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We supply a new perspective to describe and understand the behavior of cross-correlations between energy and emissions markets.
Namely, we investigate cross-correlations between oil and gas (Oil-Gas), oil and CO

2
(Oil-CO

2
), and gas and CO

2
(Gas-CO

2
) based

on fractal and multifractal analysis. We focus our study on returns of the oil, gas, and CO
2
during the period of April 22, 2005–

April 30, 2013. In the empirical analysis, by using the detrended cross-correlation analysis (DCCA) method, we find that cross-
correlations for Oil-Gas, Oil-CO

2
, and Gas-CO

2
obey a power-law and are weakly persistent.Then, we adopt the method of DCCA

cross-correlation coefficient to quantify cross-correlations between energy and emissionsmarkets.The results show that their cross-
correlations are diverse at different time scales. Next, based on themultifractal DCCAmethod, we find that cross-correlatedmarkets
have the nonlinear and multifractal nature and that the multifractality strength for three cross-correlated markets is arranged in
the order of Gas-CO

2
>Oil-Gas>Oil-CO

2
. Finally, by employing the rolling windows method, which can be used to investigate

time-varying cross-correlation scaling exponents, we analyze short-term and long-term market dynamics and find that the recent
global financial crisis has a notable influence on short-term and long-term market dynamics.

1. Introduction

It seems a common sense that high or low energy prices
(e.g., oil and gas) are conducive to an increase or a decrease
of CO

2
prices [1]. For instance, Kanen [2] found that Brent

crude oil prices are the main driver of natural gas prices,
power prices, and CO

2
prices. Alberola et al. [3] further

identified that oil and gas prices are the main CO
2
prices

drivers by using a standard GARCH (1, 1) model. Fezzi and
Bunn [4] investigated interrelationships among electricity,
gas, and CO

2
prices in the UK. They revealed that gas prices

affect CO
2
prices and the reaction of CO

2
prices to a shock on

gas prices is significant in short term.Mansanet-Bataller et al.
[5] examined correlations in CO

2
prices, energy, andweather.

They obtained a similar conclusion that the major factors in
the determination of CO

2
prices are the oil and gas which

are the most emission intensive energy sources. However,
they also reported that extreme temperatures affect CO

2

prices.This finding suggests that there are some other factors

influencingCO
2
prices.Hamet al. [6] studied the relationship

of return volatilities between oil andCO
2
.They found that the

relationship is complex and presents a feature of asymmetry
and instability. By using models of the vector autoregressive
(VAR) and the dynamic conditional correlation MGARCH
(DCC-MGARCH), Chevallier et al. [1] analyzed time-
varying cross-correlations in oil, gas, and CO

2
prices. The

results showed that cross-correlations are dynamic; for exam-
ple, time-varying correlations are in the range of [−0.05, 0.05]
between oil and CO

2
and [−0.2, 0.2] between gas and CO

2
.

Based on the results obtained by Chevallier et al. [1] andHam
et al. [6], we can preliminary deduce that there is not a simple
linear relationship or cross-correlation between energy and
emissions markets. In other words, cross-correlations in oil,
gas, and CO

2
prices may be nonlinear and dynamic.

The fractal and multifractal scaling behavior was widely
reported inmany financial time series from complex financial
systems [7–9]. At the same time, many scholars confirmed
that the fractal and multifractal behavior has been a “stylized
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fact” in energy markets, such as the crude oil market [10]
and the electricity market [11]. The detrended fluctuation
analysis (DFA), which was proposed by Peng et al. [12], is
a popular fractal analysis method [13]. Kantelhardt et al.
[14] extended the DFA approach to a multifractal detrended
fluctuation analysis (MF-DFA)method, which can be used to
analyze themultifractality in nonstationary time series. Based
on the DFA method, Podobnik and Stanley [15] developed
a new method in the fractal analysis to study power-law
cross-correlations between two synchronized time series,
which is called detrended cross-correlation analysis (DCCA).
Since then, the DCCA method is widely applied to examine
cross-correlations between the financial entities [16, 17]. As
an example, Podobnik et al. [16] investigated 14, 981 daily
observations of the Standard and Poor’s 500 Index from
1950 to 2009. By using the DCCA approach, they displayed
the power-law cross-correlations between price and volume
volatilities. Based on the DCCA method, Wang and Xie
[17] analyzed cross-correlations between Renminbi and four
major currencies (i.e., USD, EUR, JPY, and KRW) in the cur-
rency basket of the Renminbi exchange rate and found that
cross-correlations are weakly persistent. In order to quantify
the level of cross-correlation between two synchronous time
series, Zebende [18] proposed a novel detrended cross-
correlation coefficient, namely, the DCCA cross-correlation
coefficient 𝜌DCCA(𝑠), which is based on the DFA and the
DCCA methods. The DCCA cross-correlation coefficient is
also widely used to quantify the level of cross-correlations
in financial markets; for example, see [19, 20]. To detect
the multifractal feature of cross-correlations between two
synchronous time series, Zhou [21] extended the DCCA and
MF-DFA to the method of multifractal DCCA (MF-DCCA).
Besides, Kristoufek [22] further generalized the method and
proposed the method of multifractal height cross-correlation
analysis. Recently, the MF-DCCA approach has become a
powerful technical tool to analyze themultifractality property
of cross-correlations in financial markets [23, 24]. As for the
crude oil market, Wang et al. [23] employed the MF-DCCA
method to study cross-correlations between the West Texas
Intermediate (WTI) crude oil spot and futures return series.
They found that cross-correlations are strongly multifractal
for small time scales, while for large time scales cross-
correlations are nearly monofractal. In addition, Wang and
Xie [24] investigated cross-correlations between the WTI
crude oil market and the US stock market by using the MF-
DCCA method and showed that the cross-correlated behav-
ior between the two markets is nonlinear and multifractal.

