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As one of the most promising research directions, cooperative location with high precision and low-cost IMU is becoming an
emerging research topic in many positioning fields. Low-cost MEMS/DVL is a preferred solution for dead-reckoning in multi-
USV cooperative network. However, largemisalignment angles and large gyro drift coexist in low-costMEMS that leads to the poor
observability. Based on cubature Kalman filter (CKF) algorithm that has access to high accuracy and relative small computation,
dual-model filtering scheme is proposed. It divides the whole process into two subsections that cut off the coupling relations
and improve the observability of MEMS errors: it first estimates large misalignment angle and then estimates the gyro drift.
Furthermore, to improve the convergence speed of large misalignment angle estimated in the first subsection, “time reversion”
concept is introduced. It uses a short period time to forward and backward several times to improve convergence speed effectively.
Finally, simulation analysis and experimental verification is conducted. Simulation and experimental results show that the algorithm
can effectively improve the cooperative navigation performance.

1. Introduction

In recent years, cooperative navigation technology has been
gradually expanded in satellite [1], multirobot [2–4], intelli-
gent underwater vehicles [5], andmany other fields. Research
team named Stergios I. Roumeliotis from America has con-
ducted a series of theoretical studies for colocation of robots,
including observability analysis, estimation error analysis,
consistency analysis, and formation optimization [6]. As one
of the most promising research directions in navigation and
positioning, cooperative navigation is attracting more and
more attention in colocation industry and academia.

Unmanned surface vehicle (USV) refers to running crafts
on surface of water that can be remotely operated by a person
or operate independently. It has characteristic of small size,
high mobility, and low-cost. Multi-USV formation can take
advantage of network using coordination and communica-
tion technology. The US Navy issued “the navy unmanned
surface craft master plan” [7] that shows the significance of
cooperative combat techniques of multiple USV applied in
the military. Cooperative navigation of multi-USV can be

commonly divided into two types according to configuration:
one is master-slave (leader-follower) structure (some with
high-precision and others with low precision); the other is
parallel structure (navigation accuracy of each USV is equiv-
alent). Compared to master-slave structure, parallel cooper-
ative navigation cannot reconcile the contradiction between
high-precision and low-cost fundamentally, so master-slave
USV cooperative navigation is the mainstream currently.

With the rapid development of computer and driven
by demand of high-performance filtering in engineering,
nonlinear filtering theory has been greatly developed [8–
14]. EKF, UKF, and PF are three commonly used nonlinear
filtering methods in practical applications. EKF has high
calculating efficiency, but the precision of EKF is limited
because of the Taylor expansion that neglects high-order
terms. UKF and PF have good performance in some appli-
cations; however, covariance calculated in the UKF filtering
process might be nonpositive definite that leads to numerical
instability and filtering divergence, while PF is easy to fall into
the particles degradation problem and heavy computational
complexity for high-dimensional applications [12]. CKF can
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avoid linearization of the nonlinear system by using cubature
point sets to approximate the mean and variance. Because
of its high accuracy and low calculation load, CKF [14]
has become a hotspot in research. In this paper, CKF is
introduced in the cooperative navigation with nonlinear
model.

As a branch of inertial field, inertial systems based on
microelectromechanical system (MEMS) gained rapid devel-
opment in recent years. Because of its low-cost, small size,
light weight, and high reliability, there have been more and
more applications in low-cost inertial systems. It has become
a preferred solution for the inertial navigation device on
follower boats in multi-USV cooperative network. However,
due to the limitations of accuracy, it is necessary to construct
reasonable error model of MEMS based on which estimation
and compensation can be preferred [15]. Commonly used
error compensation methods include RBF neural network
analysis, ARMA model used in the timing model of gyro
random error, and piecewise interpolation compensation of
scale factor [16]. However, coexistence of larger initial mis-
alignment and larger gyro drift is still unavoidable in practical
use that leads to poor observability in cooperative navigation.
Based on different character of initial misalignment and gyro
drift, estimation with subsection idea is proposed to cut off
the coupling relations.

In addition, how to obtain accurate estimation perfor-
mance in short time is also a key technique. Li et al. proposed
a new alignment method for AUV with backtracking frame-
work. The fine alignment runs with the recorded data during
the process of coarse alignment which effectively improves
the convergence speed and improve navigation accuracy
[17, 18]. Xixiang Liu also proposed gyrocompass alignment
method based on reverse loop to solve compass alignment
for SINS onmoving base and it greatly reduces the alignment
time. To improve the convergence speed of large initial
misalignment, “time reversion” concept is introduced in this
paper. As will be confirmed by simulation and experimental
results, the convergence speed and estimation accuracy are
improved greatly.

The rest of this paper is organized as follows. Section 2
presents cooperative navigation model of single master USV
and the process of CKF. In Section 3, based on observability
analysis of cooperative navigation, dual-model method and
reverse filtering are proposed that improve the convergence
speed and improve the accuracy of cooperative location. Sim-
ulation of the proposed algorithm is provided in Section 4.
Aiming at validating the proposed algorithm further, the
process and the results of experiment in Tai Lake are given
in Section 5; Section 6 gives data analysis and discussions.
In Section 7, a summary is provided, and future research
directions are discussed.

