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The loading-rate dependency on the pseudoelastic behaviors of shapememory alloy (SMA)wires is experimentally and numerically
investigated. The results are analyzed to estimate the parameters for a thermomechanical constitutive model of SMA wire with
strain-rate dependency of the hysteresis behavior. An analytical model of SMAs is developed by using nonconstant parameters
during various strain rates. Numerical simulations are performed to demonstrate the accuracy of the improved model.

1. Introduction

Shape memory alloys (SMAs) offer a combination of novel
properties such as the shape memory effect and pseudoelas-
ticity. In particular, pseudoelastic behaviors of SMAs are very
attractive as damping materials due to their ability to sustain
large amounts of strain energy density and to dissipate high
levels of work as compared to normal metals. Even though it
is interesting to explore SMAs in passive vibration isolation
from the host structure, they may also lead to very complex
pseudoelastic responses. For example, the rate of temperature
variation and the strain rate affect the deformation properties
of SMAs, and those properties serve as a basis for the
evaluation of SMA thermomechanical behaviors. Therefore,
it is very important to establish an appropriate constitutive
SMA model for practical applications.

The relationship between the instantaneous SMA temper-
ature and strain rate was first examined experimentally by
Mukherjee et al. [1]. Prior experimental data indicated that
a strong rate dependence of superelastic NiTi wire existed in
the typical frequency range [2]. Nemat-Nasser and Guo [3]
studied the dynamic response ofNiTi SMAs focusing on their
superelastic behavior at various loading rates. Soul et al. [4]
investigated the damping properties associatedwith pseudoe-
lastic SMA behavior in various strain-rate ranges and showed

that damping capacity had maximum values at a specific
frequency associated with the temperature effect. So, when
designing SMA based damping devices for various applica-
tions, a constitutive model to accurately predict the stress-
strain relationship in the loading-rate range is important. An
improved thermomechanical constitutive SMA model was
proposed by simply modifying existing models to include
the effects of loading frequency [5–8]. Tobushi et al. [2]
observed that the critical stresses of phase transformation as
well as the slope of the transformation line were affected by
strain rates. However, the constitutive models using simple
transformation equations or constant parameters for SMAs
have limitations in describing the peculiar behavior of SMAs.
Ren et al. [9] proposed an improved Graesser’s model for
the strain-rate-dependent hysteresis behavior of superelastic
SMA wires. Thamburaja [10] developed thermomechanically
coupled and nonlocal phenomenological theory for SMAs
to investigate the nonisothermal behavior during tensile
superelastic deformation.The author numerically showed the
trend of stress-strain responses by increasing the strain rate: a
wider hysteresis loop and a significantly larger hardening and
softening during the forward loading process and the reverse
loading process, respectively. Morin et al. [11] developed a
model for SMAs that takes into account thermomechanical
coupling by considering two main heat sources: intrinsic
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dissipation and latent heat. However, for high strain rates,
only qualitative agreement is achieved for thermal results.

In this research, the effect of the strain rate on the
pseudoelastic behavior of SMA wires is experimentally and
numerically investigated. Experimental tests of the thermo-
mechanical coupling in SMA are analyzed to evaluate the
parameters for a numerical SMA model with strain-rate
dependency. As a strain rate increases, the forward and
reverse transformation critical stress commence at a higher
stress value. The slope of the transformation plateau also
increases. Thus, a new form of transformation parameter is
proposed to improve agreement with experimental data. The
SMAs’ rate-dependent behavior is modeled by coupling of
the rate-independent kinetic rules with the heat equation.
With an improved thermomechanical constitutivemodel, the
author can fairly accurately predict the strain-rate-dependent
behavior of pseudoelastic SMAwires at various loading rates.