In this paper, we aim to analyze cross-correlations
between energy and emissions markets from the perspective
of fractal and multifractal analysis. In practical terms, we
focus our attention on cross-correlations in oil, gas, and
CO
2
prices, namely, cross-correlations between oil and gas,

oil and CO
2
, and gas and CO

2
. That is to say, as for

the energy market, we choose Brent crude oil prices and
Henry Hub natural gas prices as research objects. The CO

2

prices are obtained from the European carbon emissions
trading market that is the biggest emissions trading market
at present. In the empirical analysis, to begin with, we make

a preliminary analysis of the three returns of oil, gas, and CO
2

in the period of April 2005–April 2013. Next, we employ the
DCCAand theDCCAcross-correlation coefficient to analyze
power-law cross-correlations between energy and emissions
markets. Then, based on the MF-DCCA, we investigate the
multifractal behavior of cross-correlations. Finally, by using
the rolling windowsmethod, we examine time-varying cross-
correlation scaling exponents, which can detect dynamics of
cross-correlations.

The rest of the paper is organized as follows. We describe
methodologies of the DCCA, the DCCA cross-correlation
coefficient, and the MF-DCCA in Section 2. In Section 3, we
show the empirical data and make a preliminary analysis.
The main empirical results and analysis are presented in
Section 4. Finally, we draw some conclusions in Section 5.

2. Methodology

2.1. DCCA Method. The DCCA method, which is used to
investigate power-law cross-correlations between two differ-
ent simultaneously recorded time series, was proposed by
Podobnik and Stanley [15]. Supposing that there are two time
series (e.g., returns) {𝑥

𝑖
} and {𝑦

𝑖
} with the equal length 𝑁,

where 𝑖 = 1, 2, . . . , 𝑁, the DCCA method can be introduced
as follows [15, 19, 25].

Step 1. We calculate the cumulative deviation of each time
series and then obtain two new sequences [19]

𝑋 (𝑘) =

𝑘

∑

𝑖=1

(𝑥
𝑖
− 𝑥) , 𝑌 (𝑘) =

𝑘

∑

𝑖=1

(𝑦
𝑖
− 𝑦) ,

𝑘 = 1, 2, . . . , 𝑁,

(1)

where 𝑥 = 1/𝑁∑𝑁
𝑖=1
𝑥
𝑖
and 𝑦 = 1/𝑁∑𝑁

𝑖=1
𝑦
𝑖
.

Step 2. We divide two sequences {𝑋(𝑘)} and {𝑌(𝑘)} into 𝑁
𝑠

= int(𝑁/𝑠) nonoverlapping intervals V. The length of each
interval is 𝑠. Considering that the length 𝑁 is often not an
integral multiple of the time scale 𝑠, a short part at the end
of each sequence may be left [14, 24]. In order not to form
surplus, the same procedure is reduplicated from the opposite
end of each sequence in (1). After that, we can obtain 2𝑁

𝑠

intervals altogether. Following Kantelhardt et al. [14] and
Wang et al. [19], in our study, we set 10 ≤ 𝑠 ≤ 𝑁/4.

Step 3. For each interval V, we define the “local trends” {𝑋V(𝑘)}

and {𝑌̃V(𝑘)} by a least-squares fit of the sequences. Then, the
detrended covariance can be defined by [14, 25]

𝑓
2
(V, 𝑠) =

1

𝑠

𝑠

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 [(V − 1) 𝑠 + 𝑖] − 𝑋V (𝑖)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌 [(V − 1) 𝑠 + 𝑖] − 𝑌̃V (𝑖)

󵄨
󵄨
󵄨
󵄨
󵄨

(2)



Mathematical Problems in Engineering 3

for each interval V, V = 1, 2, . . . , 𝑁
𝑠
and

𝑓
2
(V, 𝑠) =

1

𝑠

𝑠

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 [𝑁 − (V − 𝑁

𝑠
) 𝑠 + 𝑖] − 𝑋V (𝑖)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌 [𝑁 − (V − 𝑁

𝑠
) 𝑠 + 𝑖] − 𝑌̃V (𝑖)

󵄨
󵄨
󵄨
󵄨
󵄨

(3)

for V = 𝑁
𝑠
+ 1,𝑁

𝑠
+ 2, . . . , 2𝑁

𝑠
.

