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Abstract. 
In vibration-based structural health monitoring of existing large civil structures, it is difficult, sometimes even impossible, to measure the actual excitation applied to structures. Therefore, an identification method using output-only measurements is crucial for the practical application of structural health monitoring. This paper integrates the ant colony optimization (ACO) algorithm into the framework of the complete inverse method to simultaneously identify unknown structural parameters and input time history using output-only measurements. The complete inverse method, which was previously suggested by the authors, converts physical or spatial information of the unknown input into the objective function of an optimization problem that can be solved by the ACO algorithm. ACO is a newly developed swarm computation method that has a very good performance in solving complex global continuous optimization problems. The principles and implementation procedure of the ACO algorithm are first introduced followed by an introduction of the framework of the complete inverse method. Construction of the objective function is then described in detail with an emphasis on the common situation wherein a limited number of actuators are installed on some key locations of the structure. Applicability and feasibility of the proposed method were validated by numerical examples and experimental results from a three-story building model.


1. Introduction
Structural health monitoring (SHM) has remained an active research topic in structural engineering since the 1970s. SHM identifies the occurrence, location, and severity of structural damage via significant adverse changes of structural parameters or properties. Thus, the core part of an SHM system is the algorithm used to accurately identify the structural parameters. A number of methods are available nowadays for us to accomplish this identification task. Housner [1] presented an extensive summary on the state-of-the-art methods in the vibration control and health monitoring of civil engineering structures. Zou et al. [2] summarized the methods of vibration-based damage detection and health monitoring for composite structures. Very recent reviews on identification methods used in SHM can be found in Ou and Li [3] and Fan and Qiao [4] among several others. Traditional identification algorithms are generally based on the assumption that the system’s input (excitations) and output (responses) are completely known (measured). However, in vibration-based structural health monitoring of existing large civil structures, it is difficult, sometimes even impossible, to measure the actual excitation applied to the structures. Therefore, output-only structural parameter identification methods are of great significance for practical application of SHM.






