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This paper addresses linear quadraticGaussian (LQG) control problems formulti-inputmultioutput (MIMO), linear time-invariant
(LTI) systems, where the sensors and controllers are geographically separated and connected via a digital communication channel
with limited data rates. An observer-based, quantized state feedback control scheme is employed in order to achieve the minimum
data rate for mean square stabilization of the unstable plant. An explicit expression is presented to state the tradeoff between the
LQ cost and the data rate. Sufficient conditions on the data rate for mean square stabilization are derived. An illustrative example
is given to demonstrate the effectiveness of the proposed scheme.

1. Introduction

In recent years, networked control systems have attracted
unprecedented attention of the control community in view of
their wide applications in many fields such as vehicle control
systems, large-scale printers, and aerospace applications. In
such systems, the sensors, actuators, and controllers are geo-
graphically separated and connected via digital wireless chan-
nels such as the Internet or bus lines. Using networked control
offers many advantages, such as increased system flexibility,
ease of installation and maintenance, and decreased wiring
and cost. However, the presence of digital communication
channels brings up many challenges. Communication con-
straints often make traditional control approaches inefficient
[1, 2].

In particular, the problem of control under data-rate
limitations has been the focus of many researches. A high-
water mark in the study of quantized feedback using data rate
limited feedback channels is known as the data rate theorem
that states that the larger the magnitude of the unstable poles,
the larger the required data rate through the feedback loop
[3, 4].

There has been a lot of research on quantized feedback
control. It was shown in [5] that there exists a dynamic
adjustment of the quantizer sensitivity and a quantized state

feedback that stabilizes linear time-invariant systems without
disturbances. The problem of LQG control under communi-
cation constraints was addressed in [6]. There they looked at
stable systems and noiseless digital channels and introduced
the new coding scheme. Tatikonda at al. [7] examined the role
communication has on the classical LQG control problem
and designed the encoder, decoder, and controller to satisfy
some given control objective. Imer and Başar [8] considered
optimal LQG control of a scalar system with limited control
actions. Schenato et al. [9] considered the problem of LQG
control over a packet-dropping network. Furthermore, Bom-
mannavar and Başar [10] addressed optimal LQG control
of higher-order systems with limited control actions. It
was shown that the optimal control is a threshold policy.
Furthermore, in [11], the LQG control problem for stochastic
linear control systems was addressed. In particular, the
sequential rate distortion framework was presented and the
inherent tradeoffs between control and communication costs
was shown in [7]. The optimal LQ cost is decomposed
into two terms: a full knowledge cost and a sequential rate
distortion cost. However, the second term still depends on
the steady state estimation error covariance. Differently from
the existing ones, it is shown in our results that the steady
state estimation error depends on the disturbances, and a full
knowledge LQ cost is presented. Furthermore, Georges et al.
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Figure 1: Networked control systems.

[12] gave the design of a decentralized optimal batch LQ state
observer for state estimation of large-scale interconnected
systems, and Wang and Han [13] was concerned with mod-
elling and controller design for a discrete-time networked
control system with limited channels and data drift.

This paper considers a class of networked control prob-
lems which arises in the coordinated motion control of
autonomous and semiautonomous mobile agents, for exam-
ple, unmanned air vehicles (UAVs), unmanned ground vehi-
cles (UGVs), and unmanned underwater vehicles (UUVs).
The controller often lies in such unmanned vehicles, but some
sensors (such as automatic radar measuring equipment) are
on the ground and are connected with the controllers via
noisy, bandwidth-limited wireless communication channels.
However, as the data rate of the channel is reduced to the crit-
ical value, the plant states must always become unbounded.
Then, in engineering systems, it is of importance to present
a lower bound of the data rate above which there exists a
quantization, coding and control scheme to guarantee some
given control performances.

The aforementioned results considered the fully observed
systems. This paper considers a partially observed, linear
time-invariant system and employs an observer-based quan-
tized state feedback control scheme in order to achieve
the minimum data rate for mean square stabilization of
the unstable plant. Furthermore, LQG control problems are
further addressed under data-rate limitations. It is shown that
there exists the tradeoff between the LQ cost and the data rate.
Then, an explicit expression on the tradeoff is presented in our
results.

The rest of the paper is organized as follows. In Section 2,
the problem formulation is presented. Section 3 deals with
LQG control problems under data-rate limitations. The
results of numerical simulation are presented in Section 4.
Conclusions are stated in Section 5.

2. Problem Formulation

Consider the following discrete linear time-invariant system
in Figure 1. The system dynamics is given by

𝑋(𝑘 + 1) = 𝐴𝑋 (𝑘) + 𝐵𝑈 (𝑘) + 𝐹𝑊 (𝑘) ,

𝑌 (𝑘) = 𝐶𝑋 (𝑘) ,

(1)

where 𝑋(𝑘) ∈ 𝑅
𝑛 denotes the plant state, 𝑈(𝑘) ∈ 𝑅

𝑚 denotes
the control input, 𝑌(𝑘) ∈ 𝑅

𝑝 denotes the observation output,

and 𝑊(𝑘) ∈ 𝑅
𝑞 denotes the disturbance, respectively. The

initial position 𝑋(0) and 𝑊(𝑘) are mutually independent,
Gaussian random variables with zero mean, satisfying

𝐸 ‖𝑋 (0)‖
2

< 𝜙
0
< ∞,

𝐸 ‖𝑊 (𝑘)‖
2

< 𝜙
𝑊

< ∞.

(2)

𝐴, 𝐵, 𝐶, and 𝐹 are known constant matrices with appropriate
dimensions. Without loss of generality, assume that the
pair (𝐴, 𝐵) is a controllable pair, and the pair (𝐴, 𝐶) is an
observable pair.