Step 4. The detrended covariance fluctuation function
𝐹
2

DCCA(𝑠) can be calculated by averaging over all intervals
[24]; that is,

𝐹
2

DCCA (𝑠) =
1

2𝑁
𝑠

2𝑁
𝑠

∑

V=1
𝑓
2
(V, 𝑠) . (4)

If the time series {𝑥
𝑖
} is identical to {𝑦

𝑖
}, the DCCA method

reduces to the DFA method. In practical terms, 𝐹DCCA(𝑠)
reduces to the detrended variance 𝐹DFA(𝑠) described in the
DFA method [12, 26]; that is,

𝐹DFA (𝑠) = {
1

2𝑁
𝑠

2𝑁
𝑠

∑

V=1
𝑓
2
(V, 𝑠)}

1/2

. (5)

At this point,𝑓2(V, 𝑠) = (1/𝑠)∑𝑠
𝑖=1
(𝑋[(V−1)𝑠+ 𝑖]−𝑋V(𝑖))

2 for
each interval V = 1, 2, . . . , 𝑁

𝑠
and𝑓2(V, 𝑠) = (1/𝑠)∑𝑠

𝑖=1
(𝑋[𝑁−

(V − 𝑁
𝑠
)𝑠 + 𝑖] − 𝑋V(𝑖))

2 for V = 𝑁
𝑠
+ 1,𝑁

𝑠
+ 2, . . . , 2𝑁

𝑠
.

Step 5. By analyzing the log-log plots of 𝐹DCCA(𝑠) versus 𝑠,
we can obtain the scaling behavior of the fluctuation function
[17]. If the two time series {𝑥

𝑖
} and {𝑦

𝑖
} are power-law cross-

correlated, then

𝐹DCCA (𝑠) ∝ 𝑠
𝜆
, (6)

where 𝜆 is a cross-correlation scaling exponent and is also
known as an extension of Hurst exponent 𝐻 such that
𝐹DFA(𝑠) ∝ 𝑠

𝐻 in the case of the DFA method, which can
be estimated by the slope of log-log plots 𝐹DCCA(𝑠) versus
𝑠 through ordinary least squares (OLS) [17]. Generally, the
values of 𝜆 show the type of cross-correlations between the
two time series.Three cases of𝜆 can be summarized as follows
[17] (i) If 𝜆 > 0.5, the cross-correlations between the two
time series are persistent (positive); namely, an increase (a
decrease) in one time series is likely to be followed by an
increase (a decrease) in the other time series. (ii) If 𝜆 <

0.5, the cross-correlations between the two time series are
antipersistent (negative), which is an opposite situation to
the case (i). At this point, the direction of both time series
is reversed. For instance, if there is an increase of one time
series, it is likely to be followed by a decrease of the other time
series. (iii) When 𝜆 = 0.5, the two time series are not cross-
correlated; that is, there are no correlations between the two
time series [17].

2.2. DCCA Cross-Correlation Coefficient. The DCCA cross-
correlation coefficient, an extension of the DFA and the
DCCA methods, was proposed by Zebende [18]. This coef-
ficient is developed to quantify the level of cross-correlation

between two synchronized time series. For each time scale
𝑠, the DCCA cross-correlation coefficient is defined as the
ratio between the detrended covariance function 𝐹2DCCA(𝑠) of
(4) and the multiplier of two detrended variance functions
𝐹DFA(𝑠) of (5) [18, 20, 27]; that is,

𝜌DCCA (𝑠) =
𝐹
2

DCCA (𝑠)

𝐹DFA{𝑥
𝑖
}
(𝑠) 𝐹DFA{𝑦

𝑖
}
(𝑠)

, (7)

where 𝜌DCCA(𝑠) is a dimensionless quantity ranging from
−1 to 1 [27]. At this point, it is important to note that
when we calculate values of the DCCA cross-correlation
coefficient for time scales 𝑠 in (7), the detrended covariance
𝑓
2
(V, 𝑠) in (4), that is, (2) and (3) should be calculated as

𝑓
2
(V, 𝑠) = (1/𝑠)∑𝑠

𝑖=1
(𝑋[(V − 1)𝑠 + 𝑖] − 𝑋V(𝑖))(𝑌[(V − 1)𝑠 + 𝑖]

−𝑌̃V(𝑖)) for each interval V, V = 1, 2, . . . , 𝑁
𝑠
and 𝑓2(V, 𝑠) =

(1/𝑠)∑
𝑠

𝑖=1
(𝑋[𝑁 − (V − 𝑁

𝑠
)𝑠 + 𝑖] − 𝑋V(𝑖))(𝑌[𝑁 − (V

−𝑁
𝑠
)𝑠 + 𝑖] − 𝑌̃V(𝑖)) for V = 𝑁𝑠 + 1,𝑁𝑠 + 2, . . . , 2𝑁𝑠. For details,

see [25]. Similar to the classical correlation coefficient, for
each time scale 𝑠, a value of 𝜌DCCA(𝑠) = 1 or 𝜌DCCA(𝑠) = −1
means that two series are perfectly cross-correlated or anti-
cross-correlated, while a value of 𝜌DCCA(𝑠) = 0 suggests that
there is no cross-correlation between two time series [17].
A prominent advantage of 𝜌DCCA(𝑠) is that it can quantify
the level of cross-correlations between two different but
synchronous time series at different time scales 𝑠 [17].

2.3. MF-DCCAMethod. Zhou [21] proposed the MF-DCCA
method, which is a generalization of the DCCA method,
to examine the multifractal behavior of power-law cross-
correlations between two simultaneously recorded time
series. The procedure of the MF-DCCA method consists of
five steps; its first three steps are identical to the DCCA
procedure. Here, we only present the last two steps.