In contrast to a number of publications on structural parameter identification with complete output and input information, there is a paucity of publications addressing the identification method using responses only. Since the input/excitation is unknown, assumptions on the input are necessary in order to make the traditional identification method applicable. The most commonly adopted assumption is treating the input as a white-noise process, whose power spectrum is theoretically known. The classical Ibrahim method plus random decrement technique, for instance, is based on this assumption. This assumption, however, is not tenable for excitation like earthquakes or strong winds that are in fact a nonstationary random process. Moreover, the time history of the real input cannot be directly identified. The second common way is assuming that the input has some special features. For instance, Toki et al. [5] assumed that the coda of the measured structural responses during an earthquake could be treated as free vibration responses from which the structural parameters could be easily identified. Wang and Haldar [6] identified the unknown earthquake input and structural parameters using output-only measurements through a recursive identification procedure consisting mainly of three steps. Step 1: The unknown structural parameters were identified by assuming that the input excitations were zero at the beginning building up to four time instants, say 
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 converged within a preset tolerance limit. For unknown wind load, Law et al. [7] assumed the wind load model was known even though the time histories of the wind load had not been recorded. Based on this assumption, the time history of wind load and the structural parameters could be identified using the response measurements. More recently, Yang et al. [8] suggested a recursive least squares estimation with unknown inputs to identify the stiffness, damping, and other nonlinear parameters at element level. The locations of the unknown excitations are assumed known in their approach. The ASCE structural damage benchmark structure was used to show the feasibility of the method. Yang and Huang [9] further extended this method to situations where external excitations and some acceleration responses are not measured.
To deal with the unknown input identification problem, we have proposed the concept of complete inverse problem, which means identification of structural parameters and the input’s time histories simultaneously from the output-only measurements as per Chen and Li [10, 11], Li and Chen [12, 13], and Zhao et al. [14, 15]. Within the framework of complete inverse problem, we have suggested a series of identification methods named as complete inverse methods (CIM) addressing different types of unknown excitations. The core idea of CIM is to convert any additional information of the excitations (whose time histories are unknown) into mathematical constraint conditions that can be further integrated into an iteration identification procedure based on least square technique. For instance, when the locations of the excitations are known, the spatial information of the external excitation can be used in the parameter identification method [10, 11]. For ground motion excitation like that resulting from an earthquake, its mechanical features indicate that the inertial force proportional to the mass can be introduced into the interaction procedure as a mathematical constraint to ensure a stable and unique solution [12, 13]. For a proportional-type excitation, like wind loads, the ratio of forces at different structural heights can be used as a mathematical condition to identify the structural parameters and inputs. For shear-type building under earthquake excitation and with limited response measurements, we proposed a hybrid identification method where the unknown structural parameters for the first floor are identified using measured modal shapes, and parameters of all the other stories are identified using measured acceleration responses [14, 15]. We have also provided strict mathematical proofs from Chen and Li [11] and Li and Chen [13] to demonstrate the unconditional convergence features of the proposed complete identification methods.
Despite CIM’s success, it does have several limitations. This paper thus tries to improve the CIM in two directions. The first arises from replacing the least square method with another efficient and more robust optimization method. The recently emerged ant colony optimization algorithm (ACO) has been adopted in this paper to identify the structural parameter. The second improvement aims to validate the proposed method by experimental examples. The feasibility and effectiveness of all the aforementioned identification methods have already been demonstrated by different kinds of numerical examples. However, few experimental investigations have been conducted to assess the practical application of these methods. The effect of measurement noise and modeling error cannot be fully investigated in a numerical simulation. However, time-domain identification methods are known to be sensitive to measurement noise.
To this end, the paper first presents the principle of ACO for solving both discrete optimization problems and continuous optimization problems as well. Then, the ACO is integrated into the CIM methods by constructing the objective function according to the type of excitation. After that, the proposed method is applied to numerical model and an experimental model. The results show that the CIM+ACO algorithm performs very well for a noise-free and noise-polluted case and has good identification accuracy in parameters and inputs.
2. Ant Colony Optimization
Inspired by the ants’ foraging behavior, Dorigo [16] proposed the ant colony optimization algorithm (ACO). ACO emulates the behavior of a group of ants in searching food from their nest to the food sources. Every ant leaves an amount of pheromone on the path that it passes and chooses the path with more pheromone left on it from the previous ants. Then, after more and more ants pass, the path having the maximum pheromone will be the best (shortest) way from the nest to the food source. ACO algorithms have already been successfully applied for solving combinatorial optimization problems, including the traveling salesman problem (TSP) [17], the routing problem in a computer network [18], the quadratic assignment problem (QAP) [19], and structural health monitoring problems [20, 21]. ACO algorithms for continuous optimization have been proposed in the literature [22–24]. All the above work has proven ACO to be an efficient and versatile tool for solving various continuous optimization problems. The ACO algorithm has already been well established so far. Principal and application procedures of ACO are briefly summarized in Section 2.1.
2.1. Ant System Model [22]
As mentioned earlier, ACO emulates the behavior of a group of ants in searching for food. Modeling of the ant system and the pheromone left by ants on the path are of great importance for application of ACO. When ACO is used for discrete optimization problems, ants construct solutions incrementally. That is, each ant starts with an empty solution 
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. The definition of the available solution componentdepends on the problem tackled. For instance, in the popular travelling salesman problem (TSP), a component of the solution is a city that is added to a tour. The solution components may be defined differently for other problems.
A probability-based strategy is adopted to choose the best solution components from 
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th iteration step. Hence, in case of discrete optimization problems, the ants make a probabilistic decision according to some discrete probability distribution at each construction step. For continuous optimization problems, the domain changes from discrete to continuous. The logical adaptation also would be moved from using the discrete probability distribution to a continuous one—the probability density function (PDF). Instead of choosinga component 
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2.2. ACO for Continuous Domain: 
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The original ACO algorithm applies only to discrete domain and cannot be directly introduced into continuous domain optimization problems. Structural identification in nature is an optimization problem that aims to find the best parameters for a given objective function defined in a continuous domain. The ACO for continuous domain is, therefore, necessary. We adopted the method suggested by Socha [22] and Socha and Dorigo [23], which is an ACO for continuous domain (
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 can be found in Socha [22] and Socha and Dorigo [23].
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Before each solution is added to the archive 
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The weight is for the Gaussian function with argument 
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In practice, generating the Gaussian kernel PDF is accomplished as follows. First, choose one of the individual Gaussian functions that compose the Gaussian kernel with probability 
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3. Integration of 
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3.1. Introduction of CIM
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				𝑖
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				−
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				𝑖
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				𝑖
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				⋯
				⋯
				⋯
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				⋯
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				𝑥
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				𝑖
			