In the MIMO case, it seems logical to try to implement a
quantized output feedback control law of the form

𝑈 (𝑘) = 𝐾𝑞 (𝑌 (𝑘)) , (3)

where 𝑞(⋅) denotes a quantizer and 𝐾 denotes the feedback
gain. However, it is difficult to find a bit-allocation algorithm
which can regulate the transmission of information about
each 𝑦

𝑖
(𝑘) (𝑖 = 1, 2, . . . , 𝑝) since 𝑦

𝑖
(𝑘) and 𝑦

𝑗
(𝑘) (𝑖 ̸= 𝑗) often

aremutually correlated. Namely, it leads to the larger data rate
for stabilization. Thus, this paper implements an observer-
based quantized state feedback control law of the form

𝑋
𝑜
(𝑘 + 1) = 𝐴𝑋

𝑜
(𝑘) + 𝐵𝑈 (𝑘) + 𝐿 (𝑌 (𝑘) − 𝐶𝑋

𝑜
(𝑘)) ,

𝑈 (𝑘) = 𝐾𝑋
𝑜
(𝑘) ,

(4)

where 𝐿 denotes the observer gain and 𝑋
𝑜
(𝑘) denotes the

estimate of𝑋
𝑜
(𝑘) at the decoder. Here, define

𝐷 (𝑘) := 𝑋 (𝑘) − 𝑋
𝑜
(𝑘) . (5)

Then, it follows from (4) that

𝑋
𝑜
(𝑘 + 1) = 𝐴𝑋

𝑜
(𝑘) + 𝐵𝑈 (𝑘) + 𝐿𝐶𝐷 (𝑘) . (6)

By summing (1) and (6), obtain that

𝐷 (𝑘 + 1) = (𝐴 − 𝐿𝐶)𝐷 (𝑘) + 𝐹𝑊 (𝑘) . (7)

Here, assume that there exists an observer gain 𝐿 such that all
eigenvalues of 𝐴 − 𝐿𝐶 lie inside the unit circle. Then, it holds
that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)] <

󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐹
󵄩󵄩󵄩󵄩󵄩

2

1 − ‖𝐴 − 𝐿𝐶‖
2
𝜙
𝑊
. (8)

In the literature, many works were concerned with
networked control over dropout channels, or the channels
with time delays, and presented many important results.
Differently from the existing results, this paper considers
the case where the sensors and the controller are connected
via errorless digital communication channels without time
delays and focuses on the tradeoff between the LQ cost and
the data rate of the channel. Furthermore, assume that the
channel is memoryless. Then, the encoder and the decoder
have access to the control actions. Considering this case
avoids extraneous complexity. It makes our conclusions most
transparent.
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This paper considers the MIMO system (1) under data-
rate limitations, and presents a quantization, coding, and
control scheme to stabilize the system (1) in the mean square
sense

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 ‖𝑋 (𝑘)‖
2

< ∞. (9)

Furthermore, LQG control problems are also further dis-
cussed under data-rate limitations, and the role that com-
munication has on the classical LQG control problem is
explicitly examined. The main task here is to present an
explicit expression on the tradeoff between the LQ cost and
the data rate.

3. LQG Control for MIMO Systems under
Data-Rate Limitations

This section considers the partially-observed, unstable linear
time-invariant plant, discusses the LQG control problem
under data-rate limitations, derives the sufficient condition
on the data rate for stabilization, and presents the relationship
between the control performance and the data rate.

In order to achieve the minimum data rate for stabi-
lization, the existing bit-allocation scheme needs to find
a real transformation matrix which can diagonalize the
system matrix, such that it can regulate the transmission
of information on the basis of the eigenvalues. In many
applications, however, there exists no transformation matrix
that can diagonalize any systemmatrix. Furthermore, putting
the system matrix into Jordan canonical form often requires
a complex transformation matrix. To solve the problem, a
bit-allocation scheme on the basis of the singular values
of system matrix and an adaptive differential quantization-
coding scheme are employed in this paper.

Notice that there must exist a real orthogonal matrix𝐻 ∈

𝑅
𝑛×𝑛 that diagonalizes

𝐴
󸀠

𝐴 = 𝐻
󸀠

Λ
2

𝐻, (10)

where we define Λ := diag[𝜎
1
, . . . , 𝜎

𝑛
]. Clearly, 𝜎

𝑖
is the

𝑖th singular value of 𝐴 (𝑖 = 1, 2, . . . , 𝑛). Here, define the
prediction value of𝑋

𝑜
(𝑘) by

𝑋̀
𝑜
(𝑘) := (𝐴 + 𝐵𝐾)𝑋

𝑜
(𝑘 − 1) . (11)

Furthermore, define

𝑋
𝑜
(𝑘) := 𝐻𝑋

𝑜
(𝑘) ,

𝑋
𝑜
(𝑘) := 𝐻𝑋

𝑜
(𝑘) ,

𝑋⃗
𝑜
(𝑘) := 𝐻𝑋̀

𝑜
(𝑘) ,

𝑍 (𝑘) := 𝑋
𝑜
(𝑘) − 𝑋⃗

𝑜
(𝑘) .

(12)

Since the encoder and the decoder have access to the
previous control actions, update their estimator, and obtain
the same prediction value, only 𝑍(𝑘) needs to be quantized,
encoded, and transmitted to the decoder. Let 𝑍(𝑘) and 𝑉(𝑘)

denote the quantization value and quantization error of𝑍(𝑘),
respectively. Then, it follows that

𝑍 (𝑘) = 𝑍 (𝑘) + 𝑉 (𝑘) . (13)

Thus, the estimate of𝑋
𝑜
(𝑘) is given by

𝑋
𝑜
(𝑘) = 𝐻

󸀠

(𝑋⃗
𝑜
(𝑘) + 𝑍 (𝑘)) . (14)

Similar to that in [5], the quantization scheme is pre-
sented. Let 𝑍(𝑡) := [𝑧

1
(𝑡) 𝑧

2
(𝑡) ⋅ ⋅ ⋅ 𝑧

𝑛
(𝑡)]
󸀠. Given a

positive integer𝑀
𝑖
and a nonnegative real number Δ

𝑖
(𝑡) (𝑖 =

1, . . . , 𝑛), define the quantizer 𝑞 : 𝑅 → 𝑍 with sensitivity
Δ
𝑖
(𝑡) and saturation value𝑀

𝑖
by the formula

𝑞 (𝑧
𝑖
(𝑡))