2. Cooperative Navigation Modeling and
Problem Statement

2.1. Fundamental Theory of Cooperative Navigation Modeling.
Master USV and slave USV are equipped with hydroacoustic
communication modem, respectively, at their bottoms to

achieve information dissemination and distance measure-
ments between USVs. The masters accomplish navigation
using their high-precision device (usually strap-down inertial
navigation system combined with GPS) while the slaves use
their own equipped Doppler velocity log (DVL) and attitude
and heading reference system (AHRS) based on MEMS to
proceed dead-reckoning.

The principle of multi-USV cooperative navigation sys-
tem is as follows. Firstly master USV sends out fixed fre-
quency acoustic pulse signal according to preset time interval.
With this signal, slave USV can calculate the relative distance
according to underwater acoustic propagation delay. Then
master USV sends out its position information by hydroa-
coustic modem in the form of broadcasting. After receiving
this information, slave USV can conduct information fusion
with dead-reckoning, position ofmasterUSV, and the relative
distance and then correct its navigation result using filtering
algorithms. Moreover, route planning of USV can be carried
out to improve the observability and further improve the
accuracy of the cooperative navigation system.

Positioning errors will accumulate over time (as shown
by the purple dotted ellipse shown in Figure 1). Therefore, it
cannot provide accurate positioning information for a long
time. When the information sent by master USV is received,
the slave USV can use cooperative navigation algorithm to
correct the result of dead-reckoning and effectively reduce the
positioning error (as shown by the green dotted ellipse shown
in Figure 1). Through this cyclical filtering and correction,
slave USV with low-precision navigation device can realize
precise location for a long time [19, 20].

2.2. System Model of Single Master USV. When the follower
does not receive the information sent by leaders, it can only
use its own DVL and low accuracy MEMS to conduct dead-
reckoning, and themotionmodel can be expressed as follows:

𝑥
𝑆

𝑘+1
= 𝑥
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𝑘
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where 𝑥𝑆
𝑘
, 𝑦𝑆
𝑘
represent the position of follower USV at time

𝑘, V
𝑘
represents the speed, Δ𝑡means the time interval, and 𝛼

𝑘

means the heading angle at time 𝑘. However, the input model
of system in practice is as follows:
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wherein V̂
𝑘
is the velocity measurements and 𝛿C

𝑘
means the

scale factor error. 𝛼̂𝑘 is the heading anglemeasured byMEMS,
𝛿𝛼
𝑘
= Δ𝛼
𝑘
+𝑘𝜀Δ𝑡 is error of 𝛼̂

𝑘
,Δ𝛼
𝑘
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Figure 1: Principle of cooperative navigation system.

angle, and 𝜀 is gyro drift. Putting (2) into (1), the actual
equation of states is as follows:

𝑥
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(3)

Motion model can be simplified as
X
𝑘+1
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𝑘
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nonlinear terms, the process noise isw
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2
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Systematic observation equation can be expressed as:

𝑌
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2
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, (6)

wherein 𝑌
𝑘
stands for the measurement of distance 𝑅

𝑘

between follower and leader, (𝑥𝑀
𝑘
, 𝑦
𝑀

𝑘
) represents the posi-

tion of leaderUSVat time 𝑘while (𝑥𝑆
𝑘
, 𝑦
𝑆

𝑘
) represents the posi-

tion of follower, and𝑉𝑘 ∼ 𝑁(0, 𝜎
2

𝑟
) is the measurement noise.

2.3. Cubature Kalman Filter (CKF). Cubature Kalman filter
(CKF) is proposed based on the spherical-radial cubature cri-
terion [14]. The core of the method is that the mean and
variance of probability distribution can be approximated by
cubature points. CKF first approximates the mean and var-
iance of probability distribution through a set of 2𝑁 (𝑁
is the dimension of the input random vector) cubature

points with the same weight, propagates the above cubature
points through nonlinear functions, and then calculates the
mean and variance of the current approximate Gaussian dis-
tribution by the propagated cubature points.

A set of cubature points are given by [𝜉
𝑖
𝑊
𝑖
] [14], where

𝜉
𝑖
is the 𝑖th cubature point and𝑊

𝑖
is the correspondingweight

𝜉
𝑖
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𝑚

2
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𝑊𝑖 =

1

𝑚

,

(7)

wherein 𝑖 = 1, 2, . . . , 𝑚, 𝑚 = 2𝑁.
Systematic state equation and observation equation are

expressed in (4) and (6). Assuming the posterior density at
time 𝑘 − 1 is known, the steps of CKF are shown as follows
[14].