			
				
				−
				̇
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				𝑛
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				
				𝑡
			

			

				𝑖
			

			
				
				𝑥
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				
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				𝑖
			

			
				
				−
				𝑥
			

			
				𝑛
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				1
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				𝑡
			

			

				𝑖
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				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝐘
			

			

				𝑄
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				)
				,
				𝐘
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				𝑡
			

			

				2
			

			
				)
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				…
				,
				𝐘
				(
				𝑡
			

			

				𝑄
			

			
				)
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				𝑇
			

			
				,
				𝐘
				
				𝑡
			

			

				𝑖
			

			
				
				=
				
				𝑓
			

			

				1
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				−
				𝑚
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				𝑖
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				𝑓
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				
				𝑡
			

			

				𝑖
			

			
				
				−
				𝑚
			

			

				𝑛
			

			
				̈
				𝑥
			

			

				𝑛
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				
			

			

				𝑇
			

			

				,
			

		
	


					where 
	
		
			

				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				,
				…
				,
				𝑘
			

			

				𝑛
			

		
	
, and 
	
		
			

				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				,
				…
				,
				𝑐
			

			

				𝑛
			

		
	
 represent, respectively, the stiffness and damping coefficients of the structure for each story, and 
	
		
			

				𝑥
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
 are the displacement response and external excitation force of the 
	
		
			

				𝑗
			

		
	
th DOF (
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
) at the time instant 
	
		
			

				𝑡
			

			

				𝑖
			

		
	
.
In traditional calculations, the parameters of the structure can be identified from (10) by the least-squares technique as
								
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝐇
				𝜽
				=
			

			
				𝑇
				𝑄
			

			

				𝐇
			

			

				𝑄
			

			

				
			

			
				−
				1
			

			

				𝐇
			

			
				𝑇
				𝑄
			

			

				𝐘
			

			

				𝑄
			

			

				.
			

		
	

However, (16) cannot be easily solved to determine the stiffness and damping parameters since there are unknown quantities involved in calculating 
	
		
			

				𝐇
			

			

				𝑄
			

		
	
 and 
	
		
			

				𝐘
			

			

				𝑄
			

		
	
.
As mentioned earlier, we have suggested the complete inverse method to tackle the unknown input situation in structural identification. Following the framework of CIM, Chen and Li [11] suggested the total compensation method. The total compensation method rests on the assumption that the locations of the external forces are known even though their time histories are unknown, and the number of DOF with applied (unknown) forces is less than the number of DOF whose responses are measured. This assumption reflects the situation of a forced vibration survey of structure where a limited number of one or several actuator(s) are installed on key locations of the structure to excite it. In this case, the input excitations in (15) can be further expressed into two parts:
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				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑢
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				=
				𝑓
			

			

				𝑢
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				−
				𝑚
			

			

				𝑢
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				̈
				𝑥
			

			

				𝑢
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				𝑦
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑄
				,
			

			

				𝑙
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				=
				𝑓
			

			

				𝑙
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				−
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				𝑙
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				̈
				𝑥
			

			

				𝑙
			

			
				
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				𝑖
			

			
				
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				𝑙
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				̈
				𝑥
			

			

				𝑙
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑄
				,
			

		
	

							where 
	
		
			

				𝑦
			

			

				𝑢
			

			
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
 denotes those DOFs with unknown external excitation and 
	
		
			

				𝑦
			

			

				𝑙
			

			
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
 stands for those DOFs without applied force, that is, 
	
		
			

				𝑓
			

			

				𝑙
			

			
				(
				𝑡
			

			

				𝑖
			

			
				)
				≡
				0
			

		
	
.
3.2. Objective Function
In order to identify structural parameters and the input time history from output-only measurements, an objective function is defined as minimizing discrepancies between the force 
	
		
			

				𝑦
			

			

				𝑙
			

			
				(
				𝑡
				)
			

		
	
 and the calculated force 
	
		
			

