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High temperature thermal processing of nanomaterials is an active area of research. Many techniques are being investigated to
manipulate properties of nanomaterials for medical implementation. In this paper, we investigate thermal radiation processing of a
nanomaterial fluid sheet extruded in porous media. A mathematical model is developed using a Darcy drag force model. Instead of
using linear radiative heat flux, the nonlinear radiative heat flux in the Rosseland approximation is taken into account which makes
the present study more meaningful and practically useful. Velocity slip and thermal and mass convective boundary conditions
are incorporated in the model. The Buongiornio nanofluid model is adopted wherein Brownian motion and thermophoresis
effects are present. The boundary layer conservation equations are transformed using appropriate similarity variables and the
resulting nonlinear boundary value problem is solved using Maple 14 which uses the Runge-Kutta-Fehlberg fourth fifth order
numerical method. Solutions are validated with previous nonmagnetic and nonradiative computations from the literature,
demonstrating excellent agreement. The influence of Darcy number, magnetic field parameter, hydrodynamic slip parameter,
convection-conduction parameter, convection-diffusion parameter, and conduction-radiation parameter on the dimensionless
velocity, temperature, and nanoparticle concentration fields is examined in detail. Interesting patterns of relevance are observed
to improve manufacturing of nanofluids.

1. Introduction prioritize Brownian motion and thermophoresis effects. Elec-

trically conducting nanofluid flows which respond to the

Nanofluid transport in porous media has developed into a
substantial area of research in recent years. This has been
motivated by the thermally enhancing properties of nanoflu-
ids [1] which are achieved owing to the presence of metallic
nanoparticles suspended in base fluids (water, oil, etc.).
Recent applications of nanofluid convection in porous media
include solar collectors [2, 3], microbial fuel cells [4], materi-
als processing [5, 6], biological propulsion [7], and geother-
mal energy systems [8] (where nanofluid injection results in
greater thermal efficiency). These investigations have built
on earlier seminal theoretical works of Buongiornio [9]
and Nield and Kuznetsov [10] wherein elegant formulations
for nanofluid convection have been developed and which

imposition of magnetic fields have also received some atten-
tion in recent years motivated by manufacture of complex
fluids for aerospace and industrial systems [11-14]. In various
manufacturing processes, high temperature effects and also
porous media are also encountered, in some cases, simulta-
neously. Thermal radiation heat transfer [15] is important in
the former. Drag forces induced by the porous material fibers
exert a significant influence on fluid flow and heat transfer
characteristics in the latter. Numerous studies of radiative-
convective flows in porous media have been communicated
(e.g., [16]), and are relevant also to thermal insulation engi-
neering and materials fabrication among other technologies.
Interesting studies in this regard include Vafai and Tien [17],



Takhar et al. [18], and Rashidi et al. [19]. In these studies
generally algebraic flux models have been used to solve for
the radiative contribution to heat transfer and this is gen-
erally simulated via a conduction-radiation parameter. The
Rosseland diffusion, non-gray Schuster-Schwartzchild two-
flux and other models have been employed by the researchers.
The Rosseland model is the easiest to implement and allows
radiative effects to be studied via a single dimensionless
parameter, for example, Rosseland number. In the context
of porous media studies, the Darcy drag force model which
represents the bulk matrix effect on fluid transport is the
most popular although it is limited to low-speed viscous-
dominated flows. Numerous articles have utilized this model
for porous media nanofluid modeling including Nield and
Kuznetsov [20], Uddin et al. [21], Hady et al. [22], and others
[23-26].

The objective of the present investigation is to extend the
work of Makinde and Aziz [27] for MHD Navier slip flow of
a nanofluid in porous media over a radiating stretching sheet
in the presence of thermal and mass convective boundary
conditions. This problem is of interest in nanomaterial
manufacturing processes. Slip effects have been shown to
be important in stretching sheet flows and recent studies
include Hamad et al. [28] and Prasad et al. [29-31]. The
governing partial differential boundary layer equations are
reduced to a two-point boundary value problem with the
aid of appropriate similarity variables. The reduced equations
have been numerically solved by the use of an efficient
Runge-Kutta-Fehlberg fourth fifth order numerical method
which is available in Maple 14 [32]. The effects of key
thermophysical parameters on the fluid velocity, temperature,
and nanoparticle volume fraction (concentration) have been
examined in detail. Validation of Maple solutions is included
using earlier published results for the nonradiative case as
examined by Dayyan et al. [33]. The current study has not
been communicated in the scientific literature to the best of
the authors’ knowledge.

