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Rolling-bearing faults can be effectively reflected using time-frequency characteristics. However, there are inevitable interference
and redundancy components in the conventional time-frequency characteristics. Therefore, it is critical to extract the sensitive
parameters that reflect the rolling-bearing state from the time-frequency characteristics to accurately classify rolling-bearing faults.
Thus, a new tensor manifold method is proposed. First, we apply the Hilbert-Huang transform (HHT) to rolling-bearing vibration
signals to obtain the HHT time-frequency spectrum, which can be transformed into the HHT time-frequency energy histogram.
Then, the tensor manifold time-frequency energy histogram is extracted from the traditional HHT time-frequency spectrum
using the tensor manifold method. Five time-frequency characteristic parameters are defined to quantitatively depict the failure
characteristics. Finally, the tensor manifold time-frequency characteristic parameters and probabilistic neural network (PNN) are
combined to effectively classify the rolling-bearing failure samples. Engineering data are used to validate the proposed method.
Compared with traditional HHT time-frequency characteristic parameters, the information redundancy of the time-frequency
characteristics is greatly reduced using the tensor manifold time-frequency characteristic parameters and different rolling-bearing
fault states are more effectively distinguished when combined with the PNN.

1. Introduction

Rolling bearings are widely used inmodern rotatingmachin-
ery, and their failure is one of the most common causes of
machine breakdowns and accidents [1–3]. Therefore, fault
diagnosis of rolling bearings is necessary to ensure the
safe and efficient operation of machines in engineering
applications. The main aspects of bearing fault diagnosis are
classification and pattern recognition, where feature extrac-
tion directly affects the accuracy and reliability of the fault
diagnosis [4]. Rolling-bearing fault features can be generally
divided into three categories: time-domain characteristics,
frequency-domain characteristics, and time- and frequency-
domain characteristics [5, 6].

Time-domain characteristics are fairly intuitive; however,
they fluctuate significantly and lack quantitative judging
criteria. Thus, they cannot be directly used to diagnose
bearing faults. In contrast, frequency-domain characteristics

can be used to diagnose bearing fault conditions more accu-
rately because different bearing faults correspond to different
characteristic frequencies. However, there are typically noise
and modulation components in the bearing fault signals.
Thus, direct application of the frequency-domain method
will submerge the fault characteristic frequency in noise or
false frequency components because of improper selection of
the demodulation parameters. Furthermore, signal denoising
and demodulation must be conducted before extracting
the bearing fault characteristic frequencies. In the process
of signal denoising and demodulation, parameters such as
the denoising parameters, demodulation center, and filter
bandwidth should be properly selected based on experience,
and a satisfactory selection is only obtained after numerous
adjustments.

The time- and frequency-domain characteristics, which
have the intuitive feature of the time-domain characteristics
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and good time-frequency aggregation, can simultaneously
reflect the time-domain and frequency-domain character-
istics of a signal [7–10]. Therefore, extracting the time-
frequency fault characteristics is important for fault diag-
nosis. Wang and Hu used the principle of time-frequency
image analysis to diagnose gearbox faults in 1993 [11]; this
effort was the first application of time-frequency image for
the fault diagnosis of machinery and equipment. Zhang et al.
subsequently used time-frequency images to classify diesel
engine faults under complex vibration conditions [12]. Zhu
et al. used short-time Fourier transform to extract time-
frequency features for fault diagnosis [13], and satisfactory
results were achieved. However, the aforementioned time-
frequency characteristics are not adaptive and can only be
used for reciprocating machinery. To overcome the limi-
tations of the above methods, Huang et al. proposed the
HHT time-frequency spectrum, which is self-adaptive [14].
The HHT time-frequency spectrum is suitable for analyzing
nonstationary signals because of its frequency instantaneity
[15]. However, mode mixing is inevitable for signals with
instantaneous frequency trajectory crossings [16, 17]. Li et
al. used the geometric center of the HHT time-frequency
spectrum as a feature vector [18, 19] in combination with
SVM and classified rolling-bearing fault signals. However,
because the geometric center requires a considerable amount
of calculations and lacks corresponding physical meaning, it
can only provide qualitative classification criteria. Manifold
learning has recently emerged in nonlinear-feature extraction
because of its capability of effectively identifying hidden
low-dimensional nonlinear structures in high-dimensional
data. He [20] proposed a time-frequency manifold feature by
combining the time-frequency distribution and the nonlin-
ear manifold for an effective quantitative representation of
machinery health pattern.

This paper proposes a new tensor manifold time-
frequency feature extraction method to overcome the weak-
ness of traditional HHT time-frequency characteristics. The
HHT time-frequency spectrum, which contains a consider-
able amount of failure information, is used as the research
object. The tensor manifold learning method is applied to
extract the tensor manifold time-frequency characteristics
of the HHT time-frequency spectrum. The two-dimensional
time-frequency information does not need to be converted
into a one-dimensional vector when calculating the tensor
manifold, and the information loss is significantly reduced.
On this basis, five time-frequency characteristic parameters
are defined. The tensor manifold time-frequency charac-
teristic parameters can distinguish different rolling-bearing
fault states more effectively than traditional HHT time-
frequency characteristic parameters. Combined with PNN,
the tensor manifold time-frequency characteristic parame-
ters can effectively distinguish different rolling-bearing fault
states. Engineering vibration signals were used to evaluate the
efficiency of the proposed method.

The remainder of this paper is organized as follows.
The theory basis is introduced in Section 2, and the
tensor manifold time-frequency fault feature extraction
method is described in Section 3. Section 4 presents the
adaption of the proposed method to rolling-bearing fault

classification. Rolling-bearing fault classification is imple-
mented in Section 5. Finally, conclusions are drawn in
Section 6.

2. Theory Basis

2.1. HHT Time-Frequency Spectrum. Based on the defini-
tion of instantaneous frequency and EMD, the HHT time-
frequency spectrum is analytically derived as follows.