				𝑦
			

			
				⋄
				𝑙
			

			
				(
				𝑡
				)
			

		
	
. The minimization of the objective function is expressed as a bound-constrained nonlinear least squares problem:
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				𝑄
			

			

				
			

			

				𝑡
			

			

				𝑖
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				‖
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				
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				𝑖
			

			
				
				−
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				
				𝑡
			

			

				𝑖
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				‖
				‖
			

			

				2
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑄
				,
			

		
	

							where 
	
		
			

				𝐿
			

		
	
 is the set of 
	
		
			

				𝑙
			

		
	
 and the identified force 
	
		
			

				𝑦
			

			
				⋄
				𝑙
			

			
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
 is given by
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				𝑖
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				𝑙
			

			
				
				𝑡
			

			

				𝑖
			

			
				
				𝜽
			

			

				⋄
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑄
				,
			

		
	

							where 
	
		
			

				𝐇
			

			

				𝑙
			

			
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
 is 
	
		
			

				𝑙
			

		
	
th row of the matrix 
	
		
			
				𝐇
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
, and 
	
		
			

				𝜽
			

			

				⋄
			

		
	
 is the result of identified parameters based on 
	
		
			
				A
				C
				O
			

			

				𝑅
			

		
	
 with the details as
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				,
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				⋄
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				,
				…
				,
				𝑐
			

			
				⋄
				𝑛
			

			
				,
				𝑘
			

			
				⋄
				𝑛
			

			

				
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				=
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				1
			

			
				,
				𝑠
			

			
				2
				1
			

			
				,
				…
				,
				𝑠
			

			
				1
				2
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				−
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				,
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				1
				2
				𝑛
			

			

				
			

			

				𝑇
			

			

				,
			

		
	

							where 
	
		
			

				𝑠
			

			
				𝑟
				1
			

		
	
, 
	
		
			
				𝑟
				=
				1
				,
				2
				,
				…
				,
				2
				𝑛
			

		
	
 is the value of the first row of the archive 
	
		
			

				𝑇
			

		
	
, which is the best solution for (18).
Once the iterative procedure converges, the updated parameter vectors in (20) will give the final identification result of all the structural parameters, whilst the time history of the input 
	
		
			
				𝐅
				(
				𝑡
				)
			

		
	
 can be easily determined by (7).
4. Numerical Examples
The suggested algorithm has been applied to several numerical examples including a truss structure, a 6-story shear frame, and a 12-story shear frame structure [25]. Since the observations for all numerical examples are similar, only the results for the 6-story shear frame structure are presented here in detail. The mass, stiffness, and damping coefficient of each story of the structure are shown in Table 1. Sinusoidal excitations are applied on the 4th and the 6th floor, which are 
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				(
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				1
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				5
			

			
				s
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				n
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				)
			

		
	
, respectively. Therefore the set 
	
		
			

				𝐿
			

		
	
 in (18) is 
	
		
			
				𝐿
				=
				{
				1
				,
				2
				,
				3
				,
				5
				}
			

		
	
 for this example. The dynamic responses of all six stories are first calculated in terms of displacement, velocity, and acceleration using the Newmark-
	
		
			

				𝛽
			

		
	
 method [26]. Twenty ants are used in each iteration of the 
	
		
			
				A
				C
				O
			

			

				𝑅
			

		
	
 algorithm, and the convergence threshold in the objective function is set as 
	
		
			
				1
				.
				0
				×
				1
				0
			

			
				−
				6
			

		
	
 for all the cases. All the computation parameters used for 
	
		
			
				A
				C
				O
			

			

				𝑅
			

		
	
 are summarized in Table 2.
Table 1: The basic parameters of the frame structure model.
	

	Node number	1	2	3	4	5	6
	

	Mass (kg) 	610000	580000	530000	530000	530000	360000
	Stiffness (kN/m)	271390	290360	282690	252480	233540	229940
	Damping (kN·s/m) 	2469.65	2874.56	2572.48	2297.57	2265.33	2092.45
	



Table 2: Parameters used by 
	
		
			
				A
				C
				O
			

			

				𝑅
			

		
	
 for HIM.
	