Step 4. The 𝑞th order detrended covariance fluctuation func-
tion 𝐹

𝑞
(𝑠) is obtained by averaging over all intervals [21, 24,

28]; that is,

𝐹
𝑞
(𝑠) = {

1

2𝑁
𝑠

2𝑁
𝑠

∑

V=1
[𝑓
2
(V, 𝑠)]

𝑞/2

}

1/𝑞

(8)

for any real value 𝑞 ̸= 0 and

𝐹
0
(𝑠) = exp( 1

4𝑁
𝑠

2𝑁
𝑠

∑

V=1
ln [𝑓2 (V, 𝑠)]) . (9)

Step 5. Similar to the 5th step in the DCCA method, we can
determine the scaling behavior of the fluctuation function for
each 𝑞. If the two time series {𝑥

𝑖
} and {𝑦

𝑖
} are power-law cross-

correlated, then

𝐹
𝑞
(𝑠) ∝ 𝑠

ℎ
𝑥𝑦
(𝑞)
, (10)

where ℎ
𝑥𝑦
(𝑞) is denoted as the generalized cross-correlation

scaling exponent. When 𝑞 = 2, the conventional DCCA is
retrieved and ℎ

𝑥𝑦
(2) is equivalent to the exponent 𝜆 in (6).
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Figure 1: Prices (a) and returns (b) of oil, gas, and CO
2
.

Table 1: Descriptive statistics of returns of oil, gas, and CO2.

Oil Gas CO
2

Mean (×10−4) 3.0185 −2.4506 −8.2300

Maximum 0.1641 0.2677 0.2452

Minimum −0.1307 −0.1489 −0.4321

Standard deviation 0.0215 0.0333 0.0322

Skewness −0.1265 0.8475 −1.2756

Kurtosis 6.6285 8.1827 26.5272

Jarque-Bera (×103) 1.1355
∗∗∗

2.5521
∗∗∗

48.0699
∗∗∗

Observations 2060 2060 2060

Notes: The Jarque-Bera statistic tests for the null hypothesis of normality in
sample returns distribution. ∗∗∗Denotes statistical significance at the 1%
level.

If 𝑥
𝑖
= 𝑦
𝑖
for any 𝑖, the MF-DCCA method is identical

to the MF-DFA method [29] and ℎ
𝑥𝑦
(𝑞) reduces to ℎ

𝑥𝑥
(𝑞)

or ℎ
𝑦𝑦
(𝑞) which is called the generalized autocorrelation

scaling exponent (or Hurst exponent). If the value of ℎ
𝑥𝑦
(𝑞) is

dependent on 𝑞, that is, the ℎ
𝑥𝑦
(𝑞) is a function of 𝑞, the cross-

correlations between the two time series are multifractal;
otherwise, the cross-correlations are monofractal [24].

In order to characterize multifractality of cross-
correlations between two time series, we hereby introduce
the singularity strength (or Hölder exponent) 𝛼 and the
singularity (or multifractal) spectrum 𝑓(𝛼), which are
defined by [24, 28]

𝛼 = ℎ
𝑥𝑦
(𝑞) + 𝑞ℎ

󸀠

𝑥𝑦
(𝑞) ,

𝑓 (𝛼) = 𝑞 [𝛼 − ℎ
𝑥𝑦
(𝑞)] + 1,

(11)

where ℎ󸀠
𝑥𝑦
(𝑞) represents the derivative of ℎ

𝑥𝑦
(𝑞) for 𝑞. Follow-

ingWang andXie [24], we set the range of 𝑞 varying from−10
to 10 with a step of one.
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Figure 2: Normal Q-Q plots of returns of oil (a), gas (b), and CO
2
(c).

3. Data and Preliminary Analysis

In our study, we investigate three time series of oil, gas, and
CO
2
daily closing prices from April 22, 2005 to April 30,

2013. Each sample includes 2061 observations. As for the
oil dataset, we choose the daily Intercontinental Exchange
Europe (ICE) Brent Crude Oil Futures traded in $/barrel.
The daily New York Mercantile Exchange (NYMEX) Henry
HubNatural Gas Futures traded in $/MBTU is selected as the
study object of gas. For CO

2
prices, we employ the daily ICE

European Climate Exchange (ECX) EU Allowance (EUA)
Futures traded in C/ton. All the three futures are continuous
contracts. By using the daily exchange rate obtained from the
European Central Bank, we convert the unit of the prices of
CO
2
to $. The daily closing prices of oil, gas, and CO

2
are

provided by theThomson Returners Eikon.
Let𝑃
𝑡
denote the daily closing price on day 𝑡. In this paper,

we focus our study on the daily logarithmic return 𝑟
𝑡
on

day 𝑡, which is defined as 𝑟
𝑡
= ln(𝑃

𝑡
/𝑃
𝑡−1
). Thus, each return

series contains 2060 observations. The absolute return |𝑟
𝑡
| is

called volatility. Figure 1 shows the graphical representation
of prices and returns of oil, gas, and CO

2
. For each of the

prices, as shown in Figure 1, there is a sharp decrease from
the peak to the valley which occurs in the period between
July 2008 and March 2009. One possible interpretation of
this phenomenon is that the above-mentioned period may
be the worst phrase of the global recession during the US
subprime mortgage crisis. We organize descriptive statistics
of the three returns in Table 1. The mean values of the three
returns are almost close to zero. The values of the standard
deviation are ranged in the order of gas > CO

2
> oil, which

suggests that volatilities of gas and CO
2
are higher than

that of oil. For each return series, the Jarque-Bera statistic
rejects the null hypothesis of the normal distribution at
the 1% significance level. We can also find that values of
skewness and kurtosis are not equal to zero and larger than

three, respectively, which implies that the three returns are
fat-tailed. The fat-tailed phenomena can be evidenced by
results of normal Q-Q plots of the three returns in Figure 2
because each of the normal Q-Q plots is arced or “S” shaped.