2. Thermodynamics for the Constitutive Law

It is assumed that the thermodynamics of SMAs are fully
described by the set of variables (𝜀, 𝑇, 𝜉), where 𝜀 is the Green
strain and 𝜉 is an internal variable representing the stage of
the transformation. 𝜉 is defined as the martensite fraction
of the material, which varies from zero to one with unity
representing 100% martensite, and its value is governed by
temperature and stress. The strain of an SMP material can
be decomposed into two parts: 𝜀 = 𝜀el + 𝜀in, where 𝜀el is
the thermoelastic strain and 𝜀in is the inelastic strain due to
phase transformation. The Helmholtz free energy per unit
mass which depends on state variables and internal variables
is chosen as

Φ = Φ (𝜀, 𝑇, 𝜀el, 𝜀in, 𝜉) = Φ (𝜀el, 𝑇, 𝜉) . (1)

The Clausius-Duhem inequality with

Φ̇ =
𝜕Φ

𝜕𝜀el
: 𝜀̇el +

𝜕Φ

𝜕𝑇
𝑇̇ +

𝜕Φ

𝜕𝜉
̇𝜉 (2)

can be obtained based on the first and second law of
thermodynamics:

(𝜎 − 𝜌
𝜕Φ

𝜕𝜀el
) : 𝜀̇el − 𝜌(𝑠 +

𝜕Φ

𝜕𝑇
) 𝑇̇

− 𝜌
𝜕Φ

𝜕𝜉
̇𝜉 −

⃗𝑞

𝑇
⋅
󳨀󳨀󳨀→
grad𝑇 ≥ 0,

(3)

where 𝜎, 𝑠, 𝑇, and ⃗𝑞 represent the stress tensor, the specific
entropy per unit mass, the temperature, and the heat flux
vector, respectively.

A sufficient condition for (3) to hold for every choice of
𝜀̇el and 𝑇̇ is that their respective coefficients must vanish, thus
yielding

𝜎 = 𝜌
𝜕Φ

𝜕𝜀el
, (4)

𝑠 = −
𝜕Φ

𝜕𝑇
. (5)

In an analogous manner, the thermodynamic forces associ-
ated with the internal variables can be defined by

Λ = 𝜌
𝜕Φ

𝜕𝜉
. (6)

Heat transfer between SMAs and the surrounding envi-
ronment is considered. The heat transfer caused by heat flux
can be described using the following equation:

⃗𝑞 = 𝑘 ⋅
󳨀󳨀󳨀→
grad𝑇, (7)

where 𝑘 is the thermal conductivity.
From the energy conservation equation, 𝜌 ̇𝑒 can be

replaced by the expression derived from the specific internal
energy, 𝑒 = Φ + 𝑇𝑠:

𝜌 ̇𝑒 = 𝜌Φ̇ + 𝜌𝑇 ̇𝑠 + 𝜌𝑇̇𝑠 (8)

and Φ̇ can be expressed as a function of the state variables
(𝜀el, 𝑇, 𝜉) using (4), (5), and (6), so that

Φ̇ =
1

𝜌
𝜎 : 𝜀̇el − 𝑠𝑇̇ +

1

𝜌
Λ ̇𝜉. (9)

By substituting (9) into (8), 𝜌 ̇𝑒 can be derived:

𝜌 ̇𝑒 = 𝜎 : 𝜀̇el + Λ ̇𝜉 + 𝜌𝑇 ̇𝑠. (10)

Thefirst principle of thermodynamics,𝜌 ̇𝑒−𝜎 : 𝜀̇+𝑟−div ⃗𝑞 = 0,
can be rewritten using (10) as

𝜎 : 𝜀̇el + Λ ̇𝜉 + 𝜌𝑇 ̇𝑠 = 𝜎 : 𝜀̇ + 𝑟 − div ⃗𝑞. (11)

Entropy is a function of the state variables, so the entropy rate
can be expressed with (5) and (6) as

̇𝑠 = −
𝜕
2Φ

𝜕𝜀el𝜕𝑇
: 𝜀̇el −

𝜕2Φ

𝜕𝑇2
𝑇̇ −

𝜕2Φ

𝜕𝜉𝜕𝑇
̇𝜉

= −
1

𝜌

𝜕𝜎

𝜕𝑇
: 𝜀̇el +

𝜕𝑠

𝜕𝑇
𝑇̇ −

1

𝜌

𝜕Λ

𝜕𝑇
̇𝜉.