Time update is as follows:
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Measurement update is as follows:
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With the new measurement vector 𝑌
𝑘
, the estimation of

the state vector 𝑋
𝑘|𝑘

and its covariance matrix 𝑃
𝑘|𝑘

at time 𝑘
can be achieved by the following equations:
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CKF uses cubature rule and 2𝑁 cubature point sets
[𝜉
𝑖
𝑊
𝑖
] to compute the mean and variance of probability

distribution without any linearization of a nonlinear model.
Thus, the model can reach the third-order or higher.

2.4. Problem Statement-Poor Observability of Error in MEMS.
A global observability analysis method proposed in [20]
indicates that whether a state can be observed or not means
if there exists unique solution of the equation. The problem
that whether the initial misalignment error and MEMS gyro
drift has unique solution will be preliminarily discussed in
this section.Here in order to facilitate analysis, only the initial
misalignment and gyro drift in MEMS are considered in the
system temporarily. Equation (2) can be expressed as follows:

𝑅𝑘+1 = ((𝑥
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from which we can obtain the expression of 𝛿𝛼
𝑘
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where 𝛽 = arctan((𝑦𝑆
𝑘
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)/(𝑥
𝑆
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𝑘
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be calculated that means it is observable. However, the
proportion of initial misalignment and MEMS gyro drift
cannot be accurately known. Therefore, the observability is
poor.

As mentioned above, poor observability of MEMS is
the main issue in cooperative navigation. The elaborate
observability analysis and corresponding solutions will be
provided in Section 3 below.

3. Cooperative Navigation Modeling and
Observability Analysis

3.1. Observability Analysis. Observability directly determines
the colocation accuracy of cooperative navigation system
[20]; the observability theory of linear systems will be
no longer suitable to multi-AUV cooperative navigation
with nonlinear system. The idea here is to linearize the
nonlinear model firstly and then to use observability the-
ory of linearized systems for observability analysis. The
system in this paper is stochastic system. However, the
observability analysis method of stochastic system can be
equivalent to the corresponding deterministic system when
𝑄 > 0 and 𝑅 > 0 [21, 22], which is satisfied in our
paper.

Equation (1) can be abbreviated as X𝑘+1 = 𝑓(X𝑘, u𝑘) =
X𝑘 + 𝑇(u𝑘,w𝑘), Y𝑘 = ℎ[⋅], wherein X𝑘 means the state of
USV at time 𝑘 and 𝑇(u𝑘,w𝑘) stands for the nonlinear terms.
Assume X
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0 0 0] = [sin 𝛼̂𝑘 cos 𝛼̂
𝑘
0 0 0] ,

(14)

where Δ𝑥
𝑘
= 𝑥
𝑆

𝑘
− 𝑥
𝑀

𝑘
, Δ𝑦
𝑘
= 𝑦
𝑆

𝑘
− 𝑦
𝑀

𝑘
.
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According to rank criterion, observability matrix is

Γ =

[

[

[

[

[

[

H
𝑘

H𝑘−1F𝑘−1
H𝑘−2F𝑘−2
H𝑘−3F𝑘−3
H
𝑘−4

F
𝑘−4

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

sin 𝛼̂
𝑘

cos 𝛼̂
𝑘

0 0 0

sin 𝛼̂
𝑘−1 cos 𝛼̂𝑘−1 −V𝑘−1Δ𝑡 sin𝛼

󸀠

𝑘−1
−V𝑘−1 (𝑘 − 1) Δ𝑡

2 sin𝛼󸀠
𝑘−1

(V̂𝑘−1 + 𝑤V𝑘−1) Δ𝑡 cos𝛼
󸀠

𝑘−1

sin 𝛼̂𝑘−2 cos 𝛼̂𝑘−2 −V𝑘−2Δ𝑡 sin𝛼
󸀠

𝑘−2
−V𝑘−2 (𝑘 − 2) Δ𝑡

2 sin𝛼󸀠
𝑘−2

(V̂𝑘−2 + 𝑤V𝑘−2) Δ𝑡 cos𝛼
󸀠

𝑘−2

sin 𝛼̂𝑘−3 cos 𝛼̂𝑘−3 −V𝑘−3Δ𝑡 sin𝛼
󸀠

𝑘−3
−V𝑘−3 (𝑘 − 3) Δ𝑡

2 sin𝛼󸀠
𝑘−3

(V̂𝑘−3 + 𝑤V𝑘−3) Δ𝑡 cos𝛼
󸀠

𝑘−3

sin 𝛼̂𝑘−4 cos 𝛼̂𝑘−4 −V𝑘−4Δ𝑡 sin𝛼
󸀠

𝑘−4
−V𝑘−4 (𝑘 − 4) Δ𝑡

2 sin𝛼󸀠
𝑘−4

(V̂𝑘−4 + 𝑤V𝑘−4) Δ𝑡 cos𝛼
󸀠

𝑘−4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (15)
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Figure 2: Relative analysis of the column in observability matrix.

where 𝛼󸀠
𝑗
= (𝛿𝛼𝑗 − 𝜔𝛼𝑗

) (𝑗 = 𝑘 − 1, 𝑘 − 2, 𝑘 − 3 ⋅ ⋅ ⋅ ). The
linear relativity of 3rd column and 4th column in Γ would be
discussed here. It can be seen that (Γ(2,3) ⋅Δ𝑡)/Γ(2,4) = 1/(𝑘−1),
(Γ(3,3) ⋅ Δ𝑡)/Γ(3,4) = (1/(𝑘−2)) ((Γ(4,3) ⋅ Δ𝑡)/Γ(4,4)) = 1/(𝑘−3),
(Γ(5,3) ⋅ Δ𝑡)/Γ(5,4) = 1/(𝑘 − 4), and Γ(𝑖,𝑗) stands for the element
in row 𝑖, column 𝑗 of the system observation matrix. Figure 2
shows the variation of corresponding value over time.

