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One of the most important applications of network analysis is detecting community structure, or clustering. Nearly all algorithms
that are used to identify these structures use information derived from the topology of these networks, such as adjacency and
distance relationships, and assume that there is only one type of relation in the network. However, in reality, there are multilayer
networks, with each layer representing a particular type of relationship that contains nodes with individual characteristics that
may influence the behavior of networks. This paper introduces a new, efficient spectral approach for detecting the communities
in multilayer networks using the concept of hybrid clustering, which integrates multiple data sources, particularly the structure of
relations and individual characteristics of nodes in a network, to improve the comprehension of the network and the clustering
accuracy. Furthermore, we develop a new algorithm to define the closeness centrality measure in complex networks based on a
combination of two approaches: social network analysis and traditional social science approach. We evaluate the performance of
our proposed method using four benchmark datasets and a real-world network: oil global trade network. The experimental results
indicated that our hybrid method is sufficiently effective at clustering using the node attributes and network structure.

1. Introduction

In recent years, there has been great interest in investigating
and understanding the underlying mechanism of complex
networks. These systems are generally symbolized using
graph techniques that contain sets of nodes, which represent
the objects under investigation that are connected together
in pairs by links if the corresponding nodes are related by
some type of relationship. Complex networks represent a
fundamental area of multidisciplinary study and are found in
physics, mathematics, chemistry, biology, social sciences, and
information sciences; examples of the networks examined in
these fields include the Internet, the World Wide Web, social
networks, information networks, biological networks, neural
networks, food webs, reaction and metabolic networks, and
protein-protein interaction networks [1, 2].

In the literature of complex networks, one of the most
important and widely used concepts, centrality, has been

defined to quantify the relative importance of a node in a net-
work. This concept can be measured in several different ways;
however, not every centrality index is suitable for every appli-
cation. In general, the result of a centrality index depends
solely on the structure of the graph [3-5].

The most common study of complex networks is the anal-
ysis of a network for a single context (layer). In a multilayered
network, the researchers aim at obtaining a more compre-
hensive view of the network under study. They analyze differ-
ent types of relations for each node that is represented in the
network. Unfortunately, few articles have considered “multi-
plexity” in complex networks [6]. Wasserman and Faust [7]
recommend the use of centrality measures in each layer
because the aggregation of different relations can cause the
loss of information due to the union of layers.

Network communities play essential organizational and
functional roles in complex networks [8] and have been



increasingly applied in various fields. For example, commu-
nities in a social network indicate groups of different interests
[9]. In protein-protein interaction networks, communities
are expected to group proteins with the identical particular
function within the cell. In the graph of the World Wide
Web, communities may match groups of pages that address
identical or associated topics. In metabolic networks, the
communities are likely functional modules, such as cycles
and pathways [10-13]. As a result, community detection in
complex networks has become one of the most active fields
of research in network theory (for review papers see [14, 15],
and for a comparison paper see [16]).

In addition to aiding in understand the network system by
providing insights into the structure-functionality relation-
ship [17], identification of communities in complex networks
can also reduce complex networks to simpler systems. This
ability is critical because there is an increasing requisite
to consider extremely large real-world networks, and few
presented methods can handle large graphs [18].

Community detection has a key function in determining
some centrality measures because these measures assign valid
centrality scores on the condition that the network presents a
core-periphery structure in which all nodes revolve around
a single core [19]. Thus, these types of centrality measures
cannot be computed without such a cluster analysis.

Complex network research has been fundamentally con-
cerned with the structure and effects of relations among
nodes, rather than on individual attributes of the nodes. How-
ever, contribution of such attributes to the development and
maintenance of ties among the nodes in networks that would
thereby impact the behavior of those networks is disregarded.
The development of a new paradigm in which both individual
agency and social structure establish the network behavior
presents an alternative to a rigorous structural perspective
in which action is derived exclusively from the structure of
relations in the networks [20].

This work introduces a novel framework for complex
network analysis by considering the individual characteristics
as well as structure of relations, and it presents a comprehen-
sive and improved algorithm to determine the closeness cen-
trality in multilayer complex networks that has five valuable
specifications simultaneously.

(i) The algorithm can cope with (un)weighted,
(un)directed, single/multilayer graphs.

(ii) It solves the core-periphery assumption problem by
clustering as a preprocessing step.

(iii) It maps the graph to separate nodes that are clus-
tered using data clustering techniques and therefore
overcomes some challenges of clustering methods in
graphs, such as high computational complexity.