(12)

By introducing the specific heat defined by 𝐶
𝑝
= 𝑇(𝜕𝑠/𝜕𝑇),

and taking into account Fourier’s law, div ⃗𝑞 = −𝑘 ⋅

div(
󳨀󳨀󳨀→
grad𝑇) = −𝑘∇2𝑇, (11) can be modified using 𝜀̇in = 𝜀̇− 𝜀̇el:

𝑘∇
2
𝑇 = 𝜌𝐶

𝑝
𝑇̇ − 𝜎 : 𝜀̇in + Λ ̇𝜉 − 𝑟 − 𝑇(

𝜕𝜎

𝜕𝑇
: 𝜀̇el +

𝜕Λ

𝜕𝑇
̇𝜉) .

(13)

Under the assumptions that there is no internal heat produc-
tion generated by external sources, that is, 𝑟 = 0, there is no
thermomechanical coupling; that is, (𝜕𝜎/𝜕𝑇) : 𝜀̇el = 0 and
(𝜕Λ/𝜕𝑇) ̇𝜉 = 0. A uniform temperature in the SMA is assumed
under loading. The heat flux is caused by heat transfer
between the SMA and the surrounding environment due to
the temperature difference.The heat transfer equation can be
described using 𝑄̇ = ℎ ⋅ (𝑇 − 𝑇

𝑜
), where 𝑄̇ is the transient

rate of heat flow, 𝑇 and 𝑇
𝑜
are the transient temperature



Mathematical Problems in Engineering 3

of the SMA under loading and environment temperature,
respectively, and ℎ is the heat transfer coefficient, which
should include not only the heat convection but also the heat
contact between the SMA wire specimen and the gripping
fixture at the end of the specimen. Here, the heat transfer
coefficient has a dimension of 𝑊 ∘𝐶

−1. It is assumed that
the temperature of the gripping fixture and the environment
should be a constant, 𝑇

𝑜
. The divergence of heat flux (div ⃗𝑞)

can be estimated from heat transfer per unit volume (𝑉):
div ⃗𝑞 = −𝑘∇2𝑇 = ℎ/𝑉 ⋅ (𝑇 − 𝑇

𝑜
); (13) can be rewritten as

𝜌𝐶
𝑝
𝑇̇ = 𝜎 : 𝜀̇in − Λ ̇𝜉 +

ℎ

𝑉
⋅ (𝑇 − 𝑇

𝑜
) . (14)

Thus, for materials like superelastic SMAs, only part of the
mechanical input energy is stored in the form of elastic
strain energy; the remaining part of the mechanical input
energy is dissipated due to the inelastic deformation. Such
energy dissipation usually contributes to the temperature
variation in the SMA specimen under loading and thus affects
the material behavior of SMAs. The term 𝜎 : 𝜀̇in in (14)
represents the time rate of mechanical energy dissipation
due to the inelastic deformation; the term Λ ̇𝜉 represents
the rate of latent heat, and the negative sign means the
austenite to martensite transformation is exothermic, while
the martensite to austenite transformation is endothermic.
Thus (14) means that at any instant the heat generation due to
the inelastic dissipation is equal to the specific heat absorbed
by the specimen plus the heat loss to the environment.

3. Constitutive SMA Equations with
Strain-Rate Dependence

The rate form of 1D constitutive equations of SMA wire can
be obtained by modifying the thermodynamic equations.
The model consists of three equations: the constitutive equa-
tion, the transformation equation, and the energy balance
equation. The constitutive equation can be expressed as a
description of the increment of strain, ̇𝜀, in terms of the
increments of stress, 𝜎̇, temperature, 𝑇̇, and the martensite
fraction, ̇𝜉, by differentiating (4):

𝜎̇ = 𝐷 ̇𝜀 + 𝜃𝑇̇ + Ω ̇𝜉, (15)

where𝐷 is Young’smodulus, 𝜃 is related to the thermal expan-
sion coefficient, andΩ is representative of the transformation
tensor for the SMAs as defined by the following equations:

𝐷 ≡ 𝜌
𝜕
2Φ

𝜕𝜀el𝜕𝜀
,

𝜃 ≡ 𝜌
𝜕
2Φ

𝜕𝜀el𝜕𝑇
,

Ω ≡ 𝜌
𝜕
2Φ

𝜕𝜀el𝜕𝜉
.