In financial time series [30], many fat-tailed distributions
have the power-law decay in the tail of the probability
distribution. A lot of previous works confirmed that the
“inverse cubic power-law” is found in financial markets; for
instance, see [16, 23, 24, 31]. Recently, Podobnik et al. [16]
proposed a new power-law estimation to investigate the fat-
tailed distribution for financial time series. They developed
an estimator of the average return interval 𝜏ave(q), which is
defined as follows [24]: on average, there is one volatility
above threshold 𝑞 after each time interval 𝜏ave(𝑞); then

1

𝜏ave (𝑞)
≈ ∫

∞

𝑞

𝑃 (|𝑥|) d |𝑥| = 𝑃 (|𝑥| > 𝑞) ∼ 𝑞−𝛽. (12)

The values of 𝜏ave(𝑞) for varying 𝑞 can be calculated by (12)
and then the estimate for 𝛽 can be obtained by the following
relationship:

𝜏ave (𝑞) ∝ 𝑞
𝛽
. (13)

According to Wang and Xie [24], we set thresholds 𝑞
varying from 2𝜎 to 7𝜎 with a fixed step of 0.25𝜎, where
𝜎 is the standard deviation of each volatility series. Then,
we calculate the value of 𝜏ave(𝑞) for each 𝑞 and estimate
the exponent 𝛽 by (13). Finally, we display the log-log
plots of 𝜏ave(𝑞) versus threshold 𝑞 in Figure 3. There is
a power-law relationship with Podobnik’s tail exponents
𝛽 = 3.1634, 𝛽 = 3.5185, and 𝛽 = 3.0735 for oil, gas, and CO

2
,

respectively. The three estimated Podobnik’s tail exponents
are close to three, which is in line with the “inverse cubic
power-law” and further indicates that fat-tailed distributions
widely exist in energy and emissions markets.
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Figure 3: Log-log plots of the mean return interval 𝜏ave(𝑞) versus threshold 𝑞 (in units of 𝜎) for oil (a), gas (b), and CO
2
(c).
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Figure 4: Log-log plots of the detrended covariance fluctuation function 𝐹DCCA(𝑠) versus time scale 𝑠 for oil and gas (a), oil and CO
2
(b), and

gas and CO
2
(c).

4. Empirical Results and Analysis

4.1. Cross-Correlations Analysis. Based on the DCCA
method, in this subsection, we first estimate cross-correlation
scaling exponents to quantitatively study cross-correlations
between oil and gas, oil and CO

2
, and gas and CO

2
. For

the sake of simplicity, we denote the three pairs of cross-
correlations as Oil-Gas, Oil-CO

2
, and Gas-CO

2
. The log-log

plots of the detrended covariance fluctuation function
𝐹DCCA(𝑠) versus time scale 𝑠 are drawn in Figure 4. From
Figure 4, we can find that all the circle points are in a linear
arrangement.Thus we can employ the OLS to estimate slopes
of regression lines (see the solid lines in Figure 4), that is,

cross-correlation scaling exponents, and also present the
three estimated exponents in Figure 4. It can be observed
that all the three cross-correlation scaling exponents are
larger than 0.5 but very close to 0.5.This finding suggests that
cross-correlations between oil and gas, oil and CO

2
, and gas

and CO
2
are weakly persistent (positive). By comparing the

three scaling exponents, one can see that the largest scaling
exponent belongs to Oil-CO

2
not Oil-Gas, which is different

from the results reached by Chevallier et al. [1]. However, as
suggested by Wang and Xie [17], when the compared scaling
exponents are very similar, the DCCA method can only be
used to analyze the type of cross-correlation which is either
persistent or antipersistent.
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Figure 5: The DCCA cross-correlation coefficient 𝜌DCCA(𝑠) versus
time scale 𝑠.

Hence, we then employ the DCCA cross-correlation
coefficient 𝜌DCCA(𝑠) to quantify the level of cross-correlations
at different time scales. In Figure 5, we show plots of the
DCCA cross-correlation coefficient 𝜌DCCA(𝑠) versus time
scale 𝑠 for Oil-Gas, Oil-CO

2
, and Gas-CO

2
. As shown in

Figure 5, one can see that DCCA cross-correlation coefficient
series vary with time scales. Interestingly, when the time scale
is 10 < 𝑠 < 100, the three coefficients for Oil-Gas, Oil-
CO
2
, and Gas-CO

2
are relatively stable and are arranged

in the order of Oil-Gas > Oil-CO
2
> Gas-CO

2
. However,

for 100 < 𝑠 < 𝑁/4, each coefficient presents a rising
trend as time scales increase; and the order of the three
coefficients is changed; that is, the position of Oil-Gas and
Oil-CO

2
is swapped. From the aforesaid analysis, we can

obtain some inspirations as follows: (i) for Oil-Gas, Oil-CO
2
,

and Gas-CO
2
, cross-correlations are diverse at different time

scales, which indicates that the traditional linear correlation
coefficient cannot accurately capture the diversity of cross-
correlations between energy and emissions markets; (ii) for
small time scales, the strength or level of cross-correlations
is arranged in the order of Oil-Gas > Oil-CO

2
> Gas-CO

2
,

which suggests that cross-correlations in the internal energy
markets are stronger than those of the cross markets (i.e.,
cross-correlations between energy and emissions markets);
and (iii) unlike case (ii), for larger time scales, the strength
of cross-correlations has changed, which are arranged in the
order of Oil-CO

2
>Oil-Gas > Gas-CO

2
. At this point, cross-

correlations between the cross markets (but only for Oil-
CO
2
) are stronger than those of the internal energy markets.