Apply the EMD to signal𝑋(𝑡) to obtain the IMFs of𝑋(𝑡).
Then, the analytical form of 𝑋(𝑡) can be expressed as

𝑋 (𝑡) = Re
𝑛

∑

𝑖=1

𝐴
𝑖
(𝑡) e𝑗 ∫𝜔𝑖(𝑡)𝑑𝑡, (1)

where Re is the real part of the selected signal, 𝐴
𝑖
(𝑡) is the

instantaneous amplitude of the ith IMF, and 𝜔
𝑖
(𝑡) is the

corresponding instantaneous frequency.
The time, frequency, and amplitude of the signals can

be combined to form the three-dimensional time-frequency
space. Then, the amplitude distribution on time-frequency
plane is referred to as the HHT time-frequency spectrum,
which is expressed as

𝐻(𝑡, 𝜔) = Re
𝑛

∑

𝑖=1

𝑏
𝑖
𝐴
𝑖
(𝑡) e𝑗 ∫𝜔𝑖(𝑡)𝑑𝑡, (2)

where Re is the real part of the selected signal and 𝑏
𝑖
is the

indicator variable. When 𝜔
𝑖
= 𝜔, 𝑏

𝑖
= 1, and when 𝜔

𝑖
̸= 𝜔,

𝑏
𝑖
= 0.
The HHT time-frequency analysis is a decomposition

method based on signal local characteristics, which pro-
vides a physical basis for the concept of instantaneous
frequency and sets this method apart from conventional
methods through its use of numerous harmonic components
to describe complex nonlinear and nonstationary signals.
Therefore, from the concept definition and the nature of
signal analysis, theHHT time-frequency spectrumeliminates
the limitations of Fourier transform and can accurately
describe nonstationary signal characteristics.

2.2. Tensor Manifold Algorithm

2.2.1. Locality Preserving Projection (LPP) Manifold Learning
Algorithm. The LPP manifold learning algorithm aims at
finding the linear transformation matrix W to reduce the
dimensionality of high-dimensional data.There are 𝑙 training
samples {x

𝑖
}
𝑙

𝑖=1
∈ R𝑚, andW can be obtained by minimizing

the following objective function:

min
W

(∑

𝑖,𝑗

(W𝑇x
𝑖
− W𝑇x

𝑗
)
2

𝑆
𝑖,𝑗
) , (3)

where 𝑆
𝑖,𝑗
is the similarity measure among objects and can be

defined using the k-nearest-neighbor method:

𝑆
𝑖,𝑗

=

{{

{{

{

exp(−

󵄩
󵄩
󵄩
󵄩
󵄩
x
𝑖
− x
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑓

𝑡

) , if x
𝑖
∈ 𝑂(𝑘, x

𝑖
) or x

𝑗
∈ 𝑂(𝑘, x

𝑗
)

0, Otherwise

}}

}}

}

,

(4)
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where 𝑂(𝑘, x
𝑖
) denotes the 𝑘 nearest neighbor of x

𝑖
and 𝑡 is a

positive constant. Both 𝑘 and 𝑡 can be determined empirically.
Equation (3) demonstrates the feature space after dimen-

sion reduction canmaintain the local structure of the original
high-dimensional space. We apply an algebraic transforma-
tion to (3) as follows:

1

2
∑

𝑖,𝑗

(W𝑇x
𝑖
− W𝑇x

𝑗
)
2

𝑆
𝑖𝑗

= ∑

𝑖,𝑗

W𝑇x
𝑖
𝐷
𝑖𝑖
x𝑇
𝑖
W − ∑

𝑖,𝑗

W𝑇x
𝑖
𝑆
𝑖𝑗
x𝑇
𝑖
W

= W𝑇X (D − S)X𝑇W = W𝑇XLX𝑇W,

(5)

where X = [x
1
, x
2
, . . . , x

𝑙
],D denotes an 𝑙 × 𝑙 diagonal matrix,

where the diagonal element 𝐷
𝑖𝑖

= ∑
𝑖
𝑆
𝑖𝑗
, S = (𝑆

𝑖𝑗
)
𝑙×𝑙

, and
L=D− S.

Then, the problemof solving for the optimal vectorW can
be transformed into the following eigenvalue problem:

XLX𝑇W = 𝜆XDX𝑇W. (6)

2.2.2. Tensor LPP Manifold Learning Algorithm. The LPP
manifold learning algorithm [21] can only be regarded as
a one-dimensional manifold feature extraction algorithm.
However, the number of training images in the two-
dimensional (e.g., time-frequency spectrum) image feature
extraction process is notably small compared to the dimen-
sions of the image vectors, which results in a singularity of
XDX𝑇 and failure of the LPP algorithm. To alleviate the
drawback of the LPP, this paper uses a new tensor LPP
manifold learning algorithm (Ten-LoPP) [22] to extract the
time-frequency spectrum fault characteristics.

There are 𝑙 two-dimensional training images {A
𝑖
}
𝑙

𝑖=1
∈

R𝑚×𝑛, where 𝜔 denotes an 𝑛-dimensional unitization column
vector. The main objective of the tensor manifold algorithm
is to make each 𝑚 × 𝑛 image matrix A

𝑖
project onto 𝜔 using

a linear transformation y
𝑖

= A
𝑖
𝜔. In this manner, an 𝑚-

dimensional column vector can be obtained and considered a
projection feature vector of image A

𝑖
. The objective function

of the tensor manifold algorithm is expressed as follows:

1

2
∑

𝑖,𝑗

(A
𝑖
𝜔 − A

𝑗
𝜔)
2

𝑆
𝑖𝑗

= ∑

𝑖,𝑗

W𝑇A𝑇
𝑖
𝐷
𝑖𝑖
I
𝑚
A
𝑖
𝜔 − ∑

𝑖,𝑗

W𝑇A𝑇
𝑖
𝑆
𝑖𝑗
I
𝑚
A
𝑖
𝜔

= W𝑇A𝑇 [(D − S) ⊗ I
𝑚
]AW = W𝑇A𝑇 (L ⊗ I

𝑚
)AW,

(7)

where A = [A
1
,A
2
, . . . ,Al], the definitions of D and L are

identical to those in the LPP manifold learning method, and
⊗ denotes the Kronecker product.