As can be seen from Figure 2, when time 𝑘 > 100,
1/(𝑘−1), 1/(𝑘−2), 1/(𝑘−3), 1/(𝑘−4) is approximately equal.
That means the third and fourth columns of the observation
matrix Γ become linear-relative and the linear correlation

becomes stronger over time. It can be concluded that the
observability is poor and it gets worse as time flies.

3.2. Resolve Route 1: Dual-Model Filtering Algorithm. Both of
initial misalignment and gyro drift can cause the increase
of error angle. The error coupled together results in poor
observability. Error caused by the initial misalignment angle
is a constant value while the error caused by gyro drift
gradually increases over time. Their properties are shown in
Figure 3.

The proportion of initial misalignment angle and gyro
drift in total error angle over time are shown in Table 1 and
Figure 4 (assuming initial misalignment is 90∘ and gyro drift
is 10∘/h).

From the above analysis, it can be seen that with the pass-
ing of time, gyro drift will take increasingly large proportion
while the initial misalignment of MEMS occupies absolutely
large part of total deviation angle in the beginning.Therefore,
we can cut off the entire time into two phases. In the first
phase initial misalignment angle is estimated and modified
alone while the gyro drift is estimated in the second stage. As
long as length of the first phase is short enough, it will not
affect the estimation accuracy; that is,

Subsection 1: X
𝑘1
= [𝑥
𝑆

𝑘
𝑦
𝑆

𝑘
Δ𝛼
𝑘
𝛿𝐶
𝑘
]

𝑇

Subsection 2: X
𝑘2
= [𝑥
𝑆

𝑘
𝑦
𝑆

𝑘
𝜀
𝑘
𝛿𝐶
𝑘
]

𝑇

.

(16)

Herewewill take a look at observability of the system after
subsection. When the system state vector is selected as X

𝑘1
=

[𝑥
𝑆

𝑘
𝑦
𝑆

𝑘
Δ𝛼𝑘 𝛿𝐶𝑘

]

𝑇

, the Jacobi matrix is

F
𝑘
=

𝜕𝑓

𝜕𝑋𝑘1

=

[

[

[

[

[

[

[

1 0 −V𝑘Δ𝑡 cos (𝛼̂𝑘 − 𝛿𝛼𝑘 + 𝑤𝛼𝑘) (V̂𝑘 + 𝑤V𝑘) Δ𝑡 sin (𝛼̂𝑘 − 𝛿𝛼𝑘 + 𝑤𝛼𝑘)

0 1 V𝑘Δ𝑡 sin (𝛼̂𝑘 − 𝛿𝛼𝑘 + 𝑤𝛼𝑘) (V̂𝑘 + 𝑤V𝑘) Δ𝑡 cos (𝛼̂𝑘 − 𝛿𝛼𝑘 + 𝑤𝛼𝑘)

0 0 1 0

0 0 0 1

]

]

]

]

]

]

]

,

H
𝑘
=

𝜕ℎ [⋅]

𝜕X
𝑘1

= [

𝑥
𝑆

𝑘
− 𝑥
𝑀

𝑘

𝑅
𝑘

𝑦
𝑆

𝑘
− 𝑦
𝑀

𝑘

𝑅
𝑘

0 0] = [sin 𝛼̂𝑘 cos 𝛼̂
𝑘
0 0] .

(17)
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According to the rank criterion, observability matrix can
be written as follows:

Γ =

[

[

[

[

H
𝑘

H
𝑘−1

F
𝑘−1

H
𝑘−2

F
𝑘−2

H
𝑘−3

F
𝑘−3

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

sin 𝛼̂
𝑘

cos 𝛼̂
𝑘

0 0

sin 𝛼̂
𝑘−1

cos 𝛼̂
𝑘−1

−V
𝑘−1
Δ𝑡 sin (𝛿𝛼

𝑘−1
− 𝑤
𝛼𝑘−1
) (V̂
𝑘−1
+ 𝑤V𝑘−1) Δ𝑡 cos (𝛿𝛼𝑘−1 − 𝑤𝛼𝑘−1)

sin 𝛼̂
𝑘−2

cos 𝛼̂
𝑘−2

−V
𝑘−2
Δ𝑡 sin (𝛿𝛼

𝑘−2
− 𝑤
𝛼𝑘−2
) (V̂
𝑘−2
+ 𝑤V𝑘−2) Δ𝑡 cos (𝛿𝛼𝑘−2 − 𝑤𝛼𝑘−2)

sin 𝛼̂
𝑘−3

cos 𝛼̂
𝑘−3

−V
𝑘−3
Δ𝑡 sin (𝛿𝛼

𝑘−3
− 𝑤
𝛼𝑘−3
) (V̂
𝑘−3
+ 𝑤V𝑘−3) Δ𝑡 cos (𝛿𝛼𝑘−3 − 𝑤𝛼𝑘−3)

]

]

]

]

]

]

]

]

]

]

, (18)

Table 1: The proportion varies in the first 500 s.