4.2. Multifractal Detrended Cross-Correlations Analysis. In
this subsection, we adopt the MF-DCCA method to inves-
tigate the nonlinear and multifractal behavior of cross-
correlations between the energy and emissions markets, that
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is, cross-correlations between oil and gas, oil and CO
2
, and

gas and CO
2
. We show relationships between the cross-

correlation scaling exponent ℎ
𝑥𝑦
(𝑞) (i.e., curves with circle

symbols) and 𝑞 for Oil-Gas, Oil-CO
2
, and Gas-CO

2
in

Figures 6, 7, and 8, respectively. At the same time, we also
calculate autocorrelation scaling exponents ℎ

𝑥𝑥
(𝑞) and ℎ

𝑦𝑦
(𝑞)

for the singlemarket by themethod ofMF-DFA. For instance,
in Figure 6, the ℎ

𝑥𝑥
(𝑞) (i.e., the curve with triangle symbols)

and ℎ
𝑦𝑦
(𝑞) (i.e., the curve with box symbols) stand for

autocorrelation scaling exponents for oil and gas, respectively.
According to the multifractal analysis theory, if the

scaling exponent ℎ(𝑞) is dependent on 𝑞, that is, the value
of ℎ(𝑞) varies with different 𝑞, auto-correlations or cross-
correlations are multifractal; otherwise they are monofractal
[24]. As drawn in Figures 6–8, it can be found that, for
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different 𝑞, the cross-correlation scaling exponent ℎ
𝑥𝑦
(𝑞) is

different. That is to say, each ℎ
𝑥𝑦
(𝑞) is a nonlinear function

with respect to 𝑞, which implies that cross-correlations
between oil and gas, oil and CO

2
, and gas and CO

2
exhibit

a strong multifractal character. By analyzing the relationship
between ℎ

𝑥𝑥
(𝑞) (or ℎ

𝑦𝑦
(𝑞)) and 𝑞, we come to a conclusion

that individual markets (i.e., gas, oil, or CO
2
) also have an

evident multifractal nature.
In general, as proposed by Zhou [21], for two time series

generated by a binomial measure from the 𝑝-model, there
is a relationship among ℎ

𝑥𝑦
(𝑞), ℎ
𝑥𝑥
(𝑞), and ℎ

𝑦𝑦
(𝑞), which is

descried by

ℎ
𝑥𝑦
(𝑞) =

(ℎ
𝑥𝑥
(𝑞) + ℎ

𝑦𝑦
(𝑞))

2

.
(14)

Here, we denote the expression (i.e., (ℎ
𝑥𝑥
(𝑞) + ℎ

𝑦𝑦
(𝑞))/2) in

the right side of (14) as the average scaling exponent. In order
to verify whether the above-said equation fails or not in this
empirical study, we also calculate average scaling exponents
for Oil-Gas, Oil-CO

2
, and Gas-CO

2
, and show their results

(i.e., the curves with diamond symbols) in Figures 6, 7, and 8,
respectively. As depicted in the three figures, one can observe
that, for 𝑞 < 0, the cross-correlation scaling exponent ℎ

𝑥𝑦
(𝑞)

is less than the average scaling exponent (ℎ
𝑥𝑥
(𝑞) + ℎ

𝑦𝑦
(𝑞))/2

and greater than the average scaling exponent for 𝑞 > 0. From
this, the general relationship (i.e., (14)) reported by Zhou [21]
is not confirmed by our empirical result based on the analysis
of energy and emissions markets. In addition, a similar result
was obtained by Wang and Xie [24] who studied the cross-
correlations between the WTI crude oil market and the US
stock market. This unexpected phenomenon may be due to
the existence of some unknown external events and the noise
trading which synchronously influence the cross-correlated
behavior of the two investigated markets.

In order to better quantify the multifractality for the
two markers, we further investigate the multifractal strength
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Figure 9: Multifractal spectra between energy and emissions mar-
kets. (a), (b), and (c) exhibit the multifractal relationships between
the multifractal spectrum 𝑓(𝛼) and the singularity strength 𝛼 for
oil and gas, oil and CO

2
, and gas and CO

2
, respectively. In each

panel, it also shows the relationship between 𝑓(𝛼) and 𝛼 for the
corresponding individual market.

by analyzing the multifractal spectra. To begin with it,
based on (11), we obtain results of the multifractal spectra
between the twomarkets and show the corresponding graphs
in Figure 9. It is generally known that if the multifractal
spectrum presents as a point, it is monofractal; otherwise,
it is multifractal [24]. From Figure 9, we can find that all
the curves for the multifractal spectra in the two markets
do not show as a point. These results once again imply
that the multifractality exists not only in the energy market
(i.e., oil and gas) and the emissions market (i.e., CO

2
) but

also in cross-correlated markets (i.e., Oil-Gas, Oil-CO
2
, and

Gas-CO
2
). Then, to examine the multifractal strength (or

multifractality degree), we introduce the measure [24, 32]

Δ𝛼 = 𝛼max − 𝛼min, (15)
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Table 2: Multifractality degrees Δ𝛼.