Then, the problem of solving for the optimal vector 𝜔 is
transformed into the following eigenvalue problem:

A𝑇 (L ⊗ I
𝑚
)A𝜔 = 𝜆A𝑇 (D ⊗ I

𝑚
)A𝜔, (8)

where 𝜔 is comprised of 𝑑 feature vectors that correspond to
the smallest nonzero eigenvalues; that is, there are 𝑑 optimal

projection vectors 𝜔, which can form the projection matrix
W = [𝜔

1
,𝜔
2
, . . . ,𝜔

𝑑
]. For any image A

𝑥
, there is

y
𝑥𝑖

= A
𝑥
𝜔
𝑖
, 𝑖 = 1, 2, . . . , 𝑑, (9)

where y
𝑥1

, y
𝑥2

, . . . , y
𝑥𝑑

are the projection feature vectors of
the sample image A

𝑥
and y

𝑥
= [y
𝑥1

, y
𝑥2

, . . . , y
𝑥𝑑

], which is
comprised of projection feature vectors, is the characteristic
matrix of the sample image A

𝑥
.

2.3. Probabilistic Neural Network (PNN). The neural com-
position structure and elements of the PNN are shown in
Figure 1

In the PNN, characteristic parameters were transported
into each node on the pattern layer through the input
layer. Then, we apply layer nonlinear mapping to the input
parameters in each node of the PNNpattern and complete the
comparison between an unknown type with a known type.
Finally, the characteristic parameters that represent the types
are input to the next layer for processing. The node structure
of the layers is used to be called the RBF center, and the node
output is expressed as follows:

O
𝑖
= R
𝑖
(
󵄩󵄩󵄩󵄩X − 𝜔

𝑖

󵄩󵄩󵄩󵄩) , (10)

where the 𝑖th center vector is 𝜔
𝑖
, which is the same size as the

input vector. 𝑅
𝑖
(⋅) denotes the radial basis function, which is

typically a Gaussian function; that is,

exp(−

󵄩󵄩󵄩󵄩X − 𝜔
𝑖

󵄩󵄩󵄩󵄩

2

2𝜎
2

𝑖

) , (11)

where 𝜎
𝑖
denotes the shape parameter that corresponds to the

𝑖th component of the radial basis function.
To facilitate the calculation, X and 𝜔

𝑖
are processed with

mathematical regularization and unit. Assume that z
𝑖
= X⋅𝜔

𝑖
.

Then, the above expression is expressed as follows:

𝑔 (z
𝑖
) = exp[

(z
𝑖
− 1)

𝜎2
] . (12)

Finally, through the output layer (decision-making layer),
the characteristic parameters, which are derived from the
pattern layer, are accumulated to provide the category feature
vector, which is

𝑓
𝐴
(X) =

𝑁

∑

𝑗=1

𝑔 (z
𝑖
) . (13)

The PNN has the following characteristics: (1) the train-
ing convergence speed is high, making the PNN suitable for
the real-time processing of various data types; (2) the pattern
unit can form any nonlinear mapping judgment surface,
which is closest to the optimal judgment surface bayes; (3)
the selection of the RBF center kernel function has diversity,
and the form of the kernel function has a small effect on the
recognition results; and (4) the number of neuron nodes in
each PNN layer is relatively stable, the hardware processing is
convenient, and the fault tolerance is high.The PNNhas been
widely used in pattern recognition, prediction estimation,
and filtering denoising.
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Figure 1: Internal composition structure and elements of the PNN: (a) system structure of the PNN, (b) pattern unit of the PNN, and (c)
output unit of the PNN.

3. Tensor Manifold Time-Frequency Fault
Feature Extraction Method

3.1. Description of the Proposed Method. Themanifold learn-
ing method is a nonlinear dimension reduction method to
extract low-dimensional nonlinear characteristics fromhigh-
dimensional data. Unlike the conventional linear dimension
reductionmethods, such asmultidimensional scaling (MDS),
principal component analysis (PCA), and linear discriminant
analysis (LDA), this method is a nonlinear method to
address the part before the whole. By satisfying the entire
optimization, the manifold learning method can preserve
the partial manifold characteristics and effectively extract
the nonlinear manifold characteristics that are inherent in
the high-dimensional characteristic set. However, the man-
ifold learning algorithm suffers from information loss and
error that are caused by the transformation from a set of
two-dimensional time-frequency characteristics to a one-
dimensional vector.

To alleviate the drawback of information loss and error,
this section presents a tensor manifold time-frequency fault
feature extraction method based on the tensor manifold
algorithm to extract the set of low-dimensional time-
frequency characteristics from the set of high-dimensional
time-frequency characteristics. Then, five tensor manifold
time-frequency characteristic parameters were defined and

combined with the PNN to classify the rolling-bearing failure
samples.

The tensor manifold time-frequency fault feature extrac-
tion method is described as follows, and Figure 2 presents its
flow chart.

(1) Group the rolling-bearing vibration signal samples
to be classified and for training and then calculate
the HHT time-frequency spectrum. To hasten the
calculation of the tensor manifold algorithm, grid the
time-frequency regions, integrate the energy value of
theHHT time-frequency spectrum of eachmesh, and
convert theHHT time-frequency spectrum intoHHT
time-frequency energy histograms.

(2) The HHT time-frequency energy histograms are
essentially two-dimensional matrices. Use the HHT
time-frequency energy histograms that correspond
to signal samples to form a set of high-dimensional
time-frequency characteristics.

(3) Apply the tensor manifold algorithm to extract the
set of low-dimensional time-frequency characteris-
tics from the set of high-dimensional time-frequency
characteristics. In this manner, the tensor manifold
time-frequency energy histograms are obtained.

(4) Based on the result of step (3), define different tensor
manifold time-frequency characteristic parameters.
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Figure 2: Flow chart of the time-frequency characteristic extraction method based on a tensor manifold.

Input the defined parameters of the training signal
samples into the PNN for the rolling-bearing fault
classification.

(5) Input the tensor manifold time-frequency character-
istic parameters of the to-be-classified signal samples
into the trained PNN to classify the rolling-bearing
faults.

3.2. Definition of the Time-Frequency Characteristic Parame-
ters. The tensor manifold time-frequency energy histogram
is a nonlinear time-frequency fault feature and can effectively
differentiate different rolling-bearing fault signals. However,
it is equal to a two-dimensional matrix, which makes it
unsuitable for direct application in fault classification. In this
section, several parameters are presented to quantitatively
measure the difference among the tensor manifold time-
frequency energy histograms. Their definitions are provided
as follows.