(iv) Its dimensionality reduction (from n x »n matrix to
n x k matrix, (k < n)) significantly simplifies the
computations.

(v) It considers heterogeneous data that are related to
the network’s nodes and edges, which improves the
network comprehension and the clustering accuracy.

Mathematical Problems in Engineering

We empirically assess the performance of such an inte-
grated analysis by experimenting on four benchmark data-

sets.
The remainder of this paper is organized as follows. In

Section 2, the necessary background and notations are pro-
vided, the current main problems are derived, and their
solutions are introduced. Then, the proposed method based
on these solutions is represented in Section 3. Section 4
applies the proposed algorithm to the benchmark datasets,
with which our algorithm obtains competitive results. The
final section of the paper contains brief concluding remarks.

2. Related Concepts and Background

2.1. Centrality. There is no commonly accepted definition of
the centrality index; however, the least common ground for
all centralities is that it denotes an order of importance on
the vertices or edges of a graph by assigning them real values.
On the other hand, a centrality index only depends on the
graph structure [5]. Although many measures of centrality
have been proposed (some revisions of centrality measures
may be found in [5, 21]), four measures, degree, closeness,
betweenness, and eigenvector centrality, have dominated the
empirical usage. Their distinction within the field of network
analysis arises from the fact that all of them have strong yet
significant theoretical bases and have been considered foun-
dational in the field [22]. Thus, this paper concentrates solely
on those measures with special importance and influence.

(i) Degree centrality measures the number of connec-
tions at a specific node and illustrates the level
of potential communication activity from a specific
node. An individual with greater degree centrality can
directly communicate with others more easily [6].

(ii) Closeness centrality considers being the closest to
others on average. It also represents a level of inde-
pendence for a specific node because a node is more
autonomous and thus has higher independence when
it can communicate with many other nodes and has a
minimum number of intermediaries [23].

(iii) Betweenness centrality focuses on the importance of
anode in the communication between any node pair
in the network. If a vertex lies on many shortest
paths between other vertices, it plays a central role in
information flows and is responsible for the system
vulnerability [11].

(iv) Eigenvector centrality is based on the largest charac-
teristic eigenvalue of the adjacency matrix. In other
words, it assesses the centrality of a person as a
function of the centrality of the people with whom the
person is associated [19].

Some previously considered centrality measures, includ-
ing all degree, closeness, and eigenvector like measures, cal-
culate the walks that emanate from or terminate with a given
node. Social network researchers refer to these measures as
radial measures. Another category of centrality measures,
such as all betweenness-like measures, which assess the num-
ber of walks that pass through a given node, are called medial
measures [19].
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According to Borgatti and Everett [19], before interpret-
ing a radial centrality measure, one must determine whether
the network satisfies the one-group requirement. In other
words, the radial centrality indices make sense in networks
with at most one center, which would not be partitioned into
two or more components.

A common notion in SNA and other fields is the core/
periphery structure. Given its wide currency, the lack of an
identifying community structure before computing a radial
measure of centrality is a gap in the related literature. One
point is that the medial centrality measures do not make
the same one-group assumption. However, it is difficult to
interpret a given value of medial centrality without specifying
the group’s cohesive structure.

2.2. Community Detection in Multilayer Networks. A network
community, which is also called a cluster or module, refers
to a group of vertices that likely share common properties
and/or play similar roles in the graph [15]. Some important
aspects of a community structure include the following.

(1) Concrete applications, such as topic related Web
pages clustering, image segmentation, discovering
groups of individuals sharing identical properties,
and detecting communities in a protein regulatory
network that indicate groups of function-related pro-
teins.

(2) Classification of vertices based on their structural
position in the communities. Determining clusters
and their boundaries allows one to identify vertices
with a central position in their clusters, namely,
sharing many edges with the other cluster members,
which may have an important function of control and
stability within the cluster. Furthermore, the vertices
at the boundaries among the communities are impor-
tant for mediation and lead the relationships and
exchanges among different modules.

(3) Identifying the hierarchical organization, including
communities that are composed of smaller commu-
nities, which in turn contain smaller communities.
In particular, a system that is organized in inter-
connected subgroups is generated and evolves more
rapidly than an unstructured system [15].

A variety of methods and algorithms for community
detection have been developed so far, ranging from tradi-
tional clustering methods in computer and social sciences,
that is, graph partitioning, hierarchical, partitional, and spec-
tral clustering to modern methods, which are divided into
categories based on the type of approach, such as modularity-
based methods, and dynamic algorithms [15].