(16)

The inelastic and elastic strain can be expressed as

𝜀 = 𝜀el + 𝜀in,

𝜀in = 𝜀
𝑙
𝜉,

𝜀el = 𝜀 − 𝜀
𝑙
𝜉,

(17)

where 𝜀
𝑙
is the maximum residual strain. The Helmholtz free

energy for superelastic SMA, Φ(𝜀el, 𝑇, 𝜉), is assumed to be of
the following form:

Φ =
𝐷

2𝜌
𝜀
2

el +
𝐿

𝑇cr
(𝑇 − 𝑇cr) 𝜉

−𝐶
𝑝
𝑇 ln( 𝑇

𝑇
𝑜

) +
𝐷

𝜌
𝜀el𝛼 (𝑇 − 𝑇

𝑜
) .

(18)

The transformation equation, which relates the increment
of the martensite fraction to the transformation strain, has
been well established by Tanaka [12], Liang and Rogers [13],
and Brinson [14]. The transformation kinetics represent the
martensite fraction as a function of stress and temperature.
In order to further improve the simulated behavior of supere-
lastic SMAs, Brinson’s model of transformation kinetics is
used for a rate-dependent constitutive model. In this model,
a separation of this variable into two parts is proposed based
on the micromechanics of SMA materials. 𝜉 can be defined
by

𝜉 = 𝜉
𝑇
+ 𝜉
𝑆
, (19)

where 𝜉
𝑇
represents the fraction of the material that is purely

temperature-induced martensite with multiple variants and
𝜉
𝑆
denotes the fraction of the material that has been trans-

formed by stress into a single martensitic variant. Young’s
modulus, 𝐷, and the material property, Ω, can be defined as
a function of 𝜉:

𝐷 = 𝐸
𝐴
+ 𝜉 (𝐸

𝑀
− 𝐸
𝐴
) ,

Ω = −𝜀
𝑙
𝐷,

(20)

where 𝐸𝐴 and 𝐸𝑀 are the modulus values of the SMA as
austenite and martensite, respectively.

The evolution of the martensite fraction during the phase
transformation in Brinson’s model is defined by the following
equations.

Transformation from austenite to martensite:
for𝑇 > 𝑀

𝑠
and 𝜎cr
𝑠
+𝐶
𝑀
(𝑇−𝑀

𝑠
) < 𝜎 < 𝜎cr

𝑓
+𝐶
𝑀
(𝑇−𝑀

𝑠
),

𝜉
𝑆
=

1 − 𝜉
𝑠𝑜

2
cos{ 𝜋

𝜎cr
𝑠
− 𝜎cr
𝑓

× [𝜎 − 𝜎
cr
𝑓
− 𝐶
𝑀
(𝑇 −𝑀

𝑆
)]}

+
1 + 𝜉
𝑠𝑜

2
,

(21a)

𝜉
𝑇
= 𝜉
𝑇𝑜

−
𝜉
𝑇𝑜

1 − 𝜉
𝑆𝑜

(𝜉
𝑆
− 𝜉
𝑆𝑜
) . (21b)
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Transformation from martensite to austenite:
for 𝑇 > 𝐴

𝑠
and 𝐶

𝐴
(𝑇 − 𝐴

𝑓
) < 𝜎 < 𝐶

𝐴
(𝑇 − 𝐴

𝑠
),

𝜉 =
𝜉
𝑜

2
{cos [𝑎

𝐴
(𝑇 − 𝐴

𝑠
−

𝜎

𝐶
𝐴

)] + 1} , (22a)

𝜉
𝑆
= 𝜉
𝑠𝑜
−
𝜉
𝑠𝑜

𝜉
𝑜

(𝜉
𝑜
− 𝜉) , (22b)

𝜉
𝑇
= 𝜉
𝑇𝑜

−
𝜉
𝑇𝑜

𝜉
𝑜

(𝜉
𝑜
− 𝜉) , (22c)

where 𝐶
𝑀

and 𝐶
𝐴
are parameters and 𝜎cr

𝑠
and 𝜎cr

𝑓
are the

critical stresses at the start and finish of the conversion of
martensitic variants. 𝑎

𝐴
is defined by 𝑎

𝐴
= 𝜋/(𝐴

𝑓
− 𝐴
𝑠
).