Time (s) Proportion of initial
misalignment

Proportion of
gyro drift

100 0.9970 0.0030
200 0.9939 0.0061
300 0.9909 0.0091
400 0.9878 0.0122
500 0.9848 0.0152

where rank Γ = 4; that is to say, the matrix Γ is full
rank, so the system is observable. For the second phase
of cooperative navigation system, we can get the same
conclusion. Therefore, it can be concluded that the system
becomes observable whenever in the first phase or the second
phase after subsection.

3.3. Resolve Route 2: Reverse Algorithm. In Section 3.2, it
shows that after using the segmented dual-model filtering,
state observability can be significantly improved. However,
the proportion of gyro drift in total deviation angle gradually
increases as time flies. If the time of first stage is too long,
the gyro drift will seriously affect the accuracy of model and
the precision of initial misalignment estimation. Currently
MEMS devices are with low precision that large initial
misalignment and large gyro drift coexist. Therefore, how to
estimate the large initial misalignment angle in short time is
another problem we have to face.

Sampling data in the cooperative navigation system is
typically a time sequence.The filter works with chronological
sequence of real-time processing. The real-time results can
be obtained without data storage. However, similar to strap-
down inertial navigation system [18, 23, 24], one significant
feature of cooperative navigation system is that all the infor-
mation used in filtering process can be completely stored.
Thatmeans the data can be copied intomany identical copies,
and each copy can be processed by different methods without
interference between them. This feature is also called “the
diverse existence of mathematical platform.”

It is easily conceivable that if storage capacity of the
navigation computer is large enough and computing power
is strong enough, the data can be stored and analyzed many
times in very short time. By repeating the analysis in forward

and backward, it is possible to improve the precision or
shorten the time cost.

Based on this idea, we can take a short period of time as
the first stage and carry forward filtering at the first timewhile
the data is saved. Then through repeated use of the data for
backward and forwardfiltering, the large initialmisalignment
angle can be accurately estimated in short time.The dream of
improving accuracy of the initial misalignment angle in short
time can be achieved. The process is shown in Figure 5.

The corresponding forward and reverse state equations of
the algorithm are as follows. In order to distinguish between
them, we use “→ ” and “←” to present forward and reverse,
respectively.

(1) Forward filtering is as follows:

𝑥⃗
𝑆

𝑘+1
=𝑥⃗
𝑆

𝑘
+ (1 + 𝛿C

𝑘
) (
⃗V̂
𝑘
+ 𝑤V𝑘) ⋅ Δ𝑡 ⋅ sin (𝛼̂𝑘 − Δ𝛼𝑘 + 𝑤𝛼𝑘) ,

⃗𝑦
𝑆

𝑘+1
= ⃗𝑦
𝑆

𝑘
+ (1 + 𝛿C

𝑘
) (
⃗V̂
𝑘
+ 𝑤V𝑘) ⋅ Δ𝑡 ⋅ cos (𝛼̂𝑘 − Δ𝛼𝑘 + 𝑤𝛼𝑘) ,

𝛿C
𝑘+1
= 𝛿C
𝑘
,

Δ𝛼𝑘+1 = Δ𝛼𝑘.

(19)

(2) Backward filtering is as follows:

𝑥⃖
𝑆

𝑘+1
=𝑥⃖
𝑆

𝑘
+ (1 + 𝛿C

𝑘
) (
⃖V̂
𝑘
+ 𝑤V𝑘) ⋅ Δ𝑡 ⋅ sin (𝛼̂𝑘 − Δ𝛼𝑘 + 𝑤𝛼𝑘) ,

⃖𝑦
𝑆

𝑘+1
= ⃖𝑦
𝑆

𝑘
+ (1 + 𝛿C

𝑘
) (
⃖V̂
𝑘
+ 𝑤V𝑘) ⋅ Δ𝑡 ⋅ cos (𝛼̂𝑘 − Δ𝛼𝑘 + 𝑤𝛼𝑘) ,

𝛿C
𝑘+1
= 𝛿C
𝑘
,

Δ𝛼
𝑘+1
= Δ𝛼
𝑘
.