Δ𝛼

Oil 0.3364

Gas 0.2786

CO2 0.6657

Oil and gas 0.1695

Oil and CO2 0.1602

Gas and CO2 0.3757

where Δ𝛼 stands for the width of the multifractal spectra
𝑓(𝛼). The empirical results of multifractality degree are
represented in Table 2. By comparing the results in Table 2
or Figure 9, we find that multifractal strengths are arranged
in the order of CO

2
> Oil > Gas-CO

2
> Gas > Oil-

Gas > Oil-CO
2
. From this, we can draw some conclusions

as follows, which may just respond to the conjectures in
Section 1. (i) Whether individual markets or cross-correlated
markets, they have the nonlinear and multifractal feature.
Besides, except for Gas-CO

2
, the multifractal strengths for

individual markets are larger than those of cross-correlated
markets. (ii) The return series of CO

2
has the largest

multifractal degree, which suggests that CO
2
prices have a

strong multifractal feature and thus its pricing mechanism
is complex and may be affected by many other external
factors (e.g., weather). (iii) The multifractality exists in Gas-
CO
2
and Oil-CO

2
, which indicates that an increase or a

decrease of CO
2
prices is not a simple feedback to a rise

or a fall of the energy prices, especially gas prices. (iv)
The nonlinear and multifractal behavior shows that either
the separately analyzed (energy and emissions) markets or
cross-correlated markets violate the random walk process;
and some traditional linear bivariate models (e.g., the VAR
model) may not be appropriate to detect correlations or
interrelationships between the two investigated markets. So
it will be an important and interesting work to develop a class
of nonlinear cross-correlations models that can capture the
multifractal nature [33].

4.3. Rolling Windows Analysis. To uncover the dynamic
evaluation of cross-correlations between the two markets,
we employ the method of rolling windows to analyze time-
varying cross-correlation scaling exponents 𝜆. The rolling
windows method is also known as the local Hurst (scaling)
exponent [24]. For the detailed procedure of the rolling
windows method (or the local Hurst exponent), see [32].

Many scholars discussed the selection of the window
size, which is a difficult issue in the rolling windows analysis
because the local Hurst exponent at a given time is dependent
on the window size [24]; namely, different window sizes may
generate different time-varying scaling exponents. Wang and
Xie [24] summarized the choice of the window size and
proposed that one can choose different window sizes for
different purposes. On the one hand, for a small window size
such as a year, the evolution of Hurst (scaling) exponents
is fierce. Thus, one can choose a small window size to
examine affections of exogenous events (e.g., seasonal factors
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Figure 10: Time-varying cross-correlation scaling exponents 𝜆 for
Oil-Gas. The window size is set to 250 trading days.

and financial crisis) on short-range market dynamics. On
the other hand, for a large window size, such as Tabak
and Cajueiro [10] set the window size as four years, the
evolution of Hurst (scaling) exponents is smooth and stable.
So to investigate the major trend (e.g., market efficiency)
of long-range market dynamics, one should select a large
window size. In this study, we consider twowindow sizes (i.e.,
small and large window sizes) to study dynamics of cross-
correlations between the two analyzed markets. In practical
terms, the small and large window sizes are fixed to 250 and
1000 trading days, respectively, which are roughly equal to
one and four trading years. The step length of window is
set as a single trading day for both cases. Therefore, for the
window sizes of 250 and 1000 trading days, there is a total of
1811 and 1061 windows, respectively. To analyze short-term
market dynamics (i.e., the window size is set to 250 trading
days), we present time-varying cross-correlation exponents
for Oil-Gas, Oil-CO

2
, and Gas-CO

2
in Figures 10, 11, and

12, respectively, while to analyze long-term market dynamics
(i.e., the window size is set to 1000 trading days), we show
their results in Figures 13, 14, and 15. For each figure, the time
in 𝑥-axis represents the period of each analyzed window, that
is, dates of the beginning and the last day in each analyzed
window [17]. By comparing the former three figures (i.e.,
Figures 10–12) with the latter three ones (i.e., Figures 13–
15), we can find that dynamics of cross-correlation scaling
exponents of the latter are relatively smoother than those of
the former, which is just as expected.

From Figure 10, we can observe that cross-correlation
scaling exponents forOil-Gas vary in the range of [0.38, 0.58].
For the whole period, except for the period during the US
subprime mortgage crisis, time-varying scaling exponents
are in the interval [0.45, 0.55] and its curve (or tendency)
fluctuates above and below 0.5. These results imply that
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Figure 11: Time-varying cross-correlation scaling exponents 𝜆 for
Oil-CO

2
. The window size is set to 250 trading days.

the dynamic performance of cross-correlations between oil
and gas is relatively stable, except for the impact by the
2008 financial crisis. An interesting finding is that about
1138/1811 ≈ 61.48% of scaling exponents are less than
0.5; that is, more than half of cross-correlations between
oil and gas are antipersistent. One possible explanation to
this phenomenon is that the oil and gas are the substitute
goods because an increase (a decrease) in one product’s
sales (prices) will reduce the potential sales of another
product. As shown in Figure 11, it can be seen that cross-
correlation scaling exponents between oil and CO

2
have a

trend of cyclical fluctuation. The fluctuation trend shows
a slow decrease firstly and then a rapid increase. Similar
to Oil-Gas, during the US subprime mortgage crisis, the
cross-correlation scaling exponents for Oil-CO

2
exhibit a

dramatic fluctuation and most of them are less than 0.5.
More than half (about 53%) of cross-correlation scaling
exponents are greater than 0.5, which suggests that Oil-
CO
2
has a long-range positive cross-correlation. As for Gas-

CO
2
, in Figure 12, one can find that cross-correlation scaling

exponents show high volatilities over time and no law can be
found in them. In addition, as plotted in Figure 12, it can be
observed that most of cross-correlation scaling exponents are
larger than 0.5. That is, during most of the period, gas and
CO
2
are positively cross-correlated.