2. Governing Nanofluid Transport Model

Consider a two-dimensional regime with a coordinate system
with the X-axis aligned horizontally and the y-axis is normal
to it. A transverse magnetic field B, acts normal to the
bounding surface. The magnetic Reynolds number is small
so that the induced magnetic field is effectively negligible
when compared to the applied magnetic field. We neglect
the electric field associated with the polarization of charges
and Hall effects. It is further assumed that the left of the
plate is heated by the convection from the hot fluid of
temperature Ty (> T,, > T,,) which provides a variable heat
transfer coefficient h14(x). Consequently a thermal convective
boundary condition arises. It is further assumed that the
concentration in the left of the plate C; is higher than that
of the plate concentration C,, and free stream concentration
C,, which provides a variable mass transfer coefficient h,,,(x).
As a result a mass convective boundary condition arises. The
Oberbeck-Boussinesq approximation is utilized and the four
field equations are the conservation of mass, momentum,
thermal energy, and the nanoparticles volume fraction. These
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equations can be written in terms of dimensional forms,
extending the formulations of Buongiorno [9] and Makinde
and Aziz [27]:
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The appropriate boundary conditions are, following Datta
[34] and Karniadakis et al. [35],

u= Uy, + Ui v=0,
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Here « = k/(pc)y: thermal diffusivity of the fluid, 7 =
(pc),/(pe) 4 ratio of heat capacity of the nanoparticle and
fluid, K : permeability of the medium, (u, v): velocity compo-
nents al%ng x and y axes, u,, = U,(x/L): velocity of the plate,
L: characteristic length of the plate, 1, = N;»(0u/0Yy): linear
slip velocity, N;: velocity slip factor with dimension s/m, p;:
density of the base fluid, o: electric conductivity, y: dynamic
viscosity of the base fluid, pp: density of the nanoparticles,
(pCp) : effective heat capacity of the fluid, (pCp)p: effective
heat capacity of the nanoparticle material, &: porosity, Dg:
Brownian diffusion coefficient, D: thermophoretic diffusion
coefficient, and g,: radiative heat transfer in y-direction.
We consider the fluid to be a gray, absorbing-emitting but
nonscattering medium. We also assume that the boundary
layer is optically thick and the Rosseland approximation or
diffusion approximation for radiation is valid [36, 37]. Thus,
the radiative heat flux for an optically thick boundary layer
(with intensive absorption), as elaborated by Sparrow and
Cess [38], is defined as g, = —(401/3k1)(aT4/87), where o,
(= 5.67 x 108 W/m? K*) is the Stefan-Boltzmann constant
and k; (m™") is the Rosseland mean absorption coefficient.
Purely analytical solutions to the partial differential boundary
value problem defined by (1)-(3) are not possible. Even a
numerical solution is challenging. Hence we aim to transform
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the problem to a system of ordinary differential equations. We
define the following dimensionless transformation variables:

y x
n=—, w=Urz\/K\pf('7),
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where L is the characteristic length. From (4), we have T =
T {1+ (T, - 1)0}, where T, = T/T,, (the wall temperature

excess ratio parameter) and hence T* = Téo{l + (T, - 1o},
Substitution of (4) into (2)-(3) generates the following simi-
larity equations:
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The relevant boundary conditions are

1 =1+af"(0),
¢'(0)=-Nd[1-¢(0)], (8)

f'(00) = 6(00) = ¢ (c0) =0,

where primes denote differentiation with respect to #. The
thermophysical dimensionless parameters arising in (5)-(8)
are defined as follows: Re = U,L/v is the Reynolds number,
Da = KP/L2 is the Darcy number, M = oB;L/U,p is the
magnetic field parameter, Pr = v/« is the Prandtl number,
Nt = 7D(Tf - T, )/vT, is the thermophoresis parameter,
Nb = 7Dg(Cy — C,,)/v is the Brownian motion parameter,

f(o) = 0)
6' (0) = -Nc[1-6(0)],

R = kk,/40,T?>, is the convection-radiation parameter, Le =
/Dy is the Lewis number, a = N;v//K} is the hydrody-
namic (momentum) slip parameter, Nd = h,,/Kp/Djy is the
convection-diffusion parameter, and Nc = hy Kp/k is the
convection-conduction parameter.