3.2.1. Energy Entropy. Entropy is proposed to measure the
data complexity and the probability to generate the new signal
model. Here, the energy entropy is defined as follows:

𝐻 = −

𝑛

∑

𝑖=1

𝑝
𝑖
log (𝑝

𝑖
) , 𝑝

𝑖
=

𝑒
𝑖

∑
𝑛

𝑖=1
𝑒
𝑖

, (14)

where 𝐻 is the energy entropy, 𝑒
𝑖
is the value of the time

frequency energy histogram, and 𝑝
𝑖
is the proportion of each

𝑒
𝑖
in the total ∑

𝑛

𝑖=1
𝑒
𝑖
. In addition, the energy entropy can

reflect the uncertainty in the energy distribution.

3.2.2. Energy Correlation Coefficient. Divide the time-
frequency energy histogram into 𝑚 sections by frequency
and mark E

𝑓1
,E
𝑓2

, . . . ,E
𝑓𝑚

and E
𝑡
= E
𝑓1

+ E
𝑓2

+ ⋅ ⋅ ⋅ + E
𝑓𝑚

.
Because each E

𝑓𝑖
varies with different time-frequency energy

histograms, we can analyze the relevance of E
𝑓𝑖

and E
𝑡

to measure the difference in the time-frequency energy
histogram. The energy correlation coefficient vector is
defined as follows:

Ecoef = [corcoef(1), corcoef(2), ⋅ ⋅ ⋅ corcoef(𝑚)]
𝑇

, (15)

where corcoef(𝑖) = corcoef(E
𝑓𝑖
,E
𝑡
) and corcoef(⋅) is the

cross-correlation function.

3.2.3. Energy Sparsity. The signal energy distribution of the
time-frequency energy histogram varies more significantly
as it approaches zero. The sparsity expresses the sparse
distribution of energy, and the purpose of estimating the
sparsity is to obtain a function 𝑞(x), x ∈ R𝑛. If x is sparse, then
𝑞(x) is relatively large, and vice versa. Generally, the norm 𝐿

𝑝

of vector x is used to quantitatively estimate the sparsity.Here,
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we define the 𝐿
𝑝
norm of the standardized form of vector x

as follows:

𝑞
−1

(x) =

‖x‖
𝑝

𝑛1/𝑝−1/2 ⋅ ‖x‖
2

=
1

𝑛1/𝑝−1/2
⋅

(∑
𝑛

𝑘=1
x𝑝
𝑘
)
1/𝑝

(∑
𝑛

𝑘=1
x2
𝑘
)
1/2

, (16)

where 1 ≤ 𝑝 < ∞, and we select 𝑝 = 1 such that 𝐿
1
can

accurately reflect the energy distribution of the histogram.

3.2.4. Energy Mutual Information. Mutual information is
proposed to measure the degree of independence among
random variables. The mutual information of multiple vari-
ables is defined as the 𝐾𝐿 divergence of the multivariate
joint probability density and its marginal probability density
product:

𝐼 (𝑥) = 𝐾𝐿(𝑝 (𝑥) ,

𝑁

∏

𝑖=1

𝑝
𝑖
(𝑥
𝑖
))

= ∫𝑝 (𝑥) log(
𝑝 (𝑥)

∏
𝑁

𝑖=1
𝑝
𝑖
(𝑥
𝑖
)

)𝑑𝑥,

(17)

where 𝐾𝐿 is the divergence, 𝑥 = 𝑥
1
, 𝑥
2
, . . . 𝑥
𝑁
, 𝑝(𝑥)

is the multivariate joint probability density function, and
𝑝
𝑖
(𝑥
𝑖
), (𝑖 = 1 ∼ 𝑁) is the marginal probability density

function. Then 𝐾𝐿 is defined as follows:

𝐾𝐿 [𝑝 (𝑥) , 𝑞 (𝑥)] = ∫𝑝 (𝑥) log
𝑝 (𝑥)

𝑞 (𝑥)
𝑑𝑥, (18)

where 𝑝(𝑥), 𝑞(𝑥) are two different probability density func-
tions of a random vector x. The energy mutual information
can be calculated for each histogram according to (18).

3.2.5. Energy Kurtosis. Kurtosis is a physical parameter that
is proposed to measure the degree of Gaussian distribu-
tion of a random variable. A larger energy kurtosis in the
time-frequency energy histogram corresponds to weaker
Gaussianity of the energy distribution, whereas a smaller
kurtosis indicates stronger Gaussianity. If the Gaussianity
of the energy distribution is strong, the energy distribution
presents the “middle big, two sides small” phenomenon. The
energy values are mainly within the middle range, and larger
or smaller values are less likely to occur. For the sequence
X = 𝑥

1
, 𝑥
2
, . . . 𝑥
𝑁

of energy values, the overall kurtosis is
defined as

Kurt (𝑥
1,2,...,𝑁

) =
∑
𝑁

𝑖=1
(𝑥
𝑖
− 𝜇) /𝑁

𝜎4
− 3. (19)

4. Application of the Proposed Method to
Rolling-Bearing Fault Classification

4.1. Rolling-Bearing Fault Data. To verify the effectiveness of
the proposed method, the new method was used to analyze
bearing fault data from the Bearing Data Center of Case
Western Reserve University [23].

The test rig, which is shown in Figure 3, was constructed
for the run-to-failure testing of the rolling bearing. A 1.5 kW

Figure 3: Diagram of the experimental test rig.

3-phase inductionmotorwas connected to a powermeter and
torque sensor by self-calibration coupling, which drove the
fan. The load was adjusted using the fan. Data were collected
using a vibration acceleration sensor, which was vertically
fixed above the chassis of the drive end bearings of the
induction motor. The bearings are deep-groove ball bearings
of the type SKF6205-2RS JEM.There is a single point of failure
in the inner ball and outer surface of themachining spark; the
failure sizes are 0.18mm in diameter and 0.28mm deep. The
experimental data were collected with a sample frequency of
12,000Hz and a shaft running speed of 29.53Hz (1,772 rpm).
The corresponding ball pass frequency inner-race (BPFI), ball
rotation frequency (BS), and ball pass frequency outer-race
(BPFO) were estimated to be 159.93, 139.19, and 105.87Hz,
respectively.