Before the period or time window, for which the
beginning date is April 2008, in Figure 13, we find that
the cross-correlation scaling exponents are in the range
[0.49, 0.54] which are very close to 0.5. This finding implies
that, from a long-term point of view, the cross-correlated
market (i.e., the crude oil market and natural gas market) is
a weakly efficient market. However, after the US subprime
mortgage crisis, exponents for Oil-Gas experience a large
change, which are all smaller than 0.5. From this, we can
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Figure 12: Time-varying cross-correlation scaling exponents 𝜆 for
Gas-CO

2
. The window size is set to 250 trading days.
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Figure 13: Time-varying cross-correlation scaling exponents 𝜆 for
Oil-Gas. The window size is set to 1000 trading days.

draw a conclusion that the 2008 financial crisis has a long-
run influence on the cross-correlated market. Interestingly,
from Figure 14, one can see that most of cross-correlation
scaling exponents for Oil-CO

2
are greater than 0.5, which

indicates that cross-correlations between oil and CO
2
are

persistent. This result confirms that crude oil prices are the
main driver of CO

2
prices from a long-term perspective.

As shown in Figure 15, it can be observed that the trend of
cross-correlation scaling exponents for Gas-CO

2
is similar

to that of Oil-Gas. Similar to Oil-Gas, the financial crisis has
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Figure 14: Time-varying cross-correlation scaling exponents 𝜆 for
Oil-CO

2
. The window size is set to 1000 trading days.
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Figure 15: Time-varying cross-correlation scaling exponents 𝜆 for
Gas-CO

2
. The window size is set to 1000 trading days.

a marked impact on the Oil-CO
2
and Gas-CO

2
which leads

to dramatic changes on cross-correlation scaling exponents.

5. Conclusion

In this study, we focus our study on cross-correlations
between energy and emissions markets from a perspective
of fractal and multifractal analysis. Namely, we take a fresh
look at cross-correlations between oil and gas, oil and CO

2
,

and gas, and CO
2
. We choose returns of the oil, gas and

CO
2
during the period of April 22, 2005–April 30, 2013 as

the research sample. In the empirical process, we first use
the methods of the DCCA and the DCCA cross-correlation
coefficient to examine power-law cross-correlations and the
level of cross-correlations, respectively. Then, we employ the
MF-DCCA approach to analyze the multifractal behavior
of cross-correlations and quantify multifractal strengths of
individual and cross-correlated markets. Finally, by using the
rolling windows method, from short-term and long-term
perspectives, we investigate time-varying cross-correlation
scaling exponents, which can capture dynamics of cross-
correlations.

The basic findings in our study can be summarized
as follows. (i) On the basis of the analysis of descriptive
statistics and the Podobnik’s tail exponent, we find that the
three returns of oil, gas, and CO

2
are fat-tailed and obey

the “inverse cubic power-law.” (ii) By employing the DCCA
method, we find that cross-correlations between oil and gas,
oil and CO

2
, and gas and CO

2
are weakly persistent. (iii) The

cross-correlation coefficients for Oil-Gas, Oil-CO
2
, and Gas-

CO
2
are different at different time scales. (iv) The nonlinear

and multifractal nature is also found in individual and cross-
correlated markets. For cross-correlated markets, Gas-CO

2

has the largest multifractality degree.
In addition, we investigate short-term and long-term

market dynamics of cross-correlations and come to some
results as follows. On the one hand, for short-term market
dynamics, (i) cross-correlation scaling exponents forOil-Gas,
Oil-CO

2
, and Gas-CO

2
show a drastic fluctuation; (ii) oil

and CO
2
and gas and CO

2
are positively cross-correlated

for most of the period; and (iii) the dynamic performance
of the three cross-correlation scaling exponents is notably
affected by the global financial crisis. On the other hand, for
long-term market dynamics, (iv) the three cross-correlated
markets are also influenced by the financial crisis; (v) for
the wholly analyzed period, except for the period after the
financial crisis, cross-correlatedmarkets forOil-Gas andGas-
CO
2
exhibit as a weakly efficient market. Oil-CO

2
has a long-

range positive cross-correlation.
Through this empirical analysis, we supply a newperspec-

tive to describe and understand cross-correlations between
energy and emissions markets. From fractal and multi-
fractal analysis, we obtain some new results, such as pos-
itive power-law cross-correlations, different DCCA cross-
correlation coefficients at different time scales, the nonlinear
and multifractal cross-correlated behavior, and short-term
and long-term market dynamics, which are new insights in
energy and emissionsmarkets, especially in the field of energy
economics. At the same time, our results also can be added as
a new factor or view to consider for banking, finance sectors,
and so forth. As an extension of this study, an urgent and
interesting future work is needed to design a new kind of
cross-correlation models that can capture the nonlinear and
multifractal nature.
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