Our learning algorithm is based on spectral clustering,
which makes our issue an eigenvalue problem and uses k-
means for the final cluster assignments.

In a real network, there are always various types of
relations among the members, such as friendships, business
relationships, and common interest relationships in a social
network. Most existing algorithms assume that there is only
one type of connection, which corresponds to a relatively
homogenous relationship (such as Web page linkage), and

few studies have considered network descriptors in multilayer
case [24-31]. However, a typical network can be analyzed for
different “contexts” or at different “layers” which represent
different types of relationship among the objects in the
network.

For the community detection problem, these different
layers can include different communities. To recognize a
community with specific properties, it is necessary to identify
which relation plays an important role in such a community.
As a result, community detection in a multilayer network
requires these relations to be combined according to their
importance in reflecting the user’s information need.

2.3. Considering Nodes Attributes. According to Wasserman
and Faust [7], some fundamental principles that underlie the
perspective of network analysis are as follows.

(i) “Actors and their actions are viewed as interdepen-
dent instead of independent, autonomous units.

(ii) Network models focusing on individuals view the
network structural environment as providing oppor-
tunities for or constraints on individual actions.

(iii) Network models conceptualize structure (mainly
social, economic and political) as lasting patterns of
relations among actors.”

Network analysis concerns theory, models, and appli-
cations that are presented in terms of relational concepts
and mainly disregards individual attributes of the actors or
the network members, although such attributes affect the
formation and maintenance of relationships among actors in
the network and thus influence the network behaviors.

To better investigate an interest, such as community
detection or centrality in a network, it is reasonable to con-
sider various data that are related to that interest, which
are typically heterogeneous. Network analysis studies the
relations, that is, the attribute of pairs of individuals (which
is called dyadic attributes), so the canonical dataset can be
presented as an entity-by-entity matrix, whereas studying the
attributes of individuals (which are called monadic attributes)
requires different canonical dataset, which can be considered
an entity-by-attribute matrix. For example, in the social
context, the first type of data involves a social network anal-
ysis, which is concerned with the structure and effects of
relations among people, groups, or organizations, whereas the
other refers to traditional social science, which examines the
influence of psychological individual attributes in the society.
In web page analysis, the two types are hyperlink versus
textual content; and in gene analysis, they are metabolic path-
way and gene expression.

However, the distinction between these two types of data
is not always clear because there are methods to convert one
type into the other type. Furthermore, in some cases, data
can be collected and preserved either as 1-mode or 2-mode,
depending on the preference of the researcher [20].

Nevertheless, the information based on the nodes’ indi-
vidual characteristics can occasionally specify similarities
that are not visible to techniques that are solely based on the
structure of relations and vice versa. For example, consider
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FIGURE 1: An analysis of the main challenges of the context.

the contents of web pages and their links; we typically
encounter notably similar web pages even though there are
no links among them. Thus, using only an existing graph
clustering method cannot solve the problem [32, 33].

In addition, when used alone, each data source may suffer
from critical shortcomings, such as noisy and unreliable
data, incompleteness because of missing data, and bias. For
example, in gene application, accurate gene clustering is
essential for predicting the gene function; however cDNA
microarray data are noisy and unreliable. Hence, as expected,
another data source, such as a metabolic or gene regulatory
network, is often required [32]. Some other limitations occur
in applications related to mapping the science, including
sparse matrices, documents with an insufficient number of
references (such as letters), and the bias toward high-impact
journals [33]. A potential approach to solve the problem is
to integrate two data sources, which improves the reliability
of the clustering results and thus the centrality measure. The
idea of heterogeneous data clustering is not new [34-39];
however, most previous applications were designed to map

the cognitive structure of science and its adjustment over time
by combining bibliometric or citation information with the
textual content [33]. However, our focus is wider; namely,
we consider clustering by combination of two heterogeneous
data sources, the attributes of the nodes and the edges in
a multilayer complex network, and subsequently finding
the closeness centrality. Our integrating technique is clearly
different from those that provide the opportunity to consider
different layers and node attributes.