	Parameters	Symbol	Value
	

	Speed of convergence	
	
		
			

				𝜉
			

		
	
	0.85
	Locality of the search process	
	
		
			

				𝑞
			

		
	
	0.2
	Archive size	
	
		
			

				𝑘
			

		
	
	40
	Number of dimensions	
	
		
			

				𝑁
			

		
	
	12
	



4.1. Noise-Free Measurements
The proposed 
	
		
			
				A
				C
				O
			

			

				𝑅
			

		
	
 method is first applied to noise-free measurements. The parameter identification results of the three cases are shown in Table 3, where Cases 1 and 2 have the same initial parameters’ estimate but different measurement durations, and Cases 1 and 3 have the same measurement duration but different initial parameters. It is seen from Table 3 that, for all cases, the unknown parameters can be accurately identified by the proposed method with short duration of measurements and if the method is robust to obtain the initial estimated parameters. The input excitation can also be accurately identified by the 
	
		
			
				A
				C
				O
			

			

				𝑅
			

		
	
 method in the noise-free case.
Table 3: Identified results with noise-free measurements.
	

	
									Parameters and its real values	Case 1	Case 2	Case 3
	 	
	
		
			

				𝜽
			

			

				𝟎
			

		
	
	
	
		
			

				𝜽
			

			

				⋄
			

		
	
	
	
		
			

				𝜽
			

			

				𝟎
			

		
	
	
	
		
			

				𝜽
			

			

				⋄
			

		
	
	
	
		
			

				𝜽
			

			

				𝟎
			

		
	
	
	
		
			

				𝜽
			

			

				⋄
			

		
	

	

	
	
		
			

				𝑘
			

			

				1
			

		
	
	271390	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	271390.00 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	271390.00 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	271389.99 
	
	
		
			

				𝑘
			

			

				2
			

		
	
	290360	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	290360.00 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	290360.00 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	290360.00 
	
	
		
			

				𝑘
			

			

				3
			

		
	
	282690	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	282690.00 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	282690.00 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	282689.99 
	
	
		
			

				𝑘
			

			

				4
			

		
	
	252480	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	252490.00 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	252479.99 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	252479.99 
	
	
		
			

				𝑘
			

			

				5
			

		
	
	233540	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	233540.00 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	233540.00 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	233540.00 
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				6
			

		
	
	229940	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	229939.99 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	229940.00 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	229940.00 
	
	
		
			

				𝑐
			

			

				1
			

		
	
	2469.65	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2469.6499 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2469.6499 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	2469.6500 
	
	
		
			

				𝑐
			

			

				2
			

		
	
	2874.56	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2874.5600 	[1, 
	
		
			
				1
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				6
			

		
	
]	2874.5600 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	2874.5599 
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	2572.48	[1, 
	
		
			
				1
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				6
			

		
	
]	2572.4800 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2572.4799 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	2572.4799 
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				4
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				1
				𝐸
				6
			

		
	
]	2297.5699 	[1, 
	
		
			
				1
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				6
			

		
	
]	2297.5700 	[1, 
	
		
			
				1
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				7
			

		
	
]	2297.5700 
	
	
		
			

				𝑐
			

			

				5
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				1
				𝐸
				6
			

		
	
]	2265.3300 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2265.3300 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	2265.3299 
	
	
		
			

				𝑐
			

			

				6
			

		
	
	2092.45	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2092.4499 	[1, 
	
		
			
				1
				𝐸
				6
			

		
	
]	2092.4499 	[1, 
	
		
			
				1
				𝐸
				7
			

		
	
]	2092.4500 
	
	
		
			

				𝐿
			

		
	
	100	20	100
	Iteration number	410	417	968
	



	
		
			

				𝜽
			

			

				𝟎
			

		
	
: initial values range of the parameter vector, generate 
	
		
			

				𝑘
			

		
	
 solutions by uniform random sampling for archive 
	
		
			

				𝑇
			

		
	
; 
	
		
			

				𝜽
			

			

				⋄
			

		
	
: identified parameter vector, 
	
		
			

				𝐿
			

		
	
: number of sampling points used.