=

{{{{{{{{{

{{{{{{{{{

{

𝑀
+

, if 𝑧
𝑖
(𝑡) > (𝑀

𝑖
+

1

2
)Δ
𝑖
(𝑡)

𝑀
−

, if 𝑧
𝑖
(𝑡) ≤ − (𝑀

𝑖
+

1

2
)Δ
𝑖
(𝑡)

⌊
𝑧
𝑖
(𝑡)

Δ
𝑖
(𝑡)

+
1

2
⌋ , if − (𝑀

𝑖
+

1

2
)Δ
𝑖
(𝑡) < 𝑧

𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) ≤ (𝑀

𝑖
+

1

2
)Δ
𝑖
(𝑡) ,

(15)

where we define ⌊𝑧⌋ := max{𝑘 ∈ 𝑍 := 𝑘 < 𝑧, 𝑧 ∈ 𝑅}.
The indexes 𝑀

+ and 𝑀
− will be employed if the quantizer

saturates. The scheme to be used here is based on the
hypothesis that it is possible to change the sensitivity (but
not the saturation value) of the quantizer on the basis
of available quantized measurements. The quantizer may
counteract disturbances by switching repeatedly between
“zooming out” and “zooming in.”

First, a lemma from [14] is presented.

Lemma 1. Let 𝑧 ∈ 𝑅 denote a Gaussian source and 𝑧̂ denote an
estimate of 𝑧. Define 𝑅(𝐷) as the data rate distortion function
between 𝑧̂ and 𝑧.The distortion constraint is defined as𝐷 ∈ 𝑅

+.
Let ℎ denote the sampling period. Given 𝐷 ≥ 𝐸(𝑧 − 𝑧̂)

2, there
must exist a quantization and coding scheme if the information
rate 𝑅 of the channel satisfies

𝑅 >
1

ℎ
𝑅 (𝐷) ≥

1

2
log
2

𝜎
2

(𝑧)

𝐷
(𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒) , (16)

where one defines 𝜎2(𝑧) := 𝐸(𝑧 − 𝐸𝑧)
2.

Proof. The proof is given by [14].

In networked control systems with large communication
bandwidth, communication and control are often viewed as
independent functions in order to simplify the analysis and
design of the overall system. However, in many applications,
data-rate limitations can introduce large quantization errors
and affect control performances significantly. Thus, this
paper is concerned with the relationship between the control
performance and the data rate.

Here, the LQ cost is quantified by

𝐽
1
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘)] , (17)
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where 𝑄 ∈ 𝑅
𝑛×𝑛 is symmetric positive definite. Here, this

paper is concernedwith how small the plant state can bemade
as 𝑘 → ∞. Then, the following result holds.

Theorem 2. Consider the system (1). Assume that all eigenval-
ues of 𝐴 + 𝐵𝐾 and 𝐴 − 𝐿𝐶 lie inside the unit circle. Then, the
system (1) is stabilizable in themean square sense (9) if the data
rate of the channel satisfies the following condition:

𝑅 > 𝑅min = ∑

𝑖∈Ξ

log
2

󵄨󵄨󵄨󵄨𝜎𝑖
󵄨󵄨󵄨󵄨 (𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒) (18)

with Ξ := {𝑖 ∈ {1, 2, . . . , 𝑛} : |𝜎
𝑖
| > 1}. If one further assumes

that the magnitudes of all the singular values of system matrix
𝐴 are larger than 1, the system (1) is stabilizable in the mean
square sense (9) if the data rate of the channel satisfies the
following condition:

𝑅 > 𝑅min = log
2
|𝐴| (𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒) . (19)

Furthermore, the LQ cost 𝐽
1
is obtained by

𝐽
1
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘)]

<
1

1 − ‖𝐴 − 𝐿𝐶‖
2

×

[
[
[

[

1

(1 −
𝑛

√|𝐴|
2

/4𝑅) (1 − ‖𝐴 + 𝐵𝐾‖
2

)

× (
𝑛

√
|𝐴|
2

4𝑅

󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

(𝐴 + 𝐵𝐾)𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+2
𝑛

√
|𝐴|
2

4𝑅

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩
)

+

2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄 (𝐴 + 𝐵𝐾) 𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 − ‖𝐴 + 𝐵𝐾‖
2

) (1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐹
󵄩󵄩󵄩󵄩󵄩

2

+

2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝜙
𝑊
.

(20)

Proof. Notice that

𝑋(𝑘) = 𝑋
𝑜
(𝑘) + 𝐷 (𝑘) . (21)

Then, it holds that

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘)] = 𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝑋

𝑜
(𝑘)]

+ 𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)]

+ 2𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝐷 (𝑘)] .

(22)

Furthermore, notice that

𝑋
𝑜
(𝑘) = 𝑋̀

𝑜
(𝑘) + 𝐻

󸀠

𝑍 (𝑘) . (23)

Then, it follows that

𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝑋

𝑜
(𝑘)]

= 𝐸 [(𝑋̀ (𝑘) + 𝐻
󸀠

𝑍 (𝑘))
󸀠

𝑄(𝑋̀ (𝑘) + 𝐻
󸀠

𝑍 (𝑘))]

= 𝐸 [𝑋̀
󸀠

𝑜
(𝑘) 𝑄𝑋̀

𝑜
(𝑘)] + 𝐸 [𝑍

󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑍 (𝑘)]

+ 2𝐸 [𝑋⃗
𝑜
(𝑘)𝐻𝑄𝐻

󸀠

𝑍 (𝑘)] .

(24)

Thus, it follows that

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘)]

= 𝐸 [𝑋̀
󸀠

𝑜
(𝑘) 𝑄𝑋̀

𝑜
(𝑘)] + 𝐸 [𝑍

󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑍 (𝑘)]

+ 2𝐸 [𝑋⃗
𝑜
(𝑘)𝐻𝑄𝐻

󸀠

𝑍 (𝑘)] + 𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)]

+ 2𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝐷 (𝑘)] .

(25)

Namely, it holds that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘)]

= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋̀
󸀠

𝑜
(𝑘) 𝑄𝑋̀

𝑜
(𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑍
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑍 (𝑘)]

+ 2lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋⃗
𝑜
(𝑘)𝐻𝑄𝐻

󸀠

𝑍 (𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)]

+ 2lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝐷 (𝑘)] .

(26)

Clearly, it needs to compute all the terms in the equation
above.

It follows from (4) and (6) that

𝑋
𝑜
(𝑘 + 1)

= 𝐴𝑋
𝑜
(𝑘) + 𝐵𝐾𝑋

𝑜
(𝑘) + 𝐿𝐶𝐷 (𝑘)

= 𝐴 (𝑋
𝑜
(𝑘) − 𝑋

𝑜
(𝑘)) + (𝐴 + 𝐵𝐾)𝑋

𝑜
(𝑘) + 𝐿𝐶𝐷 (𝑘)

= 𝐴𝐻
󸀠

𝑉 (𝑘) + 𝑋̀
𝑜
(𝑘 + 1) + 𝐿𝐶𝐷 (𝑘) .

(27)
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Namely, it holds that

𝑍 (𝑘 + 1) = 𝐻𝐴𝐻
󸀠

𝑉 (𝑘) + 𝐻𝐿𝐶𝐷 (𝑘) . (28)

Notice that𝑉(𝑘) and𝐷(𝑘) are mutually independent random
variables. Let𝑋 denote a vector. Then, define

Σ
𝑋

:= 𝐸 [𝑋𝑋
󸀠

] . (29)

Then, it follows that

𝐸 [𝑍
󸀠

(𝑘 + 1)𝐻𝑄𝐻
󸀠

𝑍 (𝑘 + 1)]

= tr (𝐻𝑄𝐻
󸀠

Λ
2

Σ
𝑉(𝑘)

) + 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐷 (𝑘)
󵄩󵄩󵄩󵄩󵄩

2

.

(30)

Since 𝑍(𝑘) is unknown for the decoder, it will be quantized,
encoded, and transmitted via a digital communication chan-
nel with limited data rates. If there exists a quantization,
coding scheme such that the following condition holds,

𝐸 [𝑧
2

𝑖
(𝑘)] > 𝜎

2

𝑖
𝐸 [V2
𝑖
(𝑘)] (𝑖 = 1, 2, . . . , 𝑛) , (31)

which is equivalent to

𝜀
2

𝐸 [𝑧
2

𝑖
(𝑘)] = 𝜎

2

𝑖
𝐸 [V2
𝑖
(𝑘)] (𝑖 = 1, 2, . . . , 𝑛) (32)

with 𝜀 ∈ (0, 1), it holds that

𝜀
2

𝐸 [𝑍
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑍 (𝑘)] = tr (𝐻𝑄𝐻
󸀠

Λ
2

Σ
𝑉(𝑘)

) . (33)

Substitute the equality above into (30), and obtain

𝐸 [𝑍
󸀠

(𝑘 + 1)𝐻𝑄𝐻
󸀠

𝑍 (𝑘 + 1)]

= 𝜀
2

𝐸 [𝑍
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑍 (𝑘)] + 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐷(𝑘)
󵄩󵄩󵄩󵄩󵄩

2

.

(34)

It means that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑍
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑍 (𝑘)]

<
1

1 − 𝜀2
lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐷 (𝑘)
󵄩󵄩󵄩󵄩󵄩

2

<

󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(35)

Clearly, the condition (31) must hold if the number of bits
needed to the quantization value is large enough. Let 𝐷

𝑖
(𝑘)

denote the expected distortion constraint corresponding to
𝑧
𝑖
(𝑘) at time 𝑘. Thus, set

𝐷
𝑖
(𝑘) =

{{

{{

{

𝜀
2

𝜎
2

𝑖

𝐸 [𝑧
2

𝑖
(𝑘)] , when 󵄨󵄨󵄨󵄨𝜎𝑖

󵄨󵄨󵄨󵄨 ≥ 1

0, when 󵄨󵄨󵄨󵄨𝜎𝑖
󵄨󵄨󵄨󵄨 < 1.

(36)

Then, it follows from Lemma 1 that the data rate of the
channel is given by

𝑅 =
1

2
∑

𝑖∈Ξ

log
2

𝐸 [𝑧
2

𝑖
(𝑘)]

𝐷
𝑖
(𝑘)

=
1

2
∑

𝑖∈Ξ

log
2

𝐸 [𝑧
2

𝑖
(𝑘)]

(𝜀2/𝜎
2

𝑖
) 𝐸 [𝑧
2

𝑖
(𝑘)]

= ∑

𝑖∈Ξ

log
2

󵄨󵄨󵄨󵄨𝜎𝑖
󵄨󵄨󵄨󵄨

𝜀
(bits/sample) ,

(37)

where we define Ξ := {𝑖 ∈ {1, 2, . . . , 𝑛} : |𝜎
𝑖
| > 1}. A lower

bound on the data rate which ensures the condition (31) holds
is given by

𝑅min = ∑

𝑖∈Ξ

log
2

󵄨󵄨󵄨󵄨𝜎𝑖
󵄨󵄨󵄨󵄨 (bits/sample) . (38)

If we assume that themagnitudes of all the singular values
of system matrix 𝐴 are larger than 1, the data rate of the
channel is given by

𝑅 = log
2

|𝐴|

𝜀𝑛
(bits/sample) (39)

and the lower bound on the data rate is given by

𝑅min = log
2
|𝐴| (bits/sample) . (40)

It may be also obtained that

𝜀 =
𝑛

√
|𝐴|

2𝑅
. (41)

Furthermore, it follows from (6) that

𝑋
𝑜
(𝑘 + 1) = 𝐴𝑋

𝑜
(𝑘) + 𝐵𝐾𝑋

𝑜
(𝑘) + 𝐿𝐶𝐷 (𝑘)

= (𝐴 + 𝐵𝐾)𝑋
𝑜
(𝑘) − 𝐵𝐾𝐻

󸀠

𝑉 (𝑘) + 𝐿𝐶𝐷 (𝑘) .