(20)

The whole “subsection + reverse” filtering process is
summarized as follows (as shown in Figure 6): (1) first,
initialize the filter parameters; (2) in the first subsection
(a short period of time), conduct the initial misalignment
estimation ignoring effects of gyro drift and store the data at
the same time; (3) use the stored data to estimate the initial
misalignment reversely; (4) return to steps (2) and (3) and
repeat two or three times until the covariance of the state
decreases in demand range (the selection of repeated time
is discussed in Section 6); (5) after compensation of initial
misalignment using estimation result in the first subsection,
estimate the gyro drift and conduct cooperative navigation
filtering in the second subsection.
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Figure 3: Characteristics of initial misalignment angle and gyro drift.
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Figure 5: Schematic diagram of reverse algorithm.

4. Simulation Analysis

To verify effectiveness of the proposed algorithms and valid-
ity of observability analysis above, simulation is conducted in
this section. Simulation environment settings are as follows.

(1) A and C are leaders and B is follower. Three USVs
are all equipped with underwater acoustic equipment
for communication and ranging. A and C send their
position alternately; time interval 𝑇 is set to 5 s.

(2) The initial positions of A, B, and C are (0,200),
(0,0), and (200,0). A and C are equipped with GPS
receiver that can accomplish self-positioning, and the
positioning error does not accumulate. The mean of
positioning error is 0 and variance is set to 2m.

(3) USV B can only conduct dead-reckoning navigation
when the information of A or C is not received.
The speed and heading angle are given by DVL and
MEMS, respectively; the initial misalignment is set to
90∘; gyro drift is 10∘/h.

(4) 𝛿C
𝑘
of speedmeasured byDVL inUSVB is 0.005, and

the noise is set to zero mean and variance is 0.5m/s.
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Initialize ObservationObservation
𝛼̂m = 𝛼̂m − Δ𝛼

and reinitialize

Subsection 1 Subsection 2

Forwards:

→
x
S

k+1 =
→
x
S

k + (1 + 𝛿Ck)(
→
�̂ k + w�𝑘

) · Δt · sin(𝛼̂k − Δ𝛼k + w𝛼𝑘
)

→
y
S

k+1 =
→
y
S 

k + (1 + 𝛿Ck)(
→
�̂ k + w�𝑘

) · Δt · cos(𝛼̂k − Δ𝛼k + w𝛼𝑘
)

𝛿Ck+1 = 𝛿Ck

Δ𝛼k+1 = Δ𝛼k
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← ←

←

x
S
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Figure 6: “Subsection + reverse” filtering timing diagram.
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(5) Noise of ranging measurement is set with zero mean
and variance is set to 2m.

(6) A, B, and C are in linear motion with speedup
and speed-down. The speed changes between 8m/s
and 15m/s by ±0.05m/s2 without considering the
dynamics and current disturbance.
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Figure 8: Estimation comparison with and without subsection.

The filter is initialized as follows: 𝑃
0

=

diag{ (10m)2 (10m)2 (0.01)2 (80∘)2 (20∘/h)2 }. The tra-
jecto ries of three USVs are shown in Figure 7.

Results comparison of corresponding methods is given
in Section 4.1. It includes comparison between methods with
segmentation and without segmentation and also compar-
ison of method without reverse filtering and with reverse
filtering (reverse once and reverse twice).
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Figure 9: Comparison of filtering performance with and without subsection.

4.1. Comparison of Filtering Performance with and without
Subsection. Thewhole simulation time is set as 6000 seconds
and we take 1500 seconds for the first stage. According
to “dual-model algorithm with subsection” proposed in
Section 4, the curves of estimation are shown in Figures 8 and
9.

From the comparison in Figures 8 and 9, the following
conclusions can be drawn.

(1) As can be seen from Figure 8, the initial misalign-
ment angle without segmentation begins to converge
within a certain range but diverges later (as previously
analyzed, observability grows gradually worse over
time). The error estimation accuracy is better than

that without segment, and themodification at the end
of first stage effectively suppresses initial misalign-
ment angle divergence.

(2) It can be seen in Figures 8 and 9(b) that the estimation
performance of gyro drift without segmentation is
poor. It gradually converges in a very long time while
it converges quickly after subsection.

(3) As can be seen in Figure 9(a), the estimation of the
initial misalignment angle in subsection 1 is better
than that without subsection, but there is still a
tendency of divergence.

(4) Figure 9(c) tells us that due to better estimation of
the initial misalignment angle and gyro drift after



10 Mathematical Problems in Engineering
Ve

lo
ci

ty
 (m

/s
)

Time (s)

0

1000

2000 3000 4000 5000 6000

0

5

10

15

20

0 5000400030002000500 0 500

1000
−20

−15

−10

−5

(a) Velocity with reverse once

Ve
lo

ci
ty

 (m
/s

)

Time (s)

0 1000 2000 3000 4000 5000 6000
0 480038002800300 0 3000 300 800 1800

0

5

10

15

20

−20

−15

−10

−5

(b) Velocity with reverse twice

Figure 10: Velocity of follower USV.

segmented, the performance of colocation is better
than nonsegments. However, such divergent trend
still exists in colocation estimation error due to
certain bias of initial heading angle estimation.

In summary, the performance with segment is better
than that without segmentation. But there is still space for
further improvement especially in how to improve estimation
accuracy of the initial misalignment angle of the first phase.