The transformation equations for forward (austenite to
martensite) and reverse (martensite to austenite) directions
can be obtained by differentiating (21a), (21b), (22a), (22b),
and (22c), respectively:

̇𝜉 = −
1 − 𝜉
𝑜

2
sin{ 𝜋

𝜎cr
𝑠
− 𝜎cr
𝑓

[𝜎 − 𝜎
cr
𝑓
− 𝐶
𝑀
(𝑇 −𝑀

𝑠
)]}

× (
𝜋

𝜎cr
𝑠
− 𝜎cr
𝑓

𝜎̇ −
𝜋𝐶
𝑀

𝜎cr
𝑠
− 𝜎cr
𝑓

𝑇̇) ,

(23a)

̇𝜉 = −
𝜉
𝑜

2
sin [𝑎

𝐴
(𝑇 − 𝐴

𝑠
−

𝜎

𝐶
𝐴

)] ⋅ (𝑎
𝐴
𝑇̇ −

𝑎
𝐴

𝐶
𝐴

𝜎̇) . (23b)

From the energy balance equation derived in (14), the rate
formof temperature variation can be obtained by substituting
(17) and (18) as

𝑇̇ =
1

𝜌𝐶
𝑝

[𝜎𝜀
𝑙
−
𝐸𝑀 − 𝐸𝐴

2
(𝜀 − 𝜀
𝑙
𝜉)
2

+ 𝐷𝜀
𝑙
(𝜀 − 𝜀
𝑙
𝜉)

+
𝜌𝐿

𝑇cr
(𝑇 − 𝑇cr) + (𝐸

𝑀
− 𝐸
𝐴
) 𝜀el𝛼 (𝑇 − 𝑇

𝑜
)

−𝐷𝜀
𝑙
𝛼 (𝑇 − 𝑇

𝑜
) ] ̇𝜉 −

ℎ

𝜌𝐶
𝑝
𝑉
(𝑇 − 𝑇

𝑜
) .

(24)

The rate forms of the constitutive models of (15), (23a),
(23b), and (24) are used for the numerical analysis. In order to
solve for the three variants𝜎,𝑇, and 𝜉, these three constitutive
equations need to be integrated simultaneously. By solving
algebraic equations involving the first power of 𝜎̇, 𝑇̇, or ̇𝜉,
the constitutive equations can be rewritten into the following
forms.

Austenite to martensite:

𝜎̇ =
𝐶
1
− 𝐶
1
𝐶
4
𝐶
7

1 − 𝐶
2
𝐶
6
− 𝐶
3
𝐶
4
𝐶
6
− 𝐶
4
𝐶
7

̇𝜀

+
𝐶
3
𝐶
5
+ 𝐶
2
𝐶
5
𝐶
7

1 − 𝐶
2
𝐶
6
− 𝐶
3
𝐶
4
𝐶
6
− 𝐶
4
𝐶
7

,

(25a)

𝑇̇ =
𝐶
1
𝐶
4
𝐶
6

1 − 𝐶
2
𝐶
6
− 𝐶
3
𝐶
4
𝐶
6
− 𝐶
4
𝐶
7

̇𝜀

+
𝐶
5
− 𝐶
2
𝐶
5
𝐶
6

1 − 𝐶
2
𝐶
6
− 𝐶
3
𝐶
4
𝐶
6
− 𝐶
4
𝐶
7

,

(25b)

̇𝜉 =
𝐶
1
𝐶
6

1 − 𝐶
2
𝐶
6
− 𝐶
3
𝐶
4
𝐶
6
− 𝐶
4
𝐶
7

̇𝜀

+
𝐶
3
𝐶
5
𝐶
6
− 𝐶
5
𝐶
7

1 − 𝐶
2
𝐶
6
− 𝐶
3
𝐶
4
𝐶
6
− 𝐶
4
𝐶
7

.