(42)

By summing the equality above and (7), it follows that

𝐸 [𝑋
󸀠

𝑜
(𝑘 + 1)𝑄𝐷 (𝑘 + 1)]

= 𝐸 [𝑋
󸀠

𝑜
(𝑘) (𝐴 + 𝐵𝐾)

󸀠

𝑄 (𝐴 − 𝐿𝐶)𝐷 (𝑘)]

+ 𝐸 [𝐷
󸀠

(𝑘) (𝐴 − 𝐿𝐶)
󸀠

𝑄𝐿𝐶𝐷 (𝑘)] .

(43)
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Thus, it follows that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝐷 (𝑘)]

<

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩
) (1 − ‖𝐴 − 𝐿𝐶‖

2

)

𝜙
𝑊
.

(44)

Using the same techniques in the proof above, it can be shown
that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑘) (𝐴 + 𝐵𝐾)

󸀠

𝑄𝐿𝐶𝐷 (𝑘)]

<

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄 (𝐴 + 𝐵𝐾) 𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩
) (1 − ‖𝐴 − 𝐿𝐶‖

2

)

𝜙
𝑊
.

(45)

It follows from (31) that

𝜀
2

[𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴𝐻
󸀠

]
𝑖,𝑖

𝜎
−2

𝑖
𝐸 [𝑧
2

𝑖
(𝑘)]

= [𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴𝐻
󸀠

]
𝑖,𝑖

𝐸 [V2
𝑖
(𝑘)] ,

(46)

where [⋅]
𝑖,𝑗
denotes an element of a matrix (𝑖, 𝑗 = 1, 2, . . . , 𝑛).

This implies that

𝜀
2

𝐸 [𝑍
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘)]

= 𝐸 [𝑉
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴𝐻
󸀠

𝑉 (𝑘)] .

(47)

Furthermore, it follows from (28) that

𝐸 [𝑍
󸀠

(𝑘 + 1)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘 + 1)]

= 𝐸 [𝑉
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴𝐻
󸀠

𝑉 (𝑘)]

+ 𝐸 [𝐷
󸀠

(𝑘) (𝐿𝐶)
󸀠

𝐻(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝐿𝐶𝐷 (𝑘)] .

(48)

Substitute (47) into the equality above, and obtain

𝐸 [𝑍
󸀠

(𝑘 + 1)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘 + 1)]

= 𝜀
2

𝐸 [𝑍
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘)]

+ 𝐸 [𝐷
󸀠

(𝑘) (𝐿𝐶)
󸀠

𝐻(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝐿𝐶𝐷 (𝑘)] .

(49)

Then, get

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑍
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘)]

<

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(50)

Thus, it holds that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴𝐻
󸀠

𝑉 (𝑘)]

<

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(51)

Using the same techniques in the proof above, it can be shown
that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄 (𝐴 + 𝐵𝐾)𝐻
󸀠

𝑉 (𝑘)]

<

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

(𝐴 + 𝐵𝐾)𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(52)

Furthermore, notice that

𝑋⃗
𝑜
(𝑘) = 𝐻 (𝐴 + 𝐵𝐾) (𝑋

𝑜
(𝑘 − 1) − 𝐻

󸀠

𝑉 (𝑘 − 1)) ,

𝑍 (𝑘) = 𝐻𝐴𝐻
󸀠

𝑉 (𝑘 − 1) + 𝐻𝐿𝐶𝐷 (𝑘 − 1) .

(53)

Then, it follows that

𝐸 [𝑋⃗
𝑜
(𝑘)𝐻𝑄𝐻

󸀠

𝑍 (𝑘)]

= 𝐸 [(𝑋
𝑜
(𝑘 − 1) − 𝐻

󸀠

)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝑄

× (𝐴𝐻
󸀠

𝑉 (𝑘 − 1) + 𝐿𝐶𝐷 (𝑘 − 1)) ]

= 𝐸 [𝑋
󸀠

𝑜
(𝑘 − 1) (𝐴 + 𝐵𝐾)

󸀠

𝑄𝐿𝐶𝐷 (𝑘 − 1)]

− 𝐸 [𝑉
󸀠

(𝑘 − 1)𝐻 (𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴𝐻
󸀠

𝑉 (𝑘 − 1)] .

(54)

Substitute (45) and (51) into the previous equality, and obtain

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋⃗
𝑜
(𝑘)𝐻𝑄𝐻

󸀠

𝑍 (𝑘)]

<

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊

+

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄 (𝐴 + 𝐵𝐾) 𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩
) (1 − ‖𝐴 − 𝐿𝐶‖

2

)

𝜙
𝑊
.

(55)
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Furthermore, notice that

𝑋̀
𝑜
(𝑘) = (𝐴 + 𝐵𝐾)𝑋

𝑜
(𝑘 − 1)

= (𝐴 + 𝐵𝐾) (𝑋
𝑜
(𝑘 − 1) − 𝐻

󸀠

𝑉 (𝑘 − 1)) .

(56)

Then, it holds that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋̀
󸀠

𝑜
(𝑘) 𝑄𝑋̀

𝑜
(𝑘)]

= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑘 − 1) (𝐴 + 𝐵𝐾)

󸀠

× 𝑄 (𝐴 + 𝐵𝐾)𝑋
𝑜
(𝑘 − 1) ]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘 − 1)𝐻 (𝐴 + 𝐵𝐾)
󸀠

× 𝑄 (𝐴 + 𝐵𝐾)𝐻
󸀠

𝑉 (𝑘 − 1)]

< ‖𝐴 + 𝐵𝐾‖
2 lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝑋

𝑜
(𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻 (𝐴 + 𝐵𝐾)
󸀠

× 𝑄 (𝐴 + 𝐵𝐾)𝐻
󸀠

𝑉 (𝑘)] .

(57)

Substitute (52) into the inequality above, and obtain that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋̀
󸀠

𝑜
(𝑘) 𝑄𝑋̀

𝑜
(𝑘)]

< ‖𝐴 + 𝐵𝐾‖
2 lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑘) 𝑄𝑋

𝑜
(𝑘)]

+

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

(𝐴 + 𝐵𝐾)𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(58)

By summing (8), (26), (35), (41), (44), (55), and (58), obtain
that

𝐽
1
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘)]

<
1

1 − ‖𝐴 − 𝐿𝐶‖
2

×

[
[
[

[

1

(1 −
𝑛

√|𝐴|
2

/4𝑅) (1 − ‖𝐴 + 𝐵𝐾‖
2

)

× (
𝑛

√
|𝐴|
2

4𝑅

󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

(𝐴 + 𝐵𝐾)𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+

2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄 (𝐴 + 𝐵𝐾) 𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 − ‖𝐴 + 𝐵𝐾‖
2

) (1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐹
󵄩󵄩󵄩󵄩󵄩

2

+2
𝑛

√
|𝐴|
2

4𝑅

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝑄𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+

2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝑄𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝜙
𝑊
.