4.2. “Subsection + Reverse” Algorithm. The reverse filtering
is introduced on the base of subsection in this section. It
gives comparison of methods without reverse, reverse once,
and reverse twice. The velocity curve of USV varies between
8m/s and 15m/s without reverse. It moves in a straight line
with acceleration and deceleration. Figure 10 shows velocity
with reverse once and with reverse twice. The corresponding
performance comparison is shown in Figure 11.

To make the description more clearly, several axes with
different colors are used in the following figures. In Figures
10, 15, and 16, the blue time-axis stands for the algorithmwith
reverse once andwith reverse twice. And in Figures 11, 17, and
18, the time-axes with blue color, green color, and red color
represent the time axis of the algorithm without reverse, with
reverse once, and with reverse twice, respectively.

4.3. Analysis of Simulation Results. From Figure 11, it can
be seen that performance of “subsection + reverse” filtering
algorithm is significantly better than that without reverse.
Specific analyses are as follows.

(1) From Figures 11(a) and 11(b), it can be seen that when
reverse filtering is not used, the initial error converges
to a certain angle and diverges later with time. At the
end of the first subsection (1500 seconds), estimation
reaches 92∘. When using reverse filtering once, the

length of sampling data segment is shortened to
500 seconds that reduces the impact of gyro drift.
The precision of initial misalignment angle achieves
significant improvement. It reaches 90.5∘ at the end
of the first phase.When reverse filtering is used twice,
length of sample data is shortened to 300 seconds that
reduce the impact of gyro drift further. Estimation
reaches 90.05∘ in 300 seconds (which is the end
of the first stage). Therefore, estimation accuracy is
significantly improved; it effectively suppresses the
divergence of initial misalignment angle.

(2) As is shown in Figure 11(c), without the introduction
of reverse filtering, the estimated effect of the gyro
drift is poor. It costs about 6000 seconds to converge.
With introduction of reverse filtering once, gyro drift
estimation converges in 3500 seconds while the error
estimation of gyro drift converges in 1500 seconds
after using reverse algorithm twice. The convergence
speed becomes significantly faster.

(3) It can be seen from Figure 11(c) that, at the end of
the first stage, the initial misalignment is corrected.
Because of the introduction of reverse filtering, the
model becomes more accurate and the estimation
accuracy becomes much higher. Therefore, the preci-
sion of cooperative navigation is always within 20m
as shown in Figure 11(d).

5. Water Test Verification

To verify the feasibility of proposed cooperative navigation
algorithms further, water experiment is conducted at Tai Lake
in Wuxi city of Jiangsu Province. For ease of operation, one
self-made USV is used for followers and two patrol crafts are
chosen to play the role of leader USVs instead.
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Figure 11: Comparison with no reverse, reverse once, and reverse twice.

5.1. Overview of the Test. The equipment installation is as fol-
low. As shown in Figure 12, each leader USV is equipped with
GPS, acoustic communication devices, and data collection
system. GPS is used for providing accurate positioning
information, and acoustic communications equipment (Tele-
dyne Benthos’s ATM-885 sonar is selected that can achieve
360∘ sonar signal transmission and reception) is used to

complete information transmission and measurement of
distance between the USVs. Follower USV is equipped with
PHINS, GPS, DVL,MEMS, and also ATM-885 sonar. PHINS
works in combination mode with GPS. It is benchmark that
provides high-accurate heading, attitude, and position and
speed information. Dead-reckoning is conducted by speed
(provided by DVL) and heading (provided by MEMS).
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Figure 12: Unmanned craft as follower (a) and two patrol crafts as leaders (b).
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Figure 13: The equipment installation in follower (USV C).

The performance of each equipment is as shown in
Table 2.

Equipment installation and signal flow are as shown in
Figure 13.

The test procedure is as follows: (1) two water patrol
boats are selected as pilot USV (labeled as A and B) and
a USV as follower (labeled as C); the computer clock is
synchronized precisely. (2) Dead-reckoning is conducted
using speed provided by DVL and heading angle provided
by MEMS to obtain the real-time location. (3) The two
leaders send their location information to C alternately using
acoustic device; the interval is selected as 10 s. (4) After
receiving aided information and distance, information fusion

is made by using the dead-reckoning information, location
information from leaders, and the distance measurement.

In the experiment, complete test data are stored to make
offline analysis and comparison of different filteringmethods.
The position information provided by GPS installed on USV
C is used as benchmark to make comparison of different
methods. Similarly, PHINS on C is used as the benchmark
for heading. Shot by Google earth map photo, three USVs
trajectories are shown in Figure 14 (about 20 kilometers of the
whole voyage).

5.2. Data Processing. We take 1250 seconds for the first stage
in which initial misalignment is estimated, and gyro drift
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Table 2: The performance of equipment.