Quantities of physical interest are the local friction factor,
C 15 the local Nusselt number, Nug, and the local Sherwood
number, Shy. Physically, C, represents the wall shear stress,
Nuy defines the heat transfer rates, and Shy defines the mass
transfer rates:

CpRe.'Day” = 21" (0),
NugDa% = — [1+ 3iR{1+(T,— nePle o, ©
ShyDa2’ = —¢' (0),

where Da; = K, /x* is the local Darcy number for Darcian
porous media and Rey = u,,X/7is the local Reynolds number.

We note that, for purely hydromagnetic boundary layer (M =
0) and no slip boundary condition (a = 0), the problem
reduces to the problem which has been recently considered
and investigated by Dayyan et al. [33] when Nc =Nd =R —
00,Da=1,Nt=0,and Nb — 0in our model and #n = 0 in
their paper. This provides a useful benchmark for validating
the present model.

3. Numerical Solutions

The set of nonlinear ordinary differential equations (5)-(7)
subject to the boundary conditions in (8) have been solved
numerically using Maple dsolve command with numeric
option. This software uses the Runge-Kutta-Fehlberg fourth
fifth (RKF45) order numerical method for solving two-
point boundary value problem. The Runge-Kutta-Fehlberg
fourth fifth order numerical method is a well-established
adaptive numerical method for solving system of ordinary
differential equations with associated conditions. The Runge-
Kutta-Fehlberg algorithm uses both a fifth and a fourth order
Runge-Kutta. The error of this algorithm is determined by
subtracting these two values and can be used for adaptive step
sizing. The formula for the fifth fourth order Runge-Kutta-
Fehlberg algorithm is given below:
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(10)

where y is a fourth-order Runge-Kutta and z is a fifth-order
Runge-Kutta. An estimate of the error can be obtained by
subtracting the two values obtained. If the error exceeds a
specified threshold, the results can be recalculated using a
smaller step size. The approach to estimating the new step size

is shown below:
1/4
h
hnew = hold( old > . (11)
2 |zi+1 - yi+1|
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TaBLE 1: Comparison of f (), f'(17), and 6(r) when Da = 1.
. fn) £ 6(7)
Dayyan et al. [33] Present Dayyan et al. [33] Present Dayyan et al. [33] Present
(HAM) (Maple RKF45) (HAM) (Maple RKF45) (HAM) (Maple RKF45)
0.0 0.00000 0.00000 0.99999 0.99999 0.99999 0.99999
0.2 0.17042 0.17420 0.75376 0.75364 0.89633 0.90037
0.4 0.30564 0.30549 0.56813 0.56797 0.80205 0.80408
0.6 0.40571 0.40443 0.42820 0.42804 0.71301 0.71343
0.8 0.47505 0.47900 0.32272 0.32259 0.62792 0.6297
1.0 0.53802 0.53519 0.24322 0.24312 0.55226 0.55375
1.2 0.58010 0.57755 0.18330 0.18322 0.48134 0.48541
1.4 0.61161 0.60947 0.13814 0.13808 0.42056 0.42451
1.6 0.64096 0.63352 0.10410 0.10406 0.36595 0.37059
1.8 0.65374 0.65165 0.07845 0.07843 0.31817 0.32307
2.0 0.66952 0.66531 0.05912 0.05911 0.27657 0.28137

TaBLE 2: Comparison of Skin friction factor (- f "(0)) for several
Reynolds numbers when Da =1,a =M =0,and R — oo.

Dayvyan et al. [33] Present results

Re RK HAM Maple RKF45

1 1.4242 1.4198 1.4198

1.5 1.5811 1.5799 1.5808
1.7320 1.7234 1.7319

5 2.4494 2.4394 2.4492

TaBLE 3: Comparison between RKF45, HAM, and RK for the values
of heat transfer rate (-8'(0)) for several values of Reynolds number
whenNc=Nd =R — ooand Pr=Da = 1.