(59)

Now, further consider the case with 𝑄 = 𝐼, where 𝐼

denotes an identity matrix. Then, the equality above may
reduce to

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 ‖𝑋 (𝑘)‖
2

<
1

1 − ‖𝐴 − 𝐿𝐶‖
2

×

[
[
[

[

1

(1 −
𝑛

√|𝐴|
2

/4𝑅) (1 − ‖𝐴 + 𝐵𝐾‖
2

)

× (
𝑛

√
|𝐴|
2

4𝑅

󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)𝐴

−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+ ‖𝐿𝐶𝐹‖
2

+2
𝑛

√
|𝐴|
2

4𝑅

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾)
󸀠

𝐴
−1

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩
)
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+

2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐿𝐶)
󸀠

(𝐴 − 𝐿𝐶)
󸀠

(𝐴 + 𝐵𝐾) 𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

(1 − ‖𝐴 + 𝐵𝐾‖
2

) (1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩
)

+ ‖𝐹‖
2

+

2
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝐴 − 𝐿𝐶)
󸀠

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

1 −
󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐵𝐾)

󸀠

(𝐴 − 𝐿𝐶)
󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝜙
𝑊
.

(60)

It means that the system (1) is stabilizable in the mean square
sense (9) if the data rate 𝑅 satisfies the following condition:

𝑅 > 𝑅min = log
2
|𝐴| (bits/sample) . (61)

Remark 3. (i) It is shown in Theorem 2 that the system (1) is
still stabilizable in the mean square sense (9) by employing a
bit-allocation scheme on the basis of not the eigenvalues but
the singular values of the systemmatrix. Furthermore, under
the special condition, our result may reduce to the existing
one in [1] and is not more conservative.

(ii) No assumption that there exists a real transformation
matrix such that system matrix can be transformed to a
diagonal matrix or a Jordan canonical form is made in this
paper. Thus, the bit-allocation scheme presented here does
work for more general systems.

Now, consider the classical LQG control problem for
MIMO linear time-invariant systems with data-rate limita-
tions and discuss the effect of the data rate on the achievable
control performance. Namely, for a given data rate, the
problem here is how to design the quantization, coding,
and control scheme to achieve the optimal LQ cost. The
performance objective to be considered here is the average
infinite horizon quadratic cost:

𝐽
2
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘) + 𝑈
󸀠

(𝑘) 𝑆𝑈 (𝑘)] , (62)

where𝑄 ∈ 𝑅
𝑛×𝑛 and 𝑆 ∈ 𝑅

𝑚×𝑚 are symmetric positive definite
and (𝐴, 𝑄

1/2

) is observable.

Theorem 4. Consider the system (1). Assume that all eigenval-
ues of 𝐴 + 𝐵𝐾 and 𝐴 − 𝐿𝐶 lie inside the unit circle, and the
magnitudes of all the singular values of system matrix 𝐴 are
larger than 1.The data rate of the channel satisfies the following
inequality:

𝑅 > 𝑅min = log
2
|𝐴| (𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒) . (63)

Then, the certainty equivalent control law of the form 𝑈(𝑡) =

𝐾𝑋
𝑜
(𝑡) where

𝐾 = − (𝐵
󸀠

𝑃𝐵 + 𝑆)
−1

𝐵
󸀠

𝑃𝐴 (64)

and 𝑃 satisfies the Riccati equation

𝑃 = 𝐴
󸀠

(𝑃 − 𝑃𝐵 (𝐵
󸀠

𝑃𝐵 + 𝑆)
−1

𝐵
󸀠

𝑃)𝐴 + 𝑄 (65)

is optimal. The corresponding optimal LQ cost 𝐽
2
is given by

𝐽
2
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘) + 𝑈
󸀠

(𝑘) 𝑆𝑈 (𝑘)]

<
1

1 − ‖𝐴 − 𝐿𝐶‖
2

×
[
[

[

𝑛

√|𝐴|
2

22𝑅/𝑛 −
𝑛

√|𝐴|
2

× (
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐴𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

)

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐹
󵄩󵄩󵄩󵄩󵄩

2 ]
]

]

𝜙
𝑊
.

(66)

Proof. Notice that

𝑋
𝑜
(𝑘 + 1) = 𝑋

𝑜
(𝑘 + 1) − 𝐻

󸀠

𝑉 (𝑘 + 1) . (67)

Substitute (6) into the equality above, and obtain that

𝑋
𝑜
(𝑘 + 1) = 𝐴𝑋

𝑜
(𝑘) + 𝐵𝑈 (𝑘)

+ 𝐿𝐶𝐷 (𝑘) − 𝐻
󸀠

𝑉 (𝑘 + 1)

= 𝐴𝑋
𝑜
(𝑘) + 𝐵𝑈 (𝑘) + 𝐿𝐶𝐷 (𝑘)

+ 𝐴𝐻
󸀠

𝑉 (𝑘) − 𝐻
󸀠

𝑉 (𝑘 + 1) .