4.2. Noise-Pollution Measurements
White noise is numerically added to the calculated responses to simulate noisy measured data by the following equation:
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				a
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				𝑥
			

		
	

							where 
	
		
			

				𝐸
			

			

				𝑝
			

		
	
 is the noise level expressed as a percentage, 
	
		
			

				𝑁
			

			
				n
				o
				i
				s
				e
			

		
	
 is a uniform distribution vector with interval 
	
		
			
				[
				−
				1
				,
				1
				]
			

		
	
, and 
	
		
			
				M
				a
				x
				(
				̈
				𝑥
				)
			

		
	
 is the maximum value of the calculated acceleration response. Four different noise levels at 1%, 5%, 10%, and 15% were considered in the calculation.
The identification results are summarized in Table 4, from which we can see that the proposed method can accurately identify the stiffness parameters for a noise-level up to 10%. The maximum parameter identification error of the stiffness parameter is lower than 0.1%, 0.6%, 1.6%, and 7.5% for noise levels 1%, 5%, 10%, and 15%, respectively. The identification accuracy for the damping ratio, however, is relatively low. This is not surprise since damping is very sensitive to measurement noise.
Table 4: Identified results with noise-pollution measurements.
	

	 	Case 1	Case 2	Case 3	Case 4
	
									Parameters and its real values	(Noise = 1%)	(Noise = 5%)	(Noise = 10%)	(Noise = 15%)
	 	 	
	
		
			

				𝜽
			

			

				⋄
			

		
	
	Error (%)	
	
		
			

				𝜽
			

			

				⋄
			

		
	
	Error (%)	
	
		
			

				𝜽
			

			

				⋄
			

		
	
	Error (%)	
	
		
			

				𝜽
			

			

				⋄
			

		
	
	Error (%)
	

	
	
		
			

				𝑘
			

			

				1
			

			

				𝑘
			

			

				1
			

		
	
	271390	271212	−0.07	270655	−0.27	267110	−1.58	251259	−7.42
	
	
		
			

				𝑘
			

			

				2
			

		
	
	290360	290206	−0.05	288793	−0.54	288103	−0.78	273108	−5.94
	
	
		
			

				𝑘
			

			

				3
			

		
	
	282690	282877	0.07	281526	−0.41	278466	−1.49	276999	−2.01
	
	
		
			

				𝑘
			

			

				4
			

		
	
	252480	252271	−0.08	252238	−0.10	249497	−1.18	246445	−2.39
	
	
		
			

				𝑘
			

			

				5
			

		
	
	233540	233605	0.03	232816	−0.31	230917	−1.12	229261	−1.83
	
	
		
			

				𝑘
			

			

				6
			

		
	
	229940	229767	−0.08	229776	−0.07	230418	0.21	222248	−3.35
	
	
		
			

				𝑐
			

			

				1
			

		
	
	2469.65	2451.16	−0.75	2484.77	0.61	2061.82	−16.51	1591.87	−35.54
	
	
		
			

				𝑐
			

			

				2
			

		
	
	2874.56	2878.74	0.15	2865.31	−0.32	3047.32	6.01	3293.65	14.58
	
	
		
			

				𝑐
			

			

				3
			

		
	
	2572.48	2564.28	−0.32	2601.61	1.13	2124.07	−17.43	2192.95	−14.75
	
	
		
			

				𝑐
			

			

				4
			

		
	
	2297.57	2297.05	−0.02	2273.31	−1.06	2468.87	7.46	2490.99	8.42
	
	
		
			

				𝑐
			

			

				5
			

		
	
	2265.33	2266.12	0.03	2246.78	−0.82	2231.8	−1.48	2191.78	−3.25
	
	
		
			

				𝑐
			

			

				6
			

		
	
	2092.45	2095.25	0.13	2107.04	0.70	2134.34	2.00	2038.22	−2.59
	
	
		
			

				𝐿
			

		
	
	200	300	200	300
	


For all cases, identical initial values range [1, 
	
		
			
				1
				𝐸
				7
			

		
	
] is used for all stiffness and damping parameters; 
	
		
			

				𝜽
			

			

				⋄
			

		
	
: identified parameter vector; Error: relative error, 
	
		
			

				𝐿
			

		
	
: number of sampling points used.


It is interesting to compare the inverse input time history of the top floor with that of the second floor where no external force was applied. The identified input forces of the two floors for different noise levels are shown in Figure 1, where the solid blue is the actual force curve and the dotted black line is the identified time history