MEMS

Gyroscope bias stability <30∘/h
Gyroscope scale factor error 0.1%
Gyroscope measuring range ±300∘/s
Accelerometers bias stability 0.2mg
Accelerometers threshold ±5 × 10

−4 g
Accelerometers measuring range ±10 g

PHINS
Position accuracy (CEP50%) 0.5–3m
Heading accuracy (1𝜎 value) 0.01∘ secant latitude
Attitude accuracy (1𝜎 value) Less than 0.01∘

GPS
Time accuracy 1 us
Velocity accuracy 0.1m/s
Position accuracy <2.5m

DVL Working range −150m/s–200m/s
Measurement accuracy 0.1%

Acoustic device Working range Up to 8000m
Error rate (with correction algorithm) Less than 10−7

La
tit

ud
e (

∘ )

Longitude (∘)

Follower
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31.36

31.34
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31.26
120.1 120.15 120.2 120.25 120.3 120.35

Leader 1
Leader 2

Figure 14: Trajectory of three vehicles.

estimation is conducted 1250 seconds later. Correspond-
ing curves of three methods (including algorithm without
reverse, reverse once, and reverse twice) are given in Figures
15 to 18.

5.3. Analysis. From the simulation results in Figures 17 and
18, discussion is made as follows.

(1) Figure 17(a) shows that when backward filtering is
not used, the initial misalignment converges to cer-
tain angle but becomes divergence later. Estimation
reaches 95∘ at the 1250th second (which is the end of
the first phase). When reverse filtering is used once,
sampling data length is shortened to 417 seconds and
the impact of gyro drift is suppressed sharply. Accu-
racy of initial misalignment estimation is improved
(that is 92∘ at 417th second). To reduce the impact of
gyro drift further, reverse filtering is used twice. Sam-
pling data length is shortened to 250 seconds while

estimation becomes 89.9∘ in 250 seconds. Accuracy of
estimation is significantly improved, and the error is
corrected in the end of the first subsection.

(2) From Figure 17(b), it can be seen that estimation
performance of gyro drift is poor without the intro-
duction of reverse filtering. It gradually converges in
3500 seconds. By using the reverse filtering once, the
convergence of gyro drift costs about 1500 seconds
while it converges in 500 seconds by using the reverse
filtering twice. The convergence speed become much
faster.

(3) Figure 18(b) shows the divergent trend of cooperative
navigation error in 6000 seconds without inverse
algorithm and the maximum error is larger than 500
meters. After the introduction of reverse filtering,
cooperative navigation and positioning accuracy is
significantly improved as initial misalignment angle
error and gyro drift are estimated more accurately.
The maximum positioning error is less than 400
meters with reverse once while it is within 300 meters
with reverse twice.

6. Discussion

Through the above analysis and comparison of experimental
data, it can be concluded as follows.

(1) Because dead-reckoning cannot provide precise posi-
tioning information in long period, the cooperative
navigation algorithm with CKF is introduced and
“subsection + reverse” solution is also proposed
to improve accuracy effectively while time cost is
reduced.

(2) There are still some problems to be solved in practi-
cal applications. For example, ranging accuracy and
the communication quality greatly affect the perfor-
mance of colocation. In speedup, a lot of bubbles
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Figure 16: The trajectory and speed of follower (reverse two time).

appear around underwater acoustic equipment and
information cannot be successfully transferred. More
stable prediction algorithm or effective compensation
is required and the data packet is lost. In addition,
there are still some other problems such as uncertain
noise and the influence of unknown current.

(3) Two new questions appear in front of us. The first
one is whether the continuously shortened sampling
data could result in continuously better performance.
The second is whether length of the first stage can be
shortened unlimitedly. For these two questions we do
two more simulations: the length of the first phase

is taken as 150 seconds and 30 seconds separately.
The reversion is set as 40 times and 200 times
correspondingly. Initial misalignment estimation and
colocation error convergence curve are shown in
Figure 19.

From Figure 19 we can see that the estimation accuracy
can be improved by shortening the length of sampling data
period (such the case of 150 seconds), but the improvement is
not that significant. When length of sampling data becomes
less than certain value (e.g., 30 seconds) the estimation
accuracy of the initial misalignment cannot be improved
but be depressed. Then in the second subsection, divergent
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Figure 17: Estimation comparison.
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Figure 18: Comparison of the positioning errors.

tendency appears in the estimation of gyro drift and position
error. It is mainly because when time period is too short,
effect of noise would be amplified rapidly.Therefore, it is very
important to make further study to select the data length
more reasonably.

7. Summary

In this paper, we research on cooperative navigation based
on dead-reckoning with MEMS/DVL. The nonlinear system
model of cooperative navigation is constructed and CKF
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Figure 19: Performance of reverse algorithm with shorter period.

is proposed to make information fusion. Aiming at the
coexistence of large misalignment and large gyro drift, the
observability analysis is carried out. On the basis, dual-model
estimation idea is introduced to cut off the coupling relations
and improve the observability. Furthermore, reverse filtering
estimation method is proposed. The result of simulation
and experiments show that it can effectively improve the
navigation algorithm performance. The problems in the
experiment are also stated and future research directions are
discussed.
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