Dayyan et al. [33] Present result

Re RK HAM Maple RKF45

1 0.5033 0.5030 0.5038

1.5 0.6422 0.6456 0.6430
0.7592 0.7518 0.7539
1.2576 1.2636 1.2551

The step size is taken as Ay = 0.001 and the convergence
criterion was set to 10~°. The asymptotic boundary conditions
given by (8) were replaced by using a value of 10 for the
similarity variable #,,, as follows:

f'(10) = 6(10) = ¢ (c0) = 0.

The choice of #,,,,, = 10 ensured that all numerical solutions
approached the asymptotic values in correct manner. The
compilation times of this algorithm are of the order of several
minutes on personal computer.

=10, (12)

nmax

4. Results and Discussion

To check the accuracy of the present Maple code, com-
parisons of the skin friction factor and heat transfer rate
have been conducted with published results obtained by the
Runge-Kutta and homotopy analysis methods. The compar-
isons are presented in Tables 1, 2, and 3. Very good agreement

Pr=6.8,Le=R=10,
Da=0.5,Re=1.0,T, =2 and
Nt=Nb=Nc=Nd=0.1

'

--- 0.0
— 10.0

FIGURE 1: Effect of hydrodynamic slip on velocity for various
magnetic parameters.

between the Maple code and the other results confirms the
accuracy of the method used.

In Figures 1-10, we have examined only magnetic field,
hydrodynamic slip, conduction-radiation, convection-con-
duction, and convection-diffusion effects on the heat, mass,
and momentum transfer characteristics. The nanofluid (ther-
mophoresis, Brownian motion), Lewis number, and Prandtl
number effects are well known and have been elucidated in
detail in other studies (see, for example, Uddin et al. [5]). For
brevity we consider only specific parameter effects. Reynolds
number (Re) is fixed at unity and this is valid for low-speed
Darcian transport.
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0.25 + Pr=6.8,Le=R=10,
Da=05,Re=10,T, = 2 and 0.8 1 Pr=68,Le=10,Re=Nd =Nc =1,
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FIGURE 4: Effect of Darcy number on temperature for various

FIGURE 2: Effect of hydrodynamic slip on temperature for various )
magnetic parameters.

magnetic parameters.

Pr=6.8,Le=R =10,
Pr=6.8,Le=10,Re=Nd=Nc=1,
0.20 Da=0.5,Re=1.0,T, = 2and 0.5
Nt = Nb = Ne< Nd < 0.1 Nt=Nb=a=01,R=10,T, = 2
0.4
0.15
s
< = 0.3
a=0.0,0.3and 0.8 b4
0.10 o
Da = 0.5,1.0 and 2.0
0.2
0.05
0.1
0 0
T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
n n
M M
--- 00 --- 00
—— 10.0 —— 10.0
FIGURE 3: Effect of hydrodynamic slip on concentration for various FIGURE 5: Effect of Darcy number on concentration for various

magnetic parameters. magnetic parameters.



Pr=6.8,Le=10,a = 0.0,
0.16
Re=Da=Nd=1,T, =2and
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FIGURE 6: (a) Effect of conduction-radiation parameter on temperature for various magnetic parameters. (b) Effect of conduction-radiation

parameter on temperature profiles [39].
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FIGURE 7: Effect convection-conduction parameter on temperature
for various magnetic parameters.

Figure 1 shows the variation of the velocity through the
boundary layer with momentum slip parameter (a) and

0.5
Pr=6.8,Le=10,Re=1,

Nt=Nb=0.1,a=0,Nd=1,

Da=05R=10and T, = 2
04

0.3 ~

Nc =0.2,1.5 and 3.0
0.2

0.1

--- 0.0
— 5.0

FIGURE 8: Effect convection-conduction parameter on concentra-
tion for various magnetic parameters.

various magnetic field parameters (M). It is found that
the dimensionless velocity is decreased as the velocity slip
parameter increases for both in the presence and absence
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FIGURE 9: Effect convection-diffusion parameter on temperature for
various magnetic parameters.