(68)

Furthermore, notice that

𝑋 (𝑘) = 𝑋
𝑜
(𝑘) + 𝐷 (𝑘) = 𝑋

𝑜
(𝑘) + 𝐻

󸀠

𝑉 (𝑘) + 𝐷 (𝑘) . (69)

Then, Tatikonda et al. [7] addressed the classical LQG control
problem under data-rate limitations and considered the same
case. The optimal LQ cost decomposed into two terms: a
full knowledge cost and a sequential rate distortion cost.
However, the second term still depends on the steady state
estimation error covariance. This paper further discusses the
LQG control problem and presents a full knowledge cost. As
stated in [7], the optimal steady state control law is a linear
gain of the form 𝑈(𝑘) = 𝐾𝑋

𝑜
(𝑘) where

𝐾 = − (𝐵
󸀠

𝑃𝐵 + 𝑆)
−1

𝐵
󸀠

𝑃𝐴 (70)

and 𝑃 satisfies the Riccati equation:

𝑃 = 𝐴
󸀠

(𝑃 − 𝑃𝐵 (𝐵
󸀠

𝑃𝐵 + 𝑆)
−1

𝐵
󸀠

𝑃)𝐴 + 𝑄. (71)



Mathematical Problems in Engineering 9

The optimal cost is given by

𝐽
2
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘) + 𝑈
󸀠

(𝑘) 𝑆𝑈 (𝑘)]

= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

𝑜
(𝑡) 𝑄𝑋

𝑜
(𝑡) + 𝑈

󸀠

(𝑡) 𝑆𝑈 (𝑡)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑉 (𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)]

= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

tr[𝐻𝐴
󸀠

𝑃𝐴𝐻
󸀠

∑

𝑉(𝑘)

]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

tr[𝐻𝑃𝐻
󸀠

∑

𝑉(𝑘+1)

]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

tr[(𝐿𝐶)
󸀠

𝑃𝐿𝐶∑

𝐷(𝑘)

]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑉 (𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)]

= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻𝐴
󸀠

𝑃𝐴𝐻
󸀠

𝑉 (𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘 + 1)𝐻𝑃𝐻
󸀠

𝑉 (𝑘 + 1)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) (𝐿𝐶)
󸀠

𝑃𝐿𝐶𝐷 (𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑉 (𝑘)]

+ lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) 𝑄𝐷 (𝑘)] .

(72)

Then, it needs to compute all the terms in the equation above.
It follows from (31) that

𝜀
2

[𝐻𝑄𝐻
󸀠

]
𝑖,𝑖

𝜎
−2

𝑖
𝐸 [𝑧
2

𝑖
(𝑘)] = [𝐻𝑄𝐻

󸀠

]
𝑖,𝑖

𝐸 [V2
𝑖
(𝑘)] . (73)

Then, it holds that

𝜀
2

𝐸 [𝑍
󸀠

(𝑘)𝐻 (𝐴
−1

)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘)]

= 𝐸 [𝑉
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑉 (𝑘)] .

(74)

Furthermore, it follows from (30) that

[𝐻𝑄𝐻
󸀠

]
𝑖,𝑖

𝜎
−2

𝑖
𝐸 [𝑧
2

𝑖
(𝑘 + 1)]

= [𝐻𝑄𝐻
󸀠

]
𝑖,𝑖

𝐸 [V2
𝑖
(𝑘)] + [(𝐿𝐶)

󸀠

𝑄𝐿𝐶]
𝑖,𝑖

𝐸 [𝑑
2

𝑖
(𝑘)] .

(75)

Then, it holds that

𝐸 [𝑍
󸀠

(𝑘 + 1)𝐻 (𝐴
−1

)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘 + 1)]

= 𝐸 [𝑉
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑉 (𝑘)] + 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐷(𝑘)
󵄩󵄩󵄩󵄩󵄩

2

.

(76)

Substitute (74) into the equality above, and obtain that

𝐸 [𝑍
󸀠

(𝑘 + 1)𝐻 (𝐴
−1

)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘 + 1)]

= 𝜀
2

𝐸 [𝑍
󸀠

(𝑘)𝐻 (𝐴
−1

)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘)]

+ 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐷 (𝑘)
󵄩󵄩󵄩󵄩󵄩

2

.

(77)

This implies that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑍
󸀠

(𝑘)𝐻 (𝐴
−1

)
󸀠

𝑄𝐴
−1

𝐻
󸀠

𝑍 (𝑘)]

<
1

1 − 𝜀2
𝐸
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐷 (𝑘)
󵄩󵄩󵄩󵄩󵄩

2

<

󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(78)

Thus, it holds that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻𝑄𝐻
󸀠

𝑉 (𝑘)]

<

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(79)

Using the same techniques in the proof above, it can be
shown that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘)𝐻𝐴
󸀠

𝑃𝐴𝐻
󸀠

𝑉 (𝑘)]

<

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐴𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
,

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑉
󸀠

(𝑘 + 1)𝐻𝑃𝐻
󸀠

𝑉 (𝑘 + 1)]

<

𝜀
2
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

(1 − 𝜀2) (1 − ‖𝐴 − 𝐿𝐶‖
2

)

𝜙
𝑊
.

(80)
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Furthermore, it follows from (7) that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘 + 1) (𝐿𝐶)
󸀠

𝑃𝐿𝐶𝐷 (𝑘 + 1)]

< ‖𝐴 − 𝐿𝐶‖
2 lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) (𝐿𝐶)
󸀠

𝑃𝐿𝐶𝐷 (𝑘)]

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

𝜙
𝑊
.

(81)

Then, it holds that

lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝐷
󸀠

(𝑘) (𝐿𝐶)
󸀠

𝑃𝐿𝐶𝐷 (𝑘)]

<

󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

1 − ‖𝐴 − 𝐿𝐶‖
2
𝜙
𝑊
.

(82)

Substitute (8), (41), (79), (80), and (82), and obtain that

𝐽
2
= lim sup
𝑇→∞

1

𝑇

𝑇−1

∑

𝑘=0

𝐸 [𝑋
󸀠

(𝑘) 𝑄𝑋 (𝑘) + 𝑈
󸀠

(𝑘) 𝑆𝑈 (𝑘)]

<
1

1 − ‖𝐴 − 𝐿𝐶‖
2

×
[
[

[

𝑛

√|𝐴|
2

22𝑅/𝑛 −
𝑛

√|𝐴|
2

× (
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐴𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

)

+
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐹
󵄩󵄩󵄩󵄩󵄩

2 ]
]

]

𝜙
𝑊
.

(83)

Remark 5. (i) This section presents an explicit expression on
the tradeoff between the LQ cost and the data rate. Namely,
for the given data rate, it is possible to compute the achievable
performance, and for the given LQ cost, it is also possible
to compute the minimum data rate needed to achieve the
control performance.