(25c)

Martensite to austenite:

𝜎̇ =
𝐶
1
− 𝐶
1
𝐶
4
𝐶
9

1 − 𝐶
2
𝐶
8
− 𝐶
3
𝐶
4
𝐶
8
− 𝐶
4
𝐶
9

̇𝜀

+
𝐶
3
𝐶
5
+ 𝐶
2
𝐶
5
𝐶
9

1 − 𝐶
2
𝐶
8
− 𝐶
3
𝐶
4
𝐶
8
− 𝐶
4
𝐶
9

,

(26a)

𝑇̇ =
𝐶
1
𝐶
4
𝐶
8

1 − 𝐶
2
𝐶
8
− 𝐶
3
𝐶
4
𝐶
8
− 𝐶
4
𝐶
9

̇𝜀

+
𝐶
5
− 𝐶
2
𝐶
5
𝐶
8

1 − 𝐶
2
𝐶
8
− 𝐶
3
𝐶
4
𝐶
8
− 𝐶
4
𝐶
9

,

(26b)

̇𝜉 =
𝐶
1
𝐶
8

1 − 𝐶
2
𝐶
8
− 𝐶
3
𝐶
4
𝐶
8
− 𝐶
4
𝐶
9

̇𝜀

+
𝐶
3
𝐶
5
𝐶
8
− 𝐶
5
𝐶
9

1 − 𝐶
2
𝐶
8
− 𝐶
3
𝐶
4
𝐶
8
− 𝐶
4
𝐶
9

.

(26c)

Each parameter can be defined as follows:

𝐶
1
≡ 𝐷 (𝜉) ,

𝐶
2
≡ Ω (𝜉) ,

𝐶
3
≡ 𝜃,

(27a)

𝐶
4
≡

1

𝜌𝐶
𝑝

[𝜎𝜀
𝐿
+
𝐸
𝐴
− 𝐸
𝑀

2
(𝜀 − 𝜀
𝐿
𝜉)
2

+ 𝜌𝐿] ,

𝐶
5
≡ −

ℎ

𝜌𝐶
𝑝
𝑉

(𝑇 − 𝑇
𝑜
) ,

(27b)

𝐶
6
≡ −

1 − 𝜉
𝑜

2
sin{ 𝜋

𝜎cr
𝑠
− 𝜎cr
𝑓

[𝜎 − 𝜎
cr
𝑓
− 𝐶
𝑀
(𝑇 −𝑀

𝑠
)]}

×
𝜋

𝜎cr
𝑠
− 𝜎cr
𝑓

,

(27c)
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𝐶
7
≡

1 − 𝜉
𝑜

2
sin{ 𝜋

𝜎cr
𝑠
− 𝜎cr
𝑓

[𝜎 − 𝜎
cr
𝑓
− 𝐶
𝑀
(𝑇 −𝑀

𝑠
)]}

×
𝜋𝐶
𝑀

𝜎cr
𝑠
− 𝜎cr
𝑓

,

(27d)

𝐶
8
≡
𝜉
𝑜

2
sin [𝑎

𝐴
(𝑇 − 𝐴

𝑠
−

𝜎

𝐶
𝐴

)] ⋅
𝑎
𝐴

𝐶
𝐴

,

𝐶
9
≡ −

𝜉
𝑜

2
sin [𝑎

𝐴
(𝑇 − 𝐴

𝑠
−

𝜎

𝐶
𝐴

)] ⋅ 𝑎
𝐴
.

(27e)

These differential equations are simultaneously solved using
the fourth-order Runge-Kutta method.

4. Experimental Characterization of
an SMA Wire

To characterize the thermomechanical behaviors of an SMA
wire, the author takes experimental measurements of an
SMA wire (Alloy S), which is manufactured by the MEMRY
Corporation. Alloy S, a diameter 2.31mm, shows pseudoe-
lastic behavior at room temperature. For the loading and
unloading test at various temperatures, MTS 810 universal
testing machine with thermal chamber is used. To measure
the strain, an extensometer (MTS 634) with a 25mm gauge
length is used. The thermocouple (K type) is adhered on
middle of the specimen to observe the temperature variation
of the SMAwith strain rates. To characterize the temperature-
induced transformation, differential scanning calorimeter
(DSC) was utilized with a constant rate of heating and
cooling, 10∘C /min.