Figures 4(a)–4(d) depict a group of normal, inner-race
fault, ball fault, and outer-race fault time-domain signals.
Although there are several differences among the four types
of signals in the time-domain wave nature, it is difficult to
distinguish the rolling-bearing fault conditions using these
intuitive qualitative differences. Therefore, the fault features
that quantitatively represent the differences of different
rolling-bearing fault statuses must be studied.

4.2. HHT Time-Frequency Characteristics of Rolling Bearings.
First, the HHT time-frequency spectra of four states were
calculated using the HHT method. Then, the HHT time-
frequency spectrum was divided into 64 regions of identical
size. The histogram of the HHT time-frequency spectrum
was obtained via the integral of the energy amplitude for each
region. Different types of signal HHT time-frequency spectra
and their histograms are shown in Figure 5.

Figure 5 describes the HHT time-frequency spectrum
and corresponding time-frequency energy histograms of
the normal rolling-bearing vibration signal. As shown in
Figure 5, the time-frequency energy is mainly distributed
in the low-frequency region and decreases with increasing
frequency. The amplitude ranges from 0 to 20 g2.

Figure 6 presents the HHT time-frequency spectrum and
corresponding time-frequency energy histogram with an
inner-race fault. As shown in Figure 6, the time-frequency
energy is widely distributed in both the low- and high-
frequency regions, with a lull in the mid-frequency region.
The amplitude ranges from 0 to 40 g2, the maximum value of
which is greater than that in the normal case.

Figure 7 presents the HHT time-frequency spectrum and
corresponding time-frequency energy histograms with a ball
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Figure 4: Four heterogeneous rolling-bearing fault data: (a) normal, (b) inner-race faults, (c) ball faults, and (d) outer-race faults.
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Figure 5: (a) Normal HHT time-frequency spectrum and (b) normal time-frequency energy histogram.

fault. As shown in Figure 7, the time-frequency energy is
mainly distributed in the high-frequency region and exhibits
a less significant yet stable distribution in the low-frequency
region.The amplitude of the energy histogram ranges from 0
to 30 g2.

Figure 8 presents the HHT time-frequency spectrum and
corresponding time-frequency energy histograms with an
outer-race fault. As shown in Figure 8, the time-frequency
energy is centered in the high-frequency region and exhibits
a lull in the low-frequency region. The distribution trend
begins at a rather low frequency and increases abruptly at
a certain high frequency. The magnitude ranges from 0 to
100 g2.

4.3. Extraction of the Tensor Manifold Time-Frequency Char-
acteristic Parameters. For convenience and conciseness, we
only discuss the tensor manifold time-frequency characteris-
tic parameters of four types of rolling-bearing faults in this
section; in other situations, such as different damage degrees
in the same fault type or different fault types with different
damage degrees, the classification result will also be discussed
in subsequent Section 5.

We consider 20 normal inner-race fault, ball fault, and
outer-race fault time-domain signals (each sample dataset
has 1,024 points, and 80 samples are used for training). The
HHT time-frequency spectrum and HHT time-frequency
energy histogram of each signal are obtained using the
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Figure 6: (a) HHT time-frequency spectrum with an inner-race fault and (b) time-frequency energy histogram with an inner-race fault.
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Figure 7: (a) HHT time-frequency spectrum with a ball fault and (b) time-frequency energy histogram with a ball fault.

aforementioned method. Then, a high-dimensional time-
frequency feature combination with 80 samples is obtained.
The tensor manifold algorithm is applied to extract the
low-dimensional tensor manifold features from the high-
dimensional characteristic set. The optimal projected vectors
W = [𝜔

1
,𝜔
2
, . . . ,𝜔

𝑑
] are obtained, and the parameter is

defined as 6 because of the distribution of eigenvalues. Finally,
we project the 8 ∗ 8 matrix energy histogram onto W and
obtain the 8 ∗ 6 tensor manifold energy histograms.

According to the aforementioned definition of the five
time-frequency characteristic parameters, we take the abso-
lute value of the elements of the obtained 8∗6 tensormanifold
energy histograms and calculate the tensor manifold time-
frequency characteristic parameters of the tensor manifold
energy histograms.

Five tensor manifold time-frequency characteristic pa-
rameters of the above 80 samples are obtained. Below, only
10 samples of the above four different types of rolling-bearing
signals are considered for clarity in the graphics.

The results are as follows.

4.3.1. Manifold Energy Entropy. Samples 1–10 correspond to
the normal signals, samples 11–20 correspond to the inner-
race fault signals, samples 21–30 correspond to the ball fault
signals, and samples 31–40 correspond to the outer-race
fault signals. The manifold energy entropy of each tensor
manifold time-frequency energy histogram is calculated and
depicted in Figure 9(a). The energy entropy of the HHT
time-frequency energy histogram without a tensor manifold
analysis is presented in Figure 9(b). Compared to Figure 9(a),
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Figure 8: (a) HHT time-frequency spectrum with outer-race fault and (b) time-frequency energy histogram with outer-race fault.
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Figure 9: (a) Manifold energy entropy of the four fault signals and (b) energy entropy of the four fault signals.

the energy entropy shown in Figure 9(b) cannot provide a
clear distinction between inner-race faults and ball faults.
Thus, the manifold energy entropy is more appropriate for
classifying rolling-bearing faults.

4.3.2. Manifold Energy Correlation Coefficient. The manifold
energy correlation coefficient (manifold energy corcoef(𝑖)
for short) is obtained by calculating the manifold energy
corcoef(𝑖) between E

𝑓1
,E
𝑓2

, . . . ,E
𝑓6

and E
𝑡
. The results are

shown in Figure 10.
As shown in Figure 10, the manifold energy corcoef(𝑖)

can generally distinguish different fault signals, but different
manifold energies corcoef(𝑖) have different abilities. First,
corcoef(1) can generally distinguish four rolling-bearing
failures. corcoef(2) is also suitable for distinguishing failures,
except for the normal and ball fault samples. corcoef(3) failed
to distinguish the ball fault and outer-race fault, corcoef(4)
failed to distinguish the inner-race fault and ball fault, and
corcoef(5) and corcoef(6) failed to distinguish all faults.Thus,
corcoef(1) is accepted as the parameter that is best able to
distinguish different rolling-bearing failures.