3. Proposed Method

3.1. Analysis of the Main Challenges of the Context. The fol-
lowing structure in Figure 1, which is based on conclusions
that are reached by reviewing the related literature, classifies a
series of challenges in the context and their casual factors and
offers their corresponding solutions. The proposed solutions
are applied to the proposed method, which is introduced for
community detection and to compute the closeness centrality
in multilayer complex networks.
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The resulting structure illustrates the main challenges and
gaps in the literature. In the complex network context, the
first challenge is that motivating and challenging new cases of
complex networks in recent years have resulted in increased
attention and activity regarding the structure and dynamics
of complex networks. In addition, network models have
become standard tools in economics, social science, and the
design of transportation and communication systems, which
typically have multilayers as well. Because these networks are
generally highly complex and most methods cannot address
such large graphs, it is helpful to determine whether they can
be reduced to simpler structures [18]. In fact, significant effort
has been dedicated to dividing the networks into small num-
bers of communities. However, there are various approaches
in different fields which study the same phenomenon; for
example, the traditional social science studies the personal
attributes of the members of a network, and social network
analysis studies the attributes of their relations in the network
under consideration. Matching different canonical datasets
and considering both individual agency and social structure
is the recommended solution to this challenge, which also
increases the comprehension of the phenomenon.

Another considerable challenge that occurs in the cen-
trality context is that radial measures may be incorrectly
computed and interpreted due to the core/periphery assump-
tion. Thus, the one-group requirement must be first satisfied,
and if the network includes more than one component, the
subgraph indices should be determined. The computational
complexity in the closeness centrality context is the next
challenge, which has been described in our previous work
[20].

3.2. Community Detection and Closeness Centrality Index in
Multilayer Complex Networks by Considering Both Structure
of Relations and Individual Characteristics. Based on the
analysis in Section 3.1, we introduce our proposed method,
which consists of the following steps.

(i) Checking the core-periphery assumption based on
the spectral analysis [20].

(1) Given the input datasets (in the form of adja-
cency matrix such that A;; = 1 if nodes i and j
are connected by an edge and A;; = 0 otherwise;
or its weighted counterpart W).

(2) Define D to be the diagonal matrix whose
(i,1)-element is the sum of A’s ith row (W for
weighted graphs), which represents the degree
of the node i. Then, form the normalized Lapla-
cian, which is defined as follows:

L,,=D"L o)

(3) Find k nontrivial eigenvalues of the normalized
Laplacian, L,,, such that the first k eigenvalues
of L,,, are close to zero and the (k + 1)th is rela-
tively large.

(4)If k = 1, then the network has a core-
periphery structure, and the closeness centrality
is computed using the common methods.

(5) If k > 1, then construct a n X k matrix, V, whose
columns are eigenvectors of L.

(ii) Considering individual characteristics and other lay-
ers.

(1) Add ! attributes of individual nodes to have a nx
(k + I) matrix Q as an input for clustering.

(2) If the 1-mode relation data that correspond to
the other layers can be converted to 2-mode
data, insert them as columns into matrix Q.

(iii) Clustering using data clustering methods.

(1) Given the input matrix, Q, and a range of num-
ber of clusters, cluster the nodes using typical
techniques, such as k-means.

(2) If the data that are related to any layer cannot
be converted into 2-mode data, regard them as
a type of dissimilarity among the nodes and
insert them at pairwise distances throughout the
clustering procedure.

(iv) Computing the closeness centrality within the clus-
ters.

(1) Determine the center of the clusters as nodes
that have the highest closeness centrality in the
clusters because they have the smallest pairwise
distance among the cluster members.

(v) Computing the closeness centrality of the network.

(1) Determine the closeness centrality among the
cluster centers.

4. Experimental Evaluation

To study the behavior of a proposed community detection
algorithm, it is necessary to have adequate benchmark net-
works in which the ground truth is known. A few benchmarks
have been proposed to test communities in networks with
node attributes. There is no such benchmark dataset with
multiple layers. Thus, we had to restrict the empirical part of
our research to single layer attributed networks. In our
previous study [20], we examined the proposed algorithm
using Zachary’s karate club network, which is often used as
a benchmark for community detection in networks. The pre-
liminary results indicate that the proposed method efficiently
detects both a good intercluster closeness centrality and an
appropriate number of clusters.

Here, we evaluate the performance of the proposed
method using four real-world networks from the WebKB
dataset [40], for which we have network topology data and
node attributes [41]. Moreover, explicit ground-truth com-
munity labels are accessible. The availability of such ground
truth labels helps us quantify the degree of consistency
between the detected and ground truth communities. The
Rand index is used to compare the results obtained with the
classification scheme.

