑘
= 𝑐/𝑘, 𝑘 = 1, 2, . . .; 𝜌

0
= 1;

𝑐 = const > 0. The requirements for the step size are satisfied
for this choice of 𝜌

𝑘
.

4. Computational Experiments

In this section, we present results of some computational
experiments, obtained by the subgradient method for prob-
lems (5), (6), (12), and (13). As it was pointed out, only for
comparison, we give results obtained by the gradient method
for solving the least squares problems (7) and (14). Each type
of problems was run 30 times. Parameters and data were
randomly generated. The computations were performed on
an Intel Pentium Dual-Core CPU E5800 3.20GHz/2.00GB
using RZTools interactive system.
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For both methods (32) and (A.15), two termination tests
are used: an “accuracy” stopping criterion

󵄩󵄩󵄩󵄩x𝑘+1 − x𝑘
󵄩󵄩󵄩󵄩 ≡ {

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑘
𝛾
𝑘
f̂(𝑘) (x

𝑘
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜌
𝑘
f󸀠 (x
𝑘
)
󵄩󵄩󵄩󵄩󵄩

} < 𝜀, (48)

where 𝜀 > 0 is some given (or chosen) tolerance value, and an
upper limit criterion on the number of iterations.

Example 1 (for problem (1)). Consider problem with 𝑚 =

300, 𝑛 = 5, 𝑝 = 10, and 𝜀 = 10−6.
Results: see Table 1.

Example 2 (for problem (1)). Consider problem with 𝑚 =

300, 𝑛 = 5, 𝑝 = 12, and 𝜀 = 10−6.
Results: see Table 2.

Example 3 (for problem (1)). Consider problem with 𝑚 =

300, 𝑛 = 4, 𝑝 = 15, and 𝜀 = 10−6.
Results: see Table 3.

Example 4 (for problem (11)). Consider problem with 𝑚 =

500, 𝑛 = 20, and 𝜀 = 10−6.
Results: see Table 4.

Example 5 (for problem (11)). Consider problem with 𝑚 =

500, 𝑛 = 22, and 𝜀 = 10−6.
Results: see Table 5.

Example 6 (for problem (11)). Consider problem with 𝑚 =

500, 𝑛 = 28, and 𝜀 = 10−6.
Results: see Table 6.

Examples 7 and 8 below present results for simple partic-
ular problems of the forms (1) and (11), respectively.

Example 7 (problem (1)). Consider

𝑥 ∈ R1 −2 −1 0 1 2 3

𝑓 (𝑥) −4 15 1 10 7 6

𝑤
𝑖
= 1, 𝑖 = 1, . . . , 6; 𝑛 = 2.

(49)

Results: see Table 7.
Therefore, algebraic polynomials obtained by the two

methods are

𝑃
(1)

2
(𝑥) = −0.22𝑥

2
+ 2.21𝑥 + 1.27, (50)

𝑃
(2)

2
(𝑥) = −0.975𝑥

2
+ 1.986𝑥 + 7.904, (51)

respectively.

Example 8 (Problem (11)). Consider the system of linear
equations

𝑥
1
+ 𝑥
2
= 1,

𝑥
2
+ 𝑥
3
= 1,

𝑥
1
+ 𝑥
3
= 1,

𝑥
1
+ 𝑥
2
+ 𝑥
3
= 1.

Results: see Table 8.

Table 1

By method (32) By method (32) By method (A.15)
for problem (5) for problem (6) for problem (7)
Iterations 101 Iterations 98 Iterations 97
Run time 0.00045 s Run time 0.00055 s Run time 0.00035 s

Table 2

By method (32) By method (32) By method (A.15)
for problem (5) for problem (6) for problem (7)
Iterations 103 Iterations 103 Iterations 96
Run time 0.00037 s Run time 0.000375 s Run time 0.00038 s

Table 3

By method (32) By method (32) By method (A.15)
for problem (5) for problem (6) for problem (7)
Iterations 100 Iterations 105 Iterations 82
Run time 0.00015 s Run time 0.00017 s Run time 0.00006 s

Table 4

By method (32) By method (32) By method (A.15)
for problem (12) for problem (13) for problem (14)
Iterations 100 Iterations 104 Iterations 108
Run time 0.00065 s Run time 0.0018 s Run time 0.0019 s

Table 5

By method (32) By method (32) By method (A.15)
for problem (12) for problem (13) for problem (14)
Iterations 108 Iterations 118 Iterations 111
Run time 0.0048 s Run time 0.0051 s Run time 0.0049 s