Figure 11 presents the energy correlation coefficient (here-
after denoted as “energy corcoef(𝑖)”), which is calculated
using six large energy bands of the HHT time-frequency

energy histogram without manifold analysis. As shown in
Figure 11, the energy corcoef(𝑖), where 𝑖 = 1, . . . , 6, cannot
provide clear distinctions and thus is not suitable for classify-
ing different rolling-bearing faults.

4.3.3. Manifold Energy Sparsity. The energy distributions of
different fault signals are different, as are the energy dis-
tributions of different regions in the time-frequency energy
histogram. Figure 12(a) presents themanifold energy sparsity
of four rolling-bearing signals. As shown in Figure 12(a), the
manifold energy sparsity can effectively distinguish different
fault samples and can be used to classify different rolling-
bearing faults. Figure 12(b) presents the energy sparsity of
four types of signal samples. Although the energy sparsity
can distinguish different rolling-bearing samples, the energy
sparsity within the sample fluctuations, and the difference
in energy sparsity of the inter-class sample is not obvious.
Therefore, the energy sparsity is not a rolling-bearing fault
parameter.

4.3.4. Manifold Energy Mutual Information. We divide the
tensor manifold time-frequency energy histogram and HHT
time-frequency energy histogram of the four types of signal
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Figure 10: Manifold energy correlation coefficient of the four fault
signals.

samples into 6 regions based on the frequency. Then, we
calculate the corresponding mutual manifold energy infor-
mation and mutual energy information.

As described in Figure 13(a), different rolling-bearing
faults can be accurately distinguished using the mutual man-
ifold energy information, which is clearly different among
the fault samples; thus, the mutual manifold energy infor-
mation can be used as the rolling-bearing fault characteristic
parameter. Figure 13(b) illustrates that the mutual energy
information of normal and ball fault samples is similar, and,
thus, these two fault types cannot be distinguished.Therefore,
the energy mutual information is not suitable for use as the
rolling-bearing fault characteristic parameter.

4.3.5. Manifold Energy Kurtosis. We calculate the manifold
energy kurtosis and energy kurtosis based on the correspond-
ing energy histograms. Figure 14(a) presents the manifold
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Figure 11: Energy correlation coefficient of the four fault signals.

energy kurtosis of the four different samples; the manifold
energy kurtosis varies significantly, and, thus, the mutual
energy manifold information can be used to classify differ-
ent rolling-bearing faults. Figure 14(b) presents the energy
kurtosis of the four different samples; as shown, all samples
exhibit highly similar energy kurtosis values. In particular,
the values of the normal fault, ball fault, and outer-race
fault are extremely similar. Therefore, we cannot distinguish
different rolling-bearing faults using energy kurtosis.

4.4. Discussion. The merits of the proposed method for
extracting the tensor manifold time-frequency characteristic
parameters are mainly based on the fact that the tensor
manifold time-frequency feature explores the time-varying
characteristic of the nonstationary fault signals. The tensor
manifold utilizes the HHT time-frequency fault feature of
the rolling-bearing fault vibration signals.Thus, the advanced
feature is suitable for nonstationary vibration signals. More-
over, there are simple features that are widely used for
classification in rolling-bearing fault diagnosis, such as time-
domain features (e.g., kurtosis, variance), frequency-domain
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Figure 12: (a) Manifold energy sparsity of the four fault signals and (b) energy sparsity of the four fault signals.
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Figure 13: (a) Manifold energy mutual information of the four fault signals and (b) energy mutual information of the four fault signals.

features (e.g., subband energy), and time-frequency domain
features (e.g., HHT time-frequency spectrum). These simple
features are not as advantageous as the tensor manifold time-
frequency features for capturing synthetic signal information.
Thus, we use the tensor manifold time-frequency parameters
for rolling-bearing fault diagnosis in this paper.

To demonstrate the benefit of the proposed parameters,
simple features based on the HHT time-frequency spectrum
are also conducted to analyze the four types of rolling-bearing
fault signals. The test results are presented in Figures 9–13.
These simple features perform worse in classification than
do the tensor-manifold-based features. To avoid possible
mistakes in pattern identification, it is necessary to improve
the classification capability for reliable pattern diagnosis by
exploring advanced features, which is the purpose of this
paper.

5. Rolling-Bearing Fault Classification

The preceding analysis demonstrates that the five parame-
ters (manifold energy entropy, manifold energy correlation
coefficient,manifold energy sparsity,manifold energymutual
information, and manifold energy kurtosis) can efficiently
distinguish the rolling-bearing fault states. Thus, they are
used as the PNN input parameters for the bearing fault
classification.

To verify the effectiveness of the manifold feature for
identifying the four bearing faults, 20 samples of four types
(normal, inner-race faults, ball faults, and outer-race faults)
were used as training samples. The other 20 samples of
each type were used for classification purposes. Each sample
was extracted for the five aforementioned manifold feature
parameters.The characteristic parameters of 80 training sam-
ples were used to train the PNN, and the numbers of nodes in

the four PNNs were 5, 30, 4, and 4. Finally, the characteristic
parameters of the 80 to-be-classified samples were input into
the PNN for classification. The PNN classification results of
the four bearing faults are shown in Table 1.

Table 1 illustrates that, when the tensor manifold time-
frequency characteristic parameters are used as inputs for
the PNN, four types of rolling-bearing fault samples can be
effectively distinguished and each of the 20 to-be-classified
samples for each type of fault can be correctly classified.
The normal sample classification exhibits the best results,
whereas the minimum components of the category vectors
of the inner-race fault samples, ball fault samples, and outer-
race fault samples are 0.92, 0.93, and 0.92, respectively. The
classification results of the PNN indicate that the rolling-
bearing fault condition can be effectively described using the
tensor manifold time-frequency characteristic parameters
and that the rolling-bearing fault type can be accurately
identified with the PNN.

To compare the proposedmethodwith traditional extrac-
tion methods, we extract the five defined parameters of
the same training and to-be-classified samples using the
traditional HHT time-frequency method as the PNN input
parameters for the bearing fault classification. The results are
shown in Table 2.

Table 2 illustrates that, when the HHT time-frequency
characteristic parameters are used as inputs to the PNN,
four types of rolling-bearing fault samples can generally be
distinguished, but the distinction is not adequate.The normal
sample classification exhibits the best results, whereas the
minimum components of the category vector of the inner-
race fault samples, ball fault samples, and outer-race faults are
0.69, 0.76, and 0.73, respectively.

