
Research Article
Electricity Market Stochastic Dynamic Model and
Its Mean Stability Analysis

Zhanhui Lu,1 Weijuan Wang,1 Gengyin Li,2 and Di Xie1

1 School of Mathematics and Physical Science, North China Electric Power University, Beijing 102206, China
2 School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Correspondence should be addressed to Zhanhui Lu; luzhanhui@ncepu.edu.cn

Received 7 July 2014; Accepted 10 September 2014; Published 5 November 2014

Academic Editor: Weihai Zhang

Copyright © 2014 Zhanhui Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the deterministic dynamic model of electricity market proposed by Alvarado, a stochastic electricity market model,
considering the random nature of demand sides, is presented in this paper on the assumption that generator cost function and
consumer utility function are quadratic functions. The stochastic electricity market model is a generalization of the deterministic
dynamic model. Using the theory of stochastic differential equations, stochastic process theory, and eigenvalue techniques, the
determining conditions of the mean stability for this electricity market model under small Gauss type random excitation are
provided and testified theoretically. That is, if the demand elasticity of suppliers is nonnegative and the demand elasticity of
consumers is negative, then the stochastic electricity market model is mean stable. It implies that the stability can be judged directly
by initial data without any computation. Taking deterministic electricity market data combined with small Gauss type random
excitation as numerical samples to interpret random phenomena from a statistical perspective, the results indicate the conclusions
above are correct, valid, and practical.

1. Introduction

As we all know, stochastic differential equation has been
booming as a cross-discipline of probability theory and
differential equation. Based on the stability theory of deter-
ministic differential equations and stochastic process theory,
the stability theory of stochastic differential equation gets
rapid development and has quite widespread applications.
Ranging from a specific control system to a social system,
a financial system, or an ecosystem, whether the system
is large or small, it always runs in random or persistent
disturbance. With the random disturbance, it is essential that
the system maintains a predetermined running or operating
state, instead of wavering or being out of control. The so-
called stability for stochastic system movement is aimed
at researching the stability of its equilibrium state from
the perspective of statistics. That is to say, the disturbed
movement, deviating from the equilibrium state, can return
to the equilibrium state or restrict to its finite neighborhood
when it only relies on the internal structure factors of the
system.

Electricity market is based on power system and elec-
tricity market is the operating mode of power system at
the same time. The economic stability of electricity market
and the physical stability of power system are linked and
affect each other. In 1990, Beavis and Dobbs began to study
economic system stability [1]. For twenty years now, the
research on the dynamic evolution and stable behavior of
economy and management system has been arousing wide
attention in the fields of mathematical economics, system
science, and so forth. In particular, the stability analysis
of economic systems branch is the emphasis and difficulty
in this field and is of great significance as well. While the
research of electricity market stability begins to perk up
in recent years [2–11], market mechanism is employed to
reasonably allocate power resources in electricitymarket.The
research on electricity market stability is very significant for
regulating the market supply and demand. Combining the
market dynamics, the electricity market dynamic model is
proposed by Alvarado [2]. After cooperation with Meng and
others, Alvarado created a new market model considering
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the electrical energy unbalanced factors as well as the power
system’s dynamic factors in the dynamic market model [3–
5]. For all of the above market dynamics models, numerical
eigenvalue method was applied to study the stability of
electricity market. An electricity market dynamic model
proposed by Alvarado is generalized and the effect of market
clearing time and price signal delay on system stability is
analyzed in [12]. With the dynamic market model, the role
that futures markets may have on the clearing prices and
on altering the volatility and potential instability of real
time prices and generator output is examined by Watts and
Alvarado [13]. An appropriatemodeling of system controllers
is provided in [14] to account for the effects of power system
controllers and stability on power dispatch and electricity
market prices. For a kind of dynamic power market models
with congestion, a series of sufficient conditions are provided
to determine the stability of powermarket in [15]. Combining
the market dynamic model put forward by Alvarado, the
stability of electricity market is theoretically analyzed and
the determine conditions of stability on electricity market
[16]. Actually, the involved discussion about stability above is
derived from Lyapunov asymptotical stability of equilibrium
in the deterministic differential equation theory.

With the integration of renewable power and electric
vehicle, the power system stability is of growing concern
because the active power generated by the renewable energy
and absorbed by the electric vehicle varies randomly. A
framework is presented in [17] to study the impact of
stochastic active/reactive power injections on power system
dynamics with a focus on time scales involving electrome-
chanical phenomena. In order to investigate the small signal
stability of the single machine infinite bus power system,
the stochastic stability analysis method [18] which is applied
based on Lyapunov stability and stochastic stability theory
is introduced. A new method [19] integrating the tran-
sient energy function and recloser probability distribution
functions is provided to analyze structure-preserved power
system transient stability. Based on the deterministic power
system model, the power system stochastic model under
small Gauss type random excitation is provided and themean
stability andmean square stability of the power systemmodel
are verified theoretically in [20]. The research on stochastic
stability of power system has been increasing recently [17–
20]. However, the stochastic differential equation stability
theory on electricity market investigation is rarely applied.