Table 6

By method (32) By method (32) By method (A.15)
for problem (12) for problem (13) for problem (14)
Iterations 102 Iterations 119 Iterations 101
Run time 0.00375 s Run time 0.0039 s Run time 0.0037 s

Table 7

By method (32) By method (A.15)
for problem (5) for problem (7)
𝑎
∗

0
= 1.27 𝑎

∗

0
= 7.904

𝑎
∗

1
= 2.21 𝑎

∗

1
= 1.986

𝑎
∗

2
= −0.22 𝑎

∗

2
= −0.97

Φ
1
(a∗) = 25.4635 Φ

3
(a∗) = 12.9625

Iterations 101 Iterations 106
Run time 0.00135 s Run time 0.0019 s

5. Conclusions

Computational experiments presented above, as well asmany
other experiments, allow us to conclude that the subgradient
method (32), applied for minimizing the nondifferentiable
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Table 8

By method (32) By method (32) By method (A.15)
for problem (12) for problem (13) for problem (14)
𝑥
∗

1
= 0.3945 𝑥

∗

1
= 0.4999 𝑥

∗

1
= 0.4261

𝑥
∗

2
= 0.4016 𝑥

∗

2
= 0.4999 𝑥

∗

2
= 0.4261

𝑥
∗

3
= 0.3946 𝑥

∗

3
= 0.4999 𝑥

∗

3
= 0.4261

Φ
4
(x∗) = 0.2107 Φ

5
(x∗) = 0.500 Φ

6
(x∗) = 0.3780

Iterations 101 Iterations 84 Iterations 18
Run time 0.0011 s Run time 0.0008 s Run time 0.00165 s

functions Φ
1
(a), Φ

2
(a) and Φ

4
(x), Φ

5
(x), is computationally

comparable with the gradient method (A.15), applied to
the corresponding “differentiable” problems (25) and (26),
based on ℓ

2
-norm, respectively. For some problems, the

gradient method gives better results with respect to number
of iterations and therefore with respect to run time. However,
in many cases it is preferable to approximate with respect to
either ℓ

1
-norm (2) or ℓ

∞
-norm (3) instead of using the ℓ

2
-

approximation.

Appendix

A. Review of Some Results

A.1. Review of Some Known Results. In this section, some
known results, called propositions, used in this paper, are
recalled without proofs.

The followingWeierstrass theorem and the corollary turn
out to be useful concerning solvability of the problems under
consideration.

Proposition A.1 (Weierstrass, e.g., [20, Theorem C.4.1]). A
lower (upper) semicontinuous function𝑓, defined on a compact
set 𝑋 in R𝑛, is bounded from below (above) and attains in 𝑋
the value

𝛼 = inf
x∈𝑋
𝑓 (𝑥) [𝛽 = sup

x∈𝑋
𝑓 (𝑥)] . (A.1)

Corollary A.2. Let 𝑋 ̸= 0 be a closed set in R𝑛 and let
function 𝑓 : 𝑋 → R be lower (upper) semicontinuous in 𝑋
and lim

𝑘→∞
𝑓(x
𝑘
) = +∞ (lim

𝑘→∞
𝑓(x
𝑘
) = −∞) for each

sequence {x
𝑘
}
∞

𝑘=1
∈ 𝑋 such that lim

𝑘→∞
‖x
𝑘
‖ = +∞. Then 𝑓

attains on𝑋 the value

𝛼 = inf
x∈𝑋
𝑓 (x) [𝛽 = sup

x∈𝑋
𝑓 (x)] . (A.2)

Proposition A.1 and Corollary A.2 mean that, under their
assumptions, problem

min
x∈𝑋
𝑓 (x) [max

x∈𝑋
𝑓 (x)] (A.3)

has a minimim [maximum] solution.
Since a continuous function is both lower and upper

semicontinuous, then Proposition A.1 and Corollary A.2 are
also valid for continuous functions.

Proposition A.3 (nonnegative linear combinations of convex
and concave functions, [20, Theorem 4.1.6]). Let 𝑓

𝑖
, 𝑖 =

1, . . . , 𝑚, be numerical functions defined on 𝑋 ⊆ R𝑛. If
𝑓
𝑖
are convex (concave), then each linear combination with

nonnegative coefficients of these functions

𝑓 (x) def=
𝑚

∑

𝑖=1

𝛼
𝑖
𝑓
𝑖
(x) , 𝛼

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚, (A.4)

is convex (concave).
If𝑓
𝑖
are convex (concave) and at least one of them is strictly

convex (strictly concave) and corresponding 𝛼
𝑖
is positive, then

the function 𝑓(x) defined above is strictly convex (strictly
concave).