In Table 1, the minimum components of the category
vectors of the four bearing faults are 0.92. In contrast, in
Table 2, except the normal-state, the components of the
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Figure 14: (a) Manifold energy kurtosis of the four fault signals and (b) energy kurtosis of the four fault signals.

Table 1: Classification results of the four bearing faults using the PNN with the proposed tensor manifold features.

Sample Category vector of the
normal-state samples

Category vector of the
inner-race fault samples

Category vector of the
ball fault samples

Category vector of the
outer-race fault samples

1 1 0 0 0 0 0.97 0.01 0.02 0 0.01 0.99 0 0 0.01 0.02 0.97
2 1 0 0 0 0 0.99 0 0.01 0 0.02 0.97 0.01 0 0.05 0.03 0.92
3 1 0 0 0 0 0.95 0.03 0.02 0 0.02 0.97 0.01 0 0.03 0.02 0.95
4 1 0 0 0 0 0.98 0.01 0.01 0 0.03 0.95 0.02 0 0.02 0.05 0.93
5 1 0 0 0 0 0.93 0.05 0.02 0 0.02 0.98 0 0 0.02 0.02 0.96
6 1 0 0 0 0 0.97 0.02 0.01 0 0.01 0.96 0.03 0 0.05 0.03 0.92
7 1 0 0 0 0 0.95 0.02 0.03 0 0.02 0.97 0.01 0 0.02 0.01 0.97
8 1 0 0 0 0 0.92 0.03 0.05 0 0.03 0.93 0.04 0 0.04 0.03 0.93
9 1 0 0 0 0 0.94 0.02 0.04 0 0.02 0.95 0.03 0 0.03 0.02 0.95
10 1 0 0 0 0 0.96 0.02 0.02 0 0.01 0.97 0.02 0 0.01 0.01 0.98
11 1 0 0 0 0 0.93 0.04 0.03 0 0.01 0.98 0.01 0 0.03 0.01 0.96
12 1 0 0 0 0 0.96 0.03 0.01 0 0.01 0.99 0 0 0.02 0.03 0.95
13 1 0 0 0 0 0.97 0.01 0.02 0 0.02 0.96 0.03 0 0.01 0.02 0.97
14 1 0 0 0 0 0.97 0.01 0.02 0 0.02 0.97 0.01 0 0.01 0.03 0.96
15 1 0 0 0 0 0.95 0.03 0.02 0 0.02 0.95 0.03 0 0.06 0.02 0.92
16 1 0 0 0 0 0.98 0.01 0.01 0 0 0.98 0.02 0 0.03 0.04 0.93
17 1 0 0 0 0 0.96 0.01 0.03 0 0.03 0.96 0.01 0 0.03 0.02 0.95
18 1 0 0 0 0 0.97 0.02 0.01 0 0.01 0.97 0.02 0 0.03 0.01 0.96
19 1 0 0 0 0 0.93 0.03 0.04 0 0.02 0.96 0.02 0 0.03 0.04 0.93
20 1 0 0 0 0 0.96 0.01 0.03 0 0.03 0.93 0.04 0 0.03 0.05 0.92

category vectors of the inner-race fault, the ball fault, and
the outer-race fault above 0.85 account for 65%, 80%, and
60%, respectively. Compared with the results of the PNN,
which uses tensor manifold time-frequency characteristic
parameters as inputs, the classification performance with
traditional HHT time-frequency features is relatively poor.

To verify the effectiveness of the manifold feature for
identifying different damage degrees in the same fault type
of rolling-bearing status, the proposed method was used to
classify the inner-race fault samples with different damage
degrees. 20 samples of four degrees (normal, mild damage,
moderate damage, and severe damage) were used as training
samples. The other 10 samples of each degree were used for
classification purposes. The PNN classification results of the
to-be-classified inner-race fault samples are shown in Table 3.

To compare the proposedmethodwith traditional extrac-
tion methods, we extract the five defined parameters of the
same training and to-be-classified inner-race fault samples
with different damage degrees using the traditional HHT

time-frequency method as the PNN input parameters for the
bearing fault classification. The results are shown in Table 4.

Table 4 depicts that, when the HHT time-frequency
characteristic parameters are used as inputs to the PNN,
inner-race fault samples with different damage degrees can
generally be distinguished, but the distinction is not adequate.
The minimum components of the category vector of the
inner-race mild-damage fault samples, moderate-damage
fault samples, and severe-damage fault samples are 0.83, 0.86,
and 0.78, respectively.

In Table 3, the minimum components of the category
vectors of the four bearing faults are 0.93. In contrast, in
Table 4, except the normal-state, the components of the
category vectors of the inner-race fault, the ball fault, and the
outer-race fault above 0.85 account for 90%, 100%, and 60%,
respectively. Compared with the results in Table 3, the results
of the PNN, which uses the traditional HHT time-frequency
characteristic parameters as inputs, indicate a relatively poor
classification performance.
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Table 2: Classification results of the four bearing faults using the PNN with traditional HHT time-frequency features.