The WebKB dataset consists of 877 web pages and 1,608
hyperlinks among them, which were gathered from different
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TABLE 1: Dataset statistics.
Dataset Node  Edge  Nodeattribute =~ Community
Cornell 195 304 1703 5
Texas 187 328 1703 5
Washington 230 446 1703 5
Wisconsin 265 530 1703 5

university websites. These web pages are classified into one of
the following five classes: course, faculty, student, project, or
staff. Each web page in the dataset is described by a 0/1-valued
word vector, which indicates the absence/presence of the cor-
responding word from the dictionary. The dictionary consists
0f 1,703 unique words. All words with a document frequency
less than 10 were removed. Table 1lists the networks and their
properties.

The main computational stages of our algorithm are
performed using MATLAB; the Cluster Validity Analysis
Platform (CVAP) [42] MATLAB tool was applied to evaluate
the clustering results and compute the validity indices.
Because eigenvalue and eigenvector calculation is required in
primary steps of the proposed method, the adjacency matrix
with zero rows or columns is not accepted. Thus, to overcome
this challenge, we were obliged to ignore the link directions
and make the adjacency matrices symmetric.

The results of the hybrid clustering analysis were com-
pared to the predefined classification or the ground truth.
The Rand index [43] was used to quantify the correspondence
between the obtained clustering results (from 2 to 10 clusters)
and the ground truth categorization. Table 2 illustrates that
the Rand index in all cases is greater than 0.6 on average.
The Rand index is greater in those bench mark networks,
which have less sparse adjacency matrices and thus requires
less adjustment.

5. Real-Life Example: Crude Oil
Global Trade Network

The crude oil network data were gathered using the World
Integrated Trade Solution (WITS) software [44], which was
developed by The World Bank in collaboration with the
United Nations Conference on Trade and Development
(UNCTAD) and in consultation with various organizations,
such as the International Trade Center, the United Nations
Statistical Division (UNSD), and the World Trade Organiza-
tion (WTQO). This software provides access to international
merchandise trade, tariff, and nontariff measure data. Data
on crude oil bilateral trade around the world, including
175 countries, were provided from 2007 to 2010. The values
were recorded in US dollars, and the computations were
based on the mean bilateral trade that occurred in the study
period. Due to missing bilateral trade data, 66 key countries
were selected by consultant with oil trade experts, and the
adjacency matrix of the network was formed.

According to the gravity model from international eco-
nomics, which is claimed to be one of the great success
stories in empirical economics [45], the trade between two
countries is positively related to both of their economic
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sizes and negatively related to the distance between them
[46]. Therefore, we select the GDP per population, which
represents the economic size of the countries as an individual
characteristic of the nodes in the network, and consider the
distance layer as a new effective layer in the bilateral trade
network to form a multilayer attributed network.

The entire study consists of two steps. First, to analyze
total bilateral trade between pairs of countries, the commu-
nity structure of the network was detected and the clustering
quality and number of optimized clusters were examined
using internal, external, and relative validity indices. Second,
to explain the finding (key countries in the global trade) from
the analysis in the first step, we further determined the close-
ness centrality in the multilayer attributed oil trade network
and analyzed the bilateral trade at the cluster level. This study
helps oil trade policy makers, research analysts, academia,
trade professionals, and others to better comprehend and
navigate the world of energy trade.

Because clustering methods discover community struc-
tures, which are not known a priori, the concluding partitions
of a dataset require some type of evaluation. Cluster validity
indices are developed to quantitatively evaluate the results
of the clustering algorithms. There are three approaches to
investigating the cluster validity [43]. The first approach,
based on external criterion, evaluates the results of a cluster-
ing algorithm based on a prespecified structure. The second
approach is based on internal criteria, which implies that the
clustering result is evaluated using only quantities and fea-
tures that are inherent to the dataset. The optimal number of
clusters is often determined by the internal validity indices.
The third approach, based on relative criterion, evaluates a
clustering structure by comparing it to other clustering
schemes.

In the previous section, because the cluster label of
the data was available, we assessed the clustering quality
using an external validity index, that is, the Rand index.
Here, the internal validity indices were used to determine
the optimal number of clusters. Then, the external criteria
were used to investigate the clustering quality using in-
depth interviews with experts of the oil global trade on the
optimal detected community structure. However, the relative
criterion approach was examined by comparing the results of
the proposed clustering method to other clustering methods
with different parameters.