of magnetic field. Physically, the velocity slipping parameter
a enhances the differences between the wall and the fluid
velocities adjacent to the wall increases. Further, it is seen
that, as the slipping parameter enhances, the thickness of
the velocity boundary layer decreases. Increasing the slipping
factor may be looked at as a miscommunication between
the source of motion (the plate) and the fluid domain. It
is clear that hydrodynamic behavior of the problem under
consideration is more sensitive to the variations in small
values of a as compared with the variations in large values of
a. Note that the case a = 0 corresponds to the conventional no
slip boundary condition at the wall. There is a strong decrease
in velocity with magnetic filed as well as slip parameters.
Clearly the presence of a magnetic field retards the flow for
both slip flow and nonslip flow. An application of a transverse
magnetic field to an electrically conducting fluid gives rise to
a resistive type force known as the Lorentz force. This force
has the tendency to retard the motion of the fluid in the
boundary layer and to increase its temperature and concen-
tration. The presence of the Lorentzian hydromagnetic drag
impedes boundary layer flow strongly and serves as a potent
control mechanism. Momentum boundary layer thickness is
greatly reduced with strong magnetic field and also strong
momentum slip. Asymptotic convergence of all profiles is
observed with greater transverse coordinate, testifying to the
accurate imposition of infinity boundary conditions.

Figure 2 demonstrates that, with an increase in momen-
tum slip parameter, the temperature is substantially elevated
throughout the boundary layer. Physically, as the velocity slip
parameter a increases, less flow will be induced close to the

0.7 -
1
|
0.6 1
|
)
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0.5 !
"
"
H
1
- 0411 Nd=05,1.5and 3.0
= 1
< \
0.3 4\
\ 1\
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) 3
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\
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0 2 4 6 8 10
n
M
-—- 0.0
— 100

FIGURE 10: Effect of convection-diffusion parameter on concentra-
tion for various magnetic parameters.

plate layer and, hence, the hot plate heats a lesser amount of
fluid and this causes higher increases in the fluid temperature.
Temperatures are also observed to be markedly higher with
strong magnetic field (M 10.0) as compared with an
absence of magnetic field (M = 0.0). Greater momentum slip
clearly aids in thermal diffusion from the wall to the body
of the fluid, which results in a heating of the boundary layer
and significant increase in thermal boundary layer thickness.
With magnetic field being present, Lorentzian magnetic body
force (see (5)) necessitates greater work from the fluid to
sustain motion. This supplementary work needed to drag the
fluid against the magnetic field is dissipated as thermal energy
(heat) and thermal boundary layer thickness is therefore
elevated. With strong momentum slip and magnetic field
(@ = 0.8, M = 10.0), thermal boundary layer thickness is

maximum with the converse apparent for the nonslip and
nonconducting case (a = 0, M

0). The presence of
strong wall slip and magnetic field therefore significantly

alters the temperature distribution in the regime and this
is important in manipulating material characteristics in
processing operations.

Figure 3 also demonstrates that increasing momentum
slip and magnetic field serves to enhance the nanoparticle
concentration. Concentration boundary layer thickness will
therefore be strongly increased with greater wall slip and
magnetic field strength. With wall slip being absent, concen-
tration magnitudes are clearly observed to be reduced. Gener-
ally Figures 1-3 show that momentum diftusion is inhibited
with hydrodynamic slip and magnetic field whereas energy
and species (nanoparticle concentration) diffusion are aided.



Figures 4 and 5 illustrate the temperature and nanopar-
ticle concentration response to a variation in Darcy and
magnetic field parameters. Physically, greater Darcy number
implies a greater permeabiity in the porous medium. This
corresponds to a decrease in presence of solid fibers and
a reduction in thermal conduction heat transfer within the
medium. Increasing Da values will therefore result in a fall in
temperatures in the regime, as clearly observed in Figure 4.
This will be accompanied by a decrease in thermal boundary
layer thickness. Similarly Figure 5 shows that concentration
magnitudes are depressed with greater Darcy number, and
this results in a decrease in concentration boundary layer
thickness. The negative effect of increasing magnetic field on
both temperatures and concentrations is confirmed in Fig-
ures 4 and 5. Effectively the presence of a porous medium and
magnetic field may be exploited to regulate temperature and
nanoparticle distributions which is of considerable advantage
in the manufacture of nanomaterials where specific spatial
properties may be required for different technological appli-
cations, as elaborated by Rana et al. [40].