Sample Category vector of the
normal-state samples

Category vector of the
inner-race fault samples

Category vector of the
ball fault samples

Category vector of the
outer-race fault samples

1 1 0 0 0 0 0.90 0.05 0.05 0 0.10 0.89 0.01 0 0.06 0.07 0.83
2 1 0 0 0 0 0.92 0.03 0.05 0 0.12 0.87 0.01 0 0.05 0.06 0.89
3 1 0 0 0 0 0.89 0.05 0.06 0 0.12 0.79 0.09 0 0.07 0.08 0.85
4 1 0 0 0 0 0.90 0.06 0.04 0 0.13 0.85 0.12 0 0.05 0.04 0.91
5 1 0 0 0 0 0.87 0.06 0.07 0 0.10 0.78 0.12 0 0.06 0.08 0.86
6 1 0 0 0 0 0.92 0.04 0.08 0 0.13 0.76 0.11 0 0.15 0.06 0.79
7 1 0 0 0 0 0.91 0.05 0.04 0 0.07 0.87 0.06 0 0.06 0.07 0.87
8 1 0 0 0 0 0.82 0.08 0.1 0 0.02 0.93 0.05 0 0.15 0.12 0.73
9 1 0 0 0 0 0.87 0.08 0.05 0 0.08 0.85 0.07 0 0.07 0.08 0.75
10 1 0 0 0 0 0.93 0.05 0.02 0 0.07 0.87 0.06 0 0.05 0.07 0.88
11 1 0 0 0 0 0.69 0.14 0.17 0 0.01 0.88 0.11 0 0.06 0.08 0.86
12 1 0 0 0 0 0.74 0.12 0.14 0 0.20 0.79 0.01 0 0.07 0.08 0.85
13 1 0 0 0 0 0.80 0.12 0.08 0 0.08 0.88 0.04 0 0.03 0.06 0.91
14 1 0 0 0 0 0.86 0.09 0.05 0 0.07 0.87 0.06 0 0.07 0.04 0.89
15 1 0 0 0 0 0.75 0.23 0.02 0 0.06 0.89 0.05 0 0.08 0.09 0.83
16 1 0 0 0 0 0.78 0.10 0.12 0 0.03 0.93 0.02 0 0.09 0.10 0.81
17 1 0 0 0 0 0.86 0.12 0.12 0 0.06 0.87 0.07 0 0.07 0.04 0.89
18 1 0 0 0 0 0.87 0.06 0.07 0 0.09 0.89 0.02 0 0.03 0.08 0.89
19 1 0 0 0 0 0.83 0.13 0.14 0 0.02 0.91 0.07 0 0.07 0.01 0.83
20 1 0 0 0 0 0.92 0.05 0.03 0 0.05 0.92 0.03 0 0.07 0.11 0.82

Table 3: Classification results of the inner-race fault using the PNN with the proposed tensor manifold features.

Sample Category vector of the
normal-state samples

Category vector of the
inner-race

mild-damage
fault samples

Category vector of the
inner-race

moderate-damage
fault samples

Category vector of the
inner-race

severe-damage
fault samples

1 1 0 0 0 0 0.97 0.01 0.02 0 0.01 0.98 0.01 0 0.01 0.02 0.97
2 1 0 0 0 0 0.96 0.02 0.02 0 0.02 0.97 0.01 0 0.02 0.02 0.96
3 1 0 0 0 0 0.98 0.01 0.01 0 0.01 0.97 0.02 0 0.03 0.02 0.95
4 1 0 0 0 0 0.95 0.02 0.03 0 0.03 0.95 0.02 0 0.02 0.02 0.96
5 1 0 0 0 0 0.96 0.02 0.02 0 0.01 0.98 0.01 0 0.01 0.03 0.96
6 1 0 0 0 0 0.97 0.01 0.02 0 0.01 0.96 0.03 0 0.05 0.02 0.93
7 1 0 0 0 0 0.94 0.05 0.02 0 0.02 0.95 0.03 0 0.03 0.02 0.95
8 1 0 0 0 0 0.95 0.03 0.02 0 0.02 0.97 0.01 0 0.01 0.01 0.98
9 1 0 0 0 0 0.94 0.02 0.04 0 0.04 0.94 0.02 0 0.03 0.03 0.94
10 1 0 0 0 0 0.93 0.02 0.05 0 0.04 0.93 0.03 0 0.03 0.01 0.96

6. Conclusion

This paper studies the problem of rolling-bearing fault fea-
ture extraction. A time-frequency feature extraction method
based on tensor manifolds for rolling bearings was proposed
to overcome the deficiencies of the traditional HHT time-
frequency feature extraction methods and to remove redun-
dant time-frequency feature information. The HHT time-
frequency energy histograms of the rolling-bearing fault sig-
nal were used to compose high-dimensional time-frequency
fault feature sets. On this basis, the signal time-frequency

characteristicswere extracted using tensormanifold learning.
Five tensor manifold time-frequency characteristic parame-
ters were defined: manifold energy entropy, manifold energy
correlation coefficient, manifold energy sparsity, manifold
energy mutual information, and manifold energy kurtosis.
These characteristic parameters and a PNN were combined
to accurately classify rolling-bearing fault samples.The tensor
manifold method can realize the nonlinear fusion of the
time-frequency information, which can effectively extract the
intrinsic nonlinear characteristics of high-dimensional time-
frequency combination, and avoid the loss of information
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Table 4: Classification results of the inner-race fault using the PNN with traditional HHT time-frequency features.

Sample Category vector of the
normal-state samples

Category vector of the
inner-race

mild-damage
fault samples

Category vector of the
inner-race

moderate-damage
fault samples

Category vector of the
inner-race

severe-damage
fault samples

1 1 0 0 0 0 0.92 0.05 0.03 0 0.11 0.87 0.02 0 0.12 0.05 0.83
2 1 0 0 0 0 0.87 0.06 0.07 0 0.06 0.89 0.05 0 0.05 0.06 0.89
3 1 0 0 0 0 0.88 0.06 0.06 0 0.07 0.91 0.02 0 0.06 0.06 0.88
4 1 0 0 0 0 0.91 0.07 0.02 0 0.03 0.92 0.05 0 0.06 0.02 0.92
5 1 0 0 0 0 0.83 0.09 0.08 0 0.06 0.90 0.04 0 0.03 0.06 0.91
6 1 0 0 0 0 0.89 0.05 0.06 0 0.09 0.86 0.05 0 0.05 0.06 0.89
7 1 0 0 0 0 0.92 0.04 0.04 0 0.05 0.91 0.04 0 0.06 0.03 0.91
8 1 0 0 0 0 0.90 0.06 0.04 0 0.03 0.92 0.05 0 0.05 0.12 0.83
9 1 0 0 0 0 0.91 0.04 0.05 0 0.09 0.86 0.05 0 0.15 0.07 0.78
10 1 0 0 0 0 0.92 0.03 0.05 0 0.05 0.89 0.06 0 0.11 0.06 0.83

caused by traditional manifold-learningmethods. Compared
with the HHT time-frequency characteristic parameters, the
tensor manifold time-frequency characteristic parameters
can more effectively distinguish the four bearing faults,
different damage degrees in the same fault type, and different
fault types with different damage degrees because of its
strong nonlinearity and reduced information redundancy.
The effectiveness of the proposed method was verified using
real rolling-bearing fault signals. Thus, this paper provides
an important method to solve the rolling-bearing feature
extraction problems.
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