Proposition A.4 (convexity of the supremum of a family of
convex functions, [20, Theorem 4.1.13]). Let 𝑓

𝑖
: 𝑋 → R,

𝑖 ∈ 𝐼, be convex functions which are bounded from above on
the convex set 𝑋 in R𝑛. Then the function

𝑓 (x) def= sup
𝑖∈𝐼

𝑓
𝑖
(x) (A.5)

is convex on 𝑋.
𝑓 is strictly convex if each𝑓

𝑖
is strictly convex and 𝐼 is finite.

Recall that a vector f̂(x) is said to be a subgradient or a
generalized gradient of 𝑓 at x if

𝑓 (x) − 𝑓 (x) ≥ ⟨f̂ (x) , x − x⟩ , (A.6)

for any x ∈ R𝑛, where ⟨x, y⟩ denotes the inner (scalar)
product of x, y ∈ R𝑛.

The set containing all subrgadients of 𝑓(x) at x is said to
be a subdifferential 𝜕𝑓(x) of 𝑓 at x.

If 𝑓(x) is differentiable at x, then f̂(x) = f󸀠(x) and 𝜕𝑓(x) =
{f󸀠(x)} is a singleton, where f󸀠(x) is the gradient of 𝑓(x) at x.

Proposition A.5 (subdifferential of a product of convex
function with a positive real number). Let 𝑓 : R𝑛 → R be
a convex function. Then 𝜕(𝛼𝑓)(x

0
) = 𝛼𝜕𝑓(x

0
) for each scalar

𝛼 > 0.

Proposition A.6 (subdifferential of a sum of convex func-
tions, [24,Theorem23.8]). Let𝑓(x) = ∑𝑚

𝑖=1
𝑓
𝑖
(x), where𝑓

𝑖
are

proper convex functions onR𝑛, and the convex sets 𝑟𝑖(dom𝑓
𝑖
),

𝑖 = 1, . . . , 𝑚, have a point in common, where “ri” stands for
relative interior of a set and “dom” stands for effective domain
of a function. Then 𝜕𝑓(x) = ∑𝑚

𝑖=1
𝜕𝑓
𝑖
(x) for each x ∈ R𝑛.

Proposition A.7 (subdifferential of a maximum of convex
functions, [14, Lemma 5.4]). Let𝑓

𝑖
(x), 𝑖 = 1, . . . , 𝑚, be convex

functions on R𝑛 and

𝑓 (x) = max
𝑖=1,...,𝑚

𝑓
𝑖
(x) . (A.7)

Then

𝜕𝑓 (x) = co {𝜕𝑓
𝑖
(x) : 𝑖 ∈ 𝐼 (x)} , (A.8)
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where

𝐼 (x) = {𝑖 ∈ {1, . . . , 𝑚} : 𝑓
𝑖
(x) = 𝑓 (x)} (A.9)

and co𝑋 denotes the convex hull of𝑋.

Proposition A.8 (convexity, strict convexity, concavity, and
strict concavity of differentiable multivariate functions, [20,
Theorems 6.1.2 and 6.2.2]). Let𝑓 be a numerical differentiable
function on an open convex set𝑋 inR𝑛.𝑓 is convex on𝑋 if and
only if

𝑓 (x
1
) − 𝑓 (x

2
) ≥ ⟨f󸀠 (x

2
) , x
1
− x
2
⟩ , (A.10)

for each x
1
, x
2
∈ 𝑋. Similarly, 𝑓 is concave on 𝑋 if and only if,

for each x
1
, x
2
∈ 𝑋,

𝑓 (x
1
) − 𝑓 (x

2
) ≤ ⟨f󸀠 (x

2
) , x
1
− x
2
⟩ . (A.11)

𝑓 is strictly convex (strictly concave) on 𝑋 if and only if
these inequalities are strict, respectively, for each x

1
, x
2
∈ 𝑋,

x
1
̸= x
2
.