The thermal radiation features in the energy conservation
equation (6) are inversely proportional to the conduction-
radiation parameter R. Thus, small R signifies a large radia-
tion effect while R — ©o corresponds to no radiation effect.
The effect of conduction-radiation parameter (nonlinear
Rosseland parameter, R) on the dimensionless temperature
evolution in the boundary layer is shown in Figure 6(a). It
represents the relative contribution of thermal conduction
heat transfer to thermal radiation heat transfer and when
it assumes unity value, both heat transfer modes contribute
equally. For R > 1, conduction will dominate and vice versa
for R < 1. Clearly as R is increased, thermal radiation
contribution is depressed and this is manifest with a con-
siderable depletion in temperatures in the boundary layer.
Therefore, for low values of R, thermal radiation is strong
and this will correspond to maximum values of temperature
and thicker thermal boundary layers. Evidently the presence
of strong thermal radiation flux is demonstrated to heat
the thermal boundary layer markedly and is beneficial to
materials processing systems where higher temperatures are
often required to alter material characteristics. The trends in
the present computations have been verified by many other
studies in the literature including Rahman and Eltayeb [39],
Das [41], Pantokratoras and Fang [42], and Mushtaq et al.
[43]. In order to further verify the present numerical method,
we compare our Figure 6(a) with Rahman and Eltayeb [39]
(see Figure 6(b)). A close agreement is found between present
figure and published figure.

Figures 7 and 8 depict the influence of the convection-
conduction parameter (Nc) (essentially the Biot number)
on the dimensionless temperature and nanoparticle con-
centration profiles. This parameter arises only in the wall
thermal boundary condition (8). It is worth mentioning that
the convection-conduction parameter, Nc, is the ratio of the
internal thermal resistance of a solid to the boundary layer
thermal resistance. When Nc = 0 (i.e., without Biot number)
the left side of the plate with hot fluid is totally insulated,
the internal thermal resistance of the plate is extremely high,
and no convective heat transfer to the cold fluid on the right
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side of the plate takes place. Here the results for constant
wall temperature case 6(0) = 1 can be recovered when
Nc — o0o0. It exerts a substantial influence on temper-
ature evolution (Figure7), in particular, as anticipated, at
the wall. As Nc is increased, there is a strong elevation in
wall temperature values. The larger values of Nc accompany
the stronger convective heating at the sheet which rises the
temperature gradient at the sheet. This allows the thermal
effect to penetrate deeper into the quiescent fluid. Due to
this reason the temperature and thermal boundary layer
thickness are increasing functions of Nc. The magnitudes
with magnetic field being present are also considerably higher
than with magnetic field being absent. Thermal boundary
layer thickness is therefore minimized with low values of the
convection-conduction parameter. The concentration field is
driven by the temperature gradient and since temperature is
an increasing function of Nc, one would expect an increase
in ¢ with an increase in Nc. This is what we can observe from
Figure 8. Concentration boundary layer thickness is there-
fore also enhanced with increasing convection-conduction
parameter.

Figures 9 and 10 display the effect of the convection-
diffusion parameter (Nd) on temperature and nanoparti-
cle concentration (species) distributions, respectively. This
parameter also features only in a single boundary condition,
namely, the wall concentration gradient boundary condition
in (8), and is inversely proportional to the Brownian diffusion
coefficient. A strong enhancement in both temperatures and
concentration values is generated with increasing Nd values.
Both thermal and concentration boundary layer thickness
are therefore enhanced. With magnetic being field present,
magnitudes of temperature and nanoparticle concentration
are always greater than for the electrically nonconducting
case (M = 0). As with the Nc parameter, the most significant
response in temperature and nanoparticle concentration
profiles is witnessed at the wall, since both parameters are
simulated via wall boundary conditions.