(ii) It also states in Theorem 4 that the larger data rate
may lead to the better control performance. However, the
control performance cannot becomebetterwhen the data rate
is large enough. For the casewith𝑅 → ∞, the corresponding
optimal LQ cost 𝐽

2
is given by

lim
𝑅→∞

𝐽
2
<

1

1 − ‖𝐴 − 𝐿𝐶‖
2
(
󵄩󵄩󵄩󵄩󵄩
𝑃
1/2

𝐿𝐶𝐹
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
1/2

𝐹
󵄩󵄩󵄩󵄩󵄩

2

) 𝜙
𝑊
.

(84)

4. Numerical Example

This paper investigates a class of networked control prob-
lems which arises in the coordinated motion control of

0 2 4 6 8 10
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Figure 2: First, let the data rate 𝑅 = 200 (bits/s), which is smaller
than the lower bound on the data rate given by Theorem 4. A
quantization, coding, control scheme on the basis of such data rate
is implemented. The corresponding simulation is given in Figure 2.
It is shown that the system is unstable. The system state responses
with 𝑅 = 200 (bits/s).

autonomous and semiautonomous mobile agents, for exam-
ple, unmanned air vehicles (UAVs), unmanned ground vehi-
cles (UGVs), and unmanned underwater vehicles (UUVs),
and addresses the LQG control under data-rate limitations.
To illustrate the effectiveness of the schemes presented in this
paper, this section presents a practical example, where three
of the states of an unmanned air vehicle evolve in discrete-
time according to

𝑋(𝑘 + 1) = [

[

2.3153 2.4614 0.2125

0.3421 3.3312 0.3443

0.7328 0.2127 2.4575

]

]

𝑋 (𝑘)

+ [

[

1.1342 2.3412

1.1545 2.7612

0.2344 7.1251

]

]

𝑈 (𝑘)

+ [

[

5.6542

1.3432

0.7823

]

]

𝑊(𝑘) ,

𝑌 (𝑘) = [
3.7834 1.8392 2.8934

1.6723 1.8924 3.7824
]𝑋 (𝑘) .

(85)

Here, let the initial position 𝑋(0) = [5000 −5000 1000]
󸀠

and 𝜙
𝑊

= 50. The control performance will be examined in
four cases.

Secondly, let the data rate 𝑅 = 400 (bits/s), which is larger
than the lower bound on the data rate given by Theorem 4.
A quantization, coding, control scheme on the basis of such
data rate is implemented to stabilize the unstable plant.
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Figure 3: The system state responses with 𝑅 = 400 (bits/s).
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Figure 4: The system state responses with 𝑅 = 800 (bits/s).

The simulation is given in Figure 3. It is shown that the system
is stabilizable, and the optimal LQ cost is given by 𝐽

2
=

2386.23. However, it is impossible to achieve the given control
objective when the data rate is too small.

Then, the data rate is enlarged in order to achieve the
given control objective. Let the data rate 𝑅 = 800 (bits/s).The
corresponding simulation is given in Figure 4. The optimal
LQ cost is given by 𝐽

2
= 352.51. It states that the larger data

rate leads to better control performance.
Finally, let the data rate 𝑅 = 1600 (bits/s), which is

far larger than the lower bound on the data rate given by
Theorem 4. The quantization, coding, control scheme on
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Figure 5: The system state responses with 𝑅 = 1600 (bits/s).

the basis of such data rate is implemented to stabilize the
unstable plant. The corresponding simulation is given in
Figure 5. The optimal LQ cost is given by 𝐽

2
= 351.76. It

states that it is difficult to improve the control performance
by further enlarging the data rate.

5. Conclusion

This paper addressed the LQG control problem for MIMO
discrete-time linear systems over digital communication
channels with limited data rates. The data-rate limitations
often lead to the poor control performance. A key issue is
how to design the quantization, coding, and control scheme
to achieve the minimum data rate for stabilization and some
control performances. A bit-allocation scheme on the basis
of the singular values of the system matrix was presented. It
was shown in our results that there exists the inherent tradeoff
between the LQ cost and the data rate. The simulation results
have illustrated such tradeoff. The study of LQG control
for nonlinear system under data-rate limitations will be our
future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is partially supported by China Postdoctoral Sci-
ence Foundation funded project (no. 2013M530134) and the
Open Foundation of Automatic Weapons and Ammunition
Engineering Key Disciplines of Shenyang Ligong University
(no. 4771004kfx02). The authors also gratefully acknowledge
the helpful comments and suggestions of the reviewers, which
have improved the presentation.



12 Mathematical Problems in Engineering

References

[1] J. Baillieul and P. Antsaklis, “Control and communication
challenges in networked real-time systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 9–28, 2007.

[2] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback
control under data rate constraints: an overview,” Proceedings of
the IEEE, vol. 95, no. 1, pp. 108–137, 2007.

[3] J. Baillieul, “Feedback designs in information based control,” in
Stochastic Theory and Control Proceedings of a Workshop Held
in Lawrence, Kansas, B. Pasik-Duncan, Ed., pp. 35–57, Springer,
New York, NY, USA, 2001.

[4] G. N. Nair and R. J. Evans, “Stabilizability of stochastic linear
systems with finite feedback data rates,” SIAM Journal on
Control and Optimization, vol. 43, no. 2, pp. 413–436, 2004.

[5] R. W. Brockett and D. Liberzon, “Quantized feedback stabiliza-
tion of linear systems,” IEEE Transactions on Automatic Control,
vol. 45, no. 7, pp. 1279–1289, 2000.

[6] V. Borkar and S. K. Mitter, “LQG control with communication
constraints,” in Communications, Computation, Control, and
Signal Processing: A Tribute to Thomas Kailath, pp. 1255–1261,
Kluwer Academic Publishers, Norwell, Mass, USA, 1997.

[7] S. Tatikonda, A. Sahai, and S. Mitter, “Stochastic linear control
over a communication channel,” IEEE Transactions on Auto-
matic Control, vol. 49, no. 9, pp. 1549–1561, 2004.
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