In the first step, the primary computational stages of
the proposed algorithm were performed using MATLAB.
CVAP was applied to cluster the network in 2 to 10 commu-
nities and compute the internal validity indices. Four clusters
were proven to be optimum using three internal validity
indices: the C, Calinski-Harabasz, and Hartigan indices [43].
Figure 2 presents the indices and optimal number of clusters.
Then, with the aim of external validation, we examined
the significance of the obtained results in four clusters by
consulting experts in the field. Ninety percent of the experts
indicated that the quality of the clustering results using the
proposed method was satisfactory and within acceptable
limits. The list below and Figure 3 present the clustering
results of the proposed method.
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TABLE 2: Rand external validation indices which compare the clustering result to the known standard partition.
Dataset 2 clusters 3 clusters 4 clusters 5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters ~ Average
Cornell 0.531959  0.574993  0.591647  0.613904  0.645519 0.64885 0.631245 0.638118 0.652868  0.614345
Texas 0.405497  0.648554  0.652924  0.654534  0.649186  0.684434  0.697085  0.690587  0.664654  0.638606
Washington 0.676514 0.6543 0.64925 0.716233 0.707651  0.694817  0.706246  0.717904 0.705259 0.692019
Wisconsin ~ 0.515209  0.707033  0.747256 0.74777 0.756118 0.752945  0.745798  0.700114 0.723756 0.710666
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FIGURE 2: Internal validity indices and the optimal number of clusters.
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Cluster 1: Croatia, Greece, Portugal, Poland, Hungary,
Czech Rep, Romania, Ukraine, Yugoslavia, Azerbai-
jan, Kazakhstan, Turkmenistan, Russian Fed, China,
India, Pakistan, Turkey, Iran-Islam.R, Iraq, Saudi
Arabia, Oman, Syrian A.R., Algeria, Egypt, Libya,
Morocco, Tunisia, and Sudan.

Cluster 2: Argentina, Bolivia, Brazil, Chile, Ecuador,
Mexico, Peru, Venezuela, Trinidad Tbg, Angola,
Nigeria, and Tanzania.

Cluster 3: Japan, Korea Rep., Indonesia, Malaysia,
Philippines, Thailand, Australia, and New Zealand.

Cluster 4: Austria, Belgium, Denmark, France +
Monac, Germany, Ireland, Italy, Netherlands, Nor-
way, Spain, Sweden, Switz. Liecht, Untd. Kingdom,
USA, Canada, Kuwait, Qatar, and Untd. Arab Em.

Then, for relative validation, the behavior of the proposed
clustering method was studied by comparison with the
existing clustering methods. The gathered data were clustered
once based on the individual characteristics of the nodes,
particularly the economic size and geographic coordinates,
using a data-mining clustering method, and again based on
the characteristics of the edges, that is, bilateral-trade data
via a community detection method in graphs; the quality of
the aforementioned clustering methods was compared with
the proposed method, which simultaneously considers the
characteristics of the nodes and edges using the C-index. The
results are presented in Table 3, illustrating that the proposed
method acquires the minimum and thus the best level of the
index.

The cluster formation was based on three key pillars. The
first pillar is the energy market environment. The clusters are
affected by cluster-specific business environment conditions,
which result from the bilateral oil trade of countries. The sec-
ond pillar is geography. The clusters are driven by proximity
and often concentrated in a region within a larger zone, which
is often in one continent. The third pillar is the economic
size criterion. The clusters may include countries in different
regions with similar economic sizes.

In the second step, the closeness centrality was computed
according to Section 3.2. The findings indicate that Turkey,
Venezuela, Malaysia, and Belgium are the key countries in
the first, second, third, and fourth clusters, respectively; that
is, they are the closest countries to all other members of
each cluster based on the bilateral-trade rate, geographic
coordinates, and GDP-per-population criterion.

6. Conclusions

Unlike most social network analysis studies, this study
assumes that there are heterogeneous data that are related to a
network, namely, the network structure and node attributes.
Clustering algorithms traditionally consider only the node
attributes, whereas community detection methods mainly
focus on the network structure. Therefore, our approach to
community detection in network analysis represents a key
shift in methodology from the traditional approach because it
can overcome the shortcomings of its two components when
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TaBLE 3: Comparison of the clustering qualities of the proposed
method and existing methods.

Optimal Number of = ;1 qex

Method Clusters

Clustering based on 5 0.4
node attributes

Clustering based on 3 02
structure of relations

Proposed method 4 0.17

applied separately. In addition, our proposed method can
consider multilayer networks, which may provide a better
fit to real-world multilayer complex networks. The hybrid
clustering method, which uses the node attributes and topol-
ogy structure of the network, provided promising results
when applied to four benchmark networks and a real-life
example.
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