Proposition A.9 (uniqueness of the optimal solution to a
strictly convex program, [20, Theorem 5.2.2]). Let 𝑋 be a
convex set in R𝑛, let 𝑓 be a strictly convex numerical function
on 𝑋, and let x∗ be a solution to the minimization problem
minx∈𝑋𝑓(x). Then x∗ is the unique solution to this problem.

Proposition A.10 (Fermat’s generalized rule). Let 𝑓 : R𝑛 →

R be convex and let 𝑋 be a nonempty convex set in R𝑛. The
point x∗ is an optimal solution to the minimization problem

min
x∈𝑋
𝑓 (x) (A.12)

if and only if there exists a subgradient x̂ ∈ 𝜕𝑓(x∗) such that for
each x ∈ 𝑋 the following inequality holds true:

⟨x̂, x − x∗⟩ ≥ 0. (A.13)

In particular, if 𝑋 = R𝑛, x∗ is an optimal solution to the
minimization problemminx∈R𝑛𝑓(x) if and only if 0 ∈ 𝜕𝑓(x∗).

Proposition A.11 (existence of element of best approxima-
tion, e.g., [17, Propositions 1.3.1 and 1.3.2]). Let 𝐿 be a linear
subspace of the normed linear space𝑋 and let 𝐿 be generated by
the linearly independent elements {𝜑

𝑗
}
𝑛

𝑗=0
of 𝑋. Then for each

𝑓 ∈ 𝑋 there exists an element of best approximation in 𝐿.

Proposition A.12 (uniqueness of the element of best approx-
imation, e.g., [17, Proposition 1.3.3]). If 𝑋 is a strictly convex
space, then the element of best approximation is unique.

A.2. The Gradient Method for Differentiable Functions. In
order to compare the results, obtained by the subgradient
method for nonsmooth optimization for problems (5) [(6)]
and (12) [(13)], with the corresponding results, obtained by
methods for “differentiable” optimization for problems (25)
and (26), respectively, consider the iterative gradient method

for solving the “differentiable” unconstrained minimization
problem

min𝑓 (x) , (A.14)

where 𝑓 : R𝑛 → R.
The gradient method for solving problem (A.14) is defined

through

x
𝑘+1
= x
𝑘
− 𝜌
𝑘
f󸀠 (x
𝑘
) , 𝑘 = 0, 1, . . . , (A.15)

where x
0
∈ R𝑛 is an arbitrary initial guess (initial approxima-

tion); 𝜌
𝑘
(≥ 0) is a step size; f󸀠(x

𝑘
) is the unique gradient of the

differentiable function 𝑓(x) at x
𝑘
.

We use, for example, a line search method for choosing
the step size 𝜌

𝑘
. The gradient method with such a choice of

step size is known as the steepest descent method. The value
of 𝜌
𝑘
is an optimal solution to the following single-variable

problem of 𝜌:

min {𝑓 (x
𝑘
− 𝜌f󸀠 (x

𝑘
))} , (A.16)

subject to 𝜌 ≥ 0; that is,

𝑓 (x
𝑘
− 𝜌
𝑘
f󸀠 (x
𝑘
)) = min
𝜌≥0

𝑓 (x
𝑘
− 𝜌f󸀠 (x

𝑘
)) . (A.17)

An alternative way of choosing the step length 𝜌
𝑘
is the

so-called doubling method. Set, for example, 𝜌
0
= 1. Choose

𝜌
𝑘
= 𝜌
𝑘−1

. If 𝑓(x
𝑘+1
) < 𝑓(x

𝑘
), then 𝜌

𝑘
:= 2𝜌
𝑘−1

. If 𝑓(x
𝑘+1
) <

𝑓(x
𝑘
) again, then this doubling continues until 𝑓(x) stops to

decrease. If 𝑓(x
𝑘+1
) ≥ 𝑓(x

𝑘
), then 𝜌

𝑘
:= (1/2)𝜌

𝑘−1
. If 𝑓(x

𝑘
−

(1/2)𝜌
𝑘−1

f󸀠(x
𝑘
)) < 𝑓(x

𝑘
), then x

𝑘+1
:= x
𝑘
− (1/2)𝜌

𝑘−1
f󸀠(x
𝑘
);

go to iteration 𝑘 + 2. If 𝑓(x
𝑘
− (1/2)𝜌

𝑘−1
f󸀠(x
𝑘
)) ≥ 𝑓(x

𝑘
), then

𝜌
𝑘
:= (1/4)𝜌

𝑘−1
, and so on.