5. Conclusions

A mathematical model has been developed for steady-state
two-dimensional incompressible laminar nanofluid mag-
netohydrodynamic convective-radiative flow in a porous
medium adjacent to a vertical sheet. The left of the sheet is
heated by the convection from a hot fluid which provides a
variable heat transfer coeflicient leading to the presence
of a thermal convective boundary condition. Hydrody-
namic slip and thermal radiation heat transfer have been
included in the model and furthermore a mass convec-
tive boundary condition is incorporated. The transformed
momentum, energy, and nanoparticle concentration bound-
ary layer equations have been shown to feature a num-
ber of thermophysical parameters, namely, Reynolds num-
ber, Darcy number, Prandtl number, Lewis number, mag-
netic field parameter, thermophoresis parameter, Brownian
motion parameter, hydrodynamic (momentum) slip param-
eter, convection-conduction parameter, convection-diffusion
parameter, and conduction-radiation parameter (nonlinear
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Rosseland parameter). A Maple numerical solution employ-
ing Runge-Kutta-Fehlberg quadrature has been obtained for
the strongly nonlinear boundary value problem. The effects
of several parameters on the momentum, heat, and mass
transfer (species diffusion) characteristics of the nanofluid
have been evaluated in detail. Computations have also been
validated with earlier published results, demonstrating very
good correlation. The present solutions have shown the
follwoing.

(i) Increasing hydrodynamic (momentum) slip signif-
icantly retards the boundary layer flow, whereas it
markedly increases temperature and nanoparticle
concentration values.

(ii) Increasing magnetic field damps the velocity char-
acteristics, that is, decelerates the flow, whereas it
enhances both temperatures and nanoparticle con-
centration values.

(iii) Increasing Darcy number (corresponding to greater
porous medium permeability) strongly boosts the
temperature and concentration magnitudes.

(iv) Decreasing Rosseland conduction-radiation parame-
ter (which corresponds to greater thermal radiative
heat flux presence) notably elevates temperatures in
the boundary layer.

(v) Increasing convection-conduction parameter (Nc)
(which is simulated via a thermal convective bound-
ary condition) strongly enhances both temperature
and nanoparticle concentration values.

(vi) Increasing convection-diffusion parameter (Nd)
(which is simulated via a mass convective boundary
condition) strongly enhances both temperature and
nanoparticle concentration values.

The present study has considered Newtonian steady-state
magnetoconvective nanofluid flow. Transient [44] and non-
Newtonian effects [45] are also relevant to magnetic nano-
materials processing operations, and these will be considered
in the near future.

Nomenclature

a: Slip parameter

B,:  Constant magnetic field

C: Dimensional concentration

Cp Specific heat at constant pressure

(J/kg K)
Cyz:  Skin friction factor
Dg: Brownian diffusion coeflicient
Dy: Thermophoretic diffusion coeflicient
f(n): Dimensionless stream function
h £ (x): Local heat transfer coefficient (W/m? K)
(h f) o Constant heat transfer coefficient
(W/m? K)
h,,(x): Local mass transfer coeflicient
(h,,)s: Constant mass transfer coeflicient
k: Thermal conductivity (m?/s)
L: Characteristic length of the plate (m)

Le:  Lewis number

M:  Magnetic field parameter

N, (x): Variable velocity slip factor
Nb:  Brownian motion parameter

Nc: Conduction-convection parameter
Nd:  Diffusion-convection parameter
Nt:  Thermophoresis parameter

Nuj: Heat transfer rate

Pr: Prandtl number

p: Pressure (Pa)

q,:  Wall mass flux (kg/s m®)

qy,:  Wall heat flux (W/m?)

Re:  Reynolds number

Local Reynolds number
Thermal conductivity parameter
Local Sherwood number
Dimensional temperature
Velocity components along axes
External velocity (m/s)
Reference velocity (m/s)
Cartesian coordinates aligned along and
normal to the plate (m).

2

he:

SRS
=

)

®l g
<@ s

Greek Symbols

Thermal diffusivity (m?/s)

Real numbers

Pressure gradient parameter

Ratio of effective heat capacity of the

nanoparticle material to the heat

capacity of the fluid

o:  Electric conductivity

0(n): Dimensionless temperature

¢(1): Dimensionless concentration
(nanoparticle volume fraction)

n:  Similarity variable

@:  Dynamic viscosity of the fluid (Ns/m?)

v: Kinematic viscosity of the fluid (m?/s)

py: Fluid density (kg/ m?)

y:  Stream function.

TR R

Subscripts

w: Condition at the wall
00: Ambient condition.
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