The training was performed by applying 15 sequential
loading/unloading cycles to stabilize the alloy. With the
material being satisfactorily stabilized, the characterization
process experiment was carried out to derive final material
parameters. Continuing, isothermal loading is applied to the
trained wire specimens at different constant temperatures
(25, 30, 40, and 50∘C). By noting where transformations
begin and end, a detailed phase diagram can be constructed.
Figure 1 shows the pseudoelastic curve for a constant temper-
ature of 25∘C, which illustrates detailed material parameters.
Here, 𝐸𝐴 and 𝐸𝑀 are measured in a straightforward manner.
The critical stresses for initiation and completion of phase
transformation are determined.These stresses are denoted as
𝜎
𝑀
𝑠 and 𝜎

𝑀
𝑓 for martensite and 𝜎

𝐴
𝑠 and 𝜎

𝐴
𝑓 for austenite.

The values for theses stresses at a test temperature of 25∘C
are shown in Figure 1. In addition to the determination of
the final phase diagram, themaximum transformation strain,
𝜀
𝑙
, was also derived. The maximum transformation strain

is equivalent to the amount of strain indicated when the
martensitic elastic stress response is extrapolated to the zero-
stress axis. By examining the five isothermal pseudoelastic
tests performed, one can determine the stresses for the
initiation and completion of both transformations at five
distinct temperatures. Construction of the phase diagram
which proceeded using this experimental data is shown in
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Figure 1: Pseudoelastic behavior of the SMA for temperature of
25∘C.
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Figure 2: Temperature dependence of critical stress for inducing
phase transformation.

Figure 2. The critical stresses, 𝜎𝑠cr and 𝜎𝑓cr, represent the start
and finish stresses for the detwinning of martensite and are
assumed to be constant to fully describe the configuration of
the phase diagram.The parameters for the constitutivemodel
used in this study to simulate the pseudoelastic behavior of
SMA wire are experimentally measured and given in Table 1.
It is seen in Figure 3 that the model with the presented
thermomechanical parameters can predict the pseudoelastic
behavior of SMA wire quite well.

5. The Strain-Rate Effect on the Pseudoelastic
Behaviors of an SMA Wire

The pseudoelastic behaviors of SMA wires for a variety
of loading rates are measured experimentally in Figure 4.
Twomajor thermomechanical behaviors of the pseudoelastic
SMA wires under varying loading rates can be captured: the
increasing of the critical stresses of phase transformation
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Table 1: Material properties of SMA wire.

Moduli and thermal expansion
𝐸𝐴 = 46GPa
𝐸
𝑀

= 36.5GPa
𝛼 = 0.0MPa/∘C

Transformation temperatures

𝑀
𝑓
= −6∘C

𝑀
𝑠
= 9∘C

𝐴
𝑠
= 11∘C

𝐴
𝑓
= 16
∘C

Transformation constants

𝐶
𝑀

= 6.7MPa/∘C
𝐶
𝐴
= 10.1MPa/∘C

𝜎𝑠cr = 266MPa
𝜎𝑓cr = 297MPa

Maximum residual strain 𝜀
𝑙
= 0.058

Density 𝜌 = 6465 kgm−3

Thermodynamic constants
𝐶
𝑝
= 2667 Jkg−1∘C−1

𝐿 = 24200 Jkg−1
ℎ = 0.042W∘C−1
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Figure 3: Comparison of pseudoelastic behavior at temperature of
25∘C.

such as 𝜎𝑀𝑠 , 𝜎𝑀𝑓 , 𝜎𝐴𝑠 , and 𝜎𝐴𝑓 and the increased slope
of the transformation plateau with increasing loading rates.
Similar experimental results were also reported in [2]. So, it is
necessary to take account of this point to the numericalmodel
of SMAs. Even if the transformation stresses as well as the
slope of each transformation line are affected by strain rates,
the stress-temperature phase diagram of Brinson’s model
cannot consider these effects.