The gradientmethod (A.15) can be considered as a special
case of subgradient method (32) (with 𝛾

𝑘
= 1) when the

function 𝑓 to be minimized is differentiable.
Gradients of Φ2

3
(a) and Φ2

6
(x), respectively, at iteration 𝑘

are

[(Φ
2

3
)
󸀠

]

(𝑘)

(a
𝑘
) = (𝑓

(𝑘)

0
(a
𝑘
) , . . . , 𝑓

(𝑘)

𝑛
(a
𝑘
)) , (A.18)

where

𝑓
(𝑘)

𝑙
(a
𝑘
) = 2

𝑚

∑

𝑖=1

𝑤
𝑖
(

𝑛

∑

𝑗=0

𝑎
(𝑘)

𝑗
𝜑
𝑗
(x
𝑖
) − 𝑓 (x

𝑖
))𝜑
𝑙
(x
𝑖
) ,

𝑙 = 0, 1, . . . , 𝑛,

(A.19)

[(Φ
2

6
)
󸀠

]

(𝑘)

(x
𝑘
) = (𝑓

(𝑘)

1
(x
𝑘
) , . . . , 𝑓

(𝑘)

𝑛
(x
𝑘
)) , (A.20)

where

𝑓
(𝑘)

𝑙
(x
𝑘
) = 2

𝑚

∑

𝑖=1

𝑤
𝑖
𝑎
𝑖𝑙
(

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
(𝑘)

𝑗
− 𝑏
𝑖
) , 𝑙 = 1, . . . , 𝑛.

(A.21)
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Theorem A.13 (rate of convergence of the steepest descent
method, e.g., [5, Theorem 8.6.3]). Let 𝑓 : R𝑛 → R, 𝑓 ∈
𝐶
2
(R𝑛), let there exist positive constants𝑚 and𝑀 such that

𝑚
󵄩󵄩󵄩󵄩y
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑓
󸀠󸀠
(x) y, y⟩ ≤ 𝑀󵄩󵄩󵄩󵄩y

󵄩󵄩󵄩󵄩

2 (A.22)

for any x ∈ R𝑛 and y ∈ R𝑛, and let sequence {x
𝑘
} be

generated by the steepest descent method (method (A.15) with
𝜌
𝑘
determined by a line search method).
Then 𝑓 has a unique minimum solution x∗ ∈ R𝑛 and for

each x ∈ R𝑛 the following inequality holds true:

󵄩󵄩󵄩󵄩󵄩
f󸀠(x)󵄩󵄩󵄩󵄩󵄩

2

≥ 𝑚(1 +
𝑚

𝑀
) (𝑓 (x) − 𝑓 (x∗)) . (A.23)

Further, there exist constants 𝑞 and 𝐶: 0 ≤ 𝑞 ≤ 1, 𝐶 > 0 such
that

𝑓 (x
𝑘+1
) − 𝑓 (x∗) ≤ 𝑞𝑘 (𝑓 (x

0
) − 𝑓 (x∗)) ,

󵄩󵄩󵄩󵄩x𝑘+1 − x
∗󵄩󵄩󵄩󵄩 ≤ 𝐶𝑞

𝑘/2
, 𝑘 = 0, 1, . . . .

(A.24)

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] K. D. Andersen, “An efficient Newton barrier method for
minimizing a sum of Euclidean norms,” SIAM Journal on
Optimization, vol. 6, no. 1, pp. 74–95, 1996.

[2] I. Barrodale and F. Roberts, “An improved algorithm for discrete
ℓ
1
linear approximation,” SIAM Journal on Numerical Analysis,

vol. 10, no. 5, pp. 839–848, 1973.
[3] I. Barrodale and F. Roberts, “An efficient algorithm for discrete
𝑙
1
linear approximation with constraints,” SIAM Journal on

Numerical Analysis, vol. 15, no. 3, pp. 603–611, 1978.
[4] R.H. Bartels, A. R. Conn, and J.W. Sinclair, “Minimization tech-

niques for piecewise differentiable functions: the 𝑙
1
solution to

an overdetermined linear system,” SIAM Journal on Numerical
Analysis, vol. 15, no. 2, pp. 224–241, 1978.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear
Programming. Theory and Algorithms, JohnWiley & Sons, New
York, NY, USA, 2nd edition, 1993.

[6] D. P. Bertsekas, “A new class of incremental gradient methods
for least squares problems,” SIAM Journal on Optimization, vol.
7, no. 4, pp. 913–926, 1997.
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