In this research, the material parameters 𝐶
𝑀

and 𝐶
𝐴
,

which represent the slope of critical stresses variation with
respect to temperature, are newly proposed as depending on
strain rates:

𝐶
∗

𝑀
= 𝐶
𝑀
+ 𝑆
𝑀
⋅ sin (0.05 ⋅ ̇𝜀) , (28a)

𝐶
∗

𝐴
= 𝐶
𝐴
+ 𝑆
𝐴
⋅ sin (0.05 ⋅ ̇𝜀) , (28b)
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slope of transformation plateau.

where 𝑆
𝑀

and 𝑆
𝐴

indicate a variation of the inclination
from 𝜎𝑀𝑠 to 𝜎𝑀𝑓 and from 𝜎𝐴𝑠 to 𝜎𝐴𝑓 with respect to
loading rates, respectively (Figure 5). The parameters are
phenomenologically developed by fitting the variation curves
of critical stresses with respect to strain rates based on the
experiments and can be simply handled and implemented
into the SMA constitutive equations. The values of 𝑆

𝑀
and

𝑆
𝐴
are experimentally measured as follows:

𝑆
𝑀

= 15665.4MPa/ ∘C,

𝑆
𝐴
= 8195.6MPa/ ∘C .

(29)

Figures 6, 7, and 8 show the comparisons of pseudoelastic
behaviors of SMA wires with respect to strain rates. The
simulation results are compared with the result without
rate dependency to show the effectiveness of the developed
model for the consideration of the strain-rate effect on
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Figure 6: Comparisons of pseudoelastic behavior at strain rate of
1 × 10−4 s−1.
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Figure 7: Comparisons of pseudoelastic behavior at strain rate of
5 × 10

−3 s−1.

the pseudoelastic behaviors of SMAs. In the case of strain
rate of 1 × 10−4s−1, there is a good agreement between
the simulation and the experiment. However, the higher
the strain rates, the bigger the discrepancy between the
simulation without strain-rate effect and the experiment
results. For the strain rates of 5 × 10

−3s−1 and 2 × 10−2s−1,
the present model can sufficiently follow the variation of
phase transformation stresses (𝜎𝑀𝑠 ,𝜎𝑀𝑓 ,𝜎𝐴𝑠 , and𝜎𝐴𝑓) aswell
as the increased slope of the transformation plateau. Thus,
the present model can effectively predict the pseudoelastic
behaviors of SMAs with respect to strain rates. Figures 9,
10, and 11 present the experimental and simulation results
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Figure 8: Comparisons of pseudoelastic behavior at strain rate of
2 × 10−2 s−1.
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Figure 9: Temperature variation at strain rate of 1 × 10
−4 s−1.

of temperature variation in SMA specimens. It is seen that
the proposed constitutive model is able to properly predict
the trend of temperature change in pseudoelastic SMAs. In
a strain rate with a quasistatic loading of 1 × 10−4s−1, there
is a negligible temperature change. However, the temperature
variation is slightly increased as the strain rates are further
increased. Although the simulated temperature agrees fairly
well with the experiment for the strain rates, the presented
model seems to underpredict the temperature change. Such a
discrepancy may arise from either inaccuracies with respect
to the identified model parameters or errors in temperature
measurement. Figure 12 shows the hysteresis of martensite
fraction at various strain rates. In loading process, the
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forward phase transformation (austenite to martensite) is
retarded by increasing strain rates, but the reverse phase
transformation (martensite to austenite) begins earlier in
unloading process.Moreover, the slope ofmartensite fraction
with respect to strain decreases by increasing strain rates.

6. Conclusion

In our experimental and numerical investigation of the
thermomechanical behaviors of SMAs, the author finds the
following: the strain rate affects the phase transformation
stresses as well as the slope of the transformation plateau
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Figure 12: Hysteresis of martensite fraction at various strain rates.

and the temperature variation is slightly increased at fur-
ther increased strain rates. The author also proposes a 1D
incremental formulation of the SMA model with strain-
rate dependence. This numerical model is able to provide
good predictions of the thermomechanical characteristics
of SMAs such as the pseudoelastic strain-stress curves and
the temperature variation with respect to strain rates. The
advantages of the presented model are the simplicity, the
possibility of implementing a robust solution algorithm, and
the ability to predict fairly well experimental results obtained
at different strain rates. It is expected that the model should
be useful for designing and evaluating damping devices using
the pseudoelastic characteristics of SMAs.
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