Based on the electricity market dynamic model proposed
by Alvarado, a stochastic electricity market dynamic model
is presented under the assumption that the generator cost
function and consumer utility function are the quadratic
function in this paper.The electricitymarketmodel proposed
by Alvarado can be seen as a special case of the stochastic
electricity market dynamic model. The small Gauss type
random excitation is provided to describe the random nature
of demand sides. Using the theory of stochastic differential
equations, stochastic process theory, and eigenvalue tech-
niques, the stochastic electricity market model is analyzed
theoretically and the determining conditions of the mean
stability are given as follows. If the demand elasticity of
suppliers is positive and the demand elasticity of consumers is

negative or the demand elasticity of suppliers is nonnegative
and the demand elasticity of consumers is negative, then
the electricity market dynamic model under Gauss type
of random small excitation is of mean stability. That is to
say, we can judge its mean stability directly by the initial
data without any numerical computation. Finally, taking
deterministic electricity market data combined with small
Gauss type random excitation as numerical samples, from a
statistical perspective to examine the numerical results, it is
demonstrated that the obtained conclusions of stability for
the stochastic electricity market model are not only correct
and effective, but also practical and concise.

2. The Stochastic Dynamic Modeling of
Electricity Market

2.1. Alvarado Electricity Market Model. Let generator cost
functions and consumer utility functions be quadratic func-
tions. If a supplier observes a market price 𝜆, above its
production cost 𝜆𝑔𝑖, it is assumed that the supplier will
expand production until the marginal cost of production
equals the price. The rate of expansion is proportional to
the difference between the observed price and the actual
production cost. The speed with which the generation power
output 𝑃𝑔𝑖 of supplier 𝑖 can respond is supplier-dependent,
which is denoted by a time constant 𝜏𝑔𝑖 for supplier 𝑖. The
above yields the following differential equation to describe
the dynamic behavior of electricity market [2]:

𝜏𝑔𝑖𝑃̇𝑔𝑖 = 𝜆 − 𝑏𝑔𝑖 − 𝑐𝑔𝑖𝑃𝑔𝑖 (𝑖 = 1, 2, . . . , 𝑚) , (1)

where 𝑃𝑔𝑖 is the generation power output, the speed of power
output is denoted by a time constant 𝜏𝑔𝑖, 𝜆 is the price at any
given time, 𝑏𝑔𝑖 + 𝑐𝑔𝑖𝑃𝑔𝑖 is the marginal cost of supplier 𝑖, 𝑐𝑔𝑖 is
the demand elasticity of supplier 𝑖, and 𝑏𝑔𝑖 is the linear cost
coefficient of supplier 𝑖.

As for consumers, the equation describing a consumer
behavior is

𝜏𝑑𝑗𝑃̇𝑑𝑗 = 𝜆 + 𝑏𝑑𝑗 + 𝑐𝑑𝑗𝑃𝑑𝑗 (𝑗 = 1, 2, . . . , 𝑛) , (2)

where 𝑃𝑑𝑗 is a consumer’s demand, 𝜏𝑑𝑗 is the expansion speed
of consumption demand, 𝑏𝑑𝑗 + 𝑐𝑑𝑗𝑃𝑑𝑗 is the marginal benefit
of consumer 𝑗, 𝑐𝑑𝑗 is the demand elasticity of consumer 𝑗, and
𝑏𝑑𝑗 is the linear cost coefficient of consumer 𝑗. In addition,𝑃𝑑𝑗
and 𝑃𝑔𝑖 satisfy

𝑚

∑

𝑖=1

𝑃𝑔𝑖 =

𝑛

∑

𝑗=1

𝑃𝑑𝑗. (3)

Considering the congestion of power market, using flow
distribution factors, a single congested condition can be
represented as a scalar additional equality constraint:

𝑠𝑔1𝑃𝑔1 + 𝑠𝑔2𝑃𝑔2 + ⋅ ⋅ ⋅ + 𝑠𝑔𝑚𝑃𝑔𝑚

+ 𝑠𝑑1𝑃𝑑1 + 𝑠𝑑2𝑃𝑑2 + ⋅ ⋅ ⋅ + 𝑠𝑑𝑛𝑃𝑑𝑛 = 𝑠1.

(4)
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Generally, with 𝑛𝑠 congestion conditions, the complete
model of𝑚-supplier and 𝑛-consumer case is

[
𝑇 0

0 0
][

̇̃
𝑃

̇̃
Λ
] = [

𝐶 𝑆
T

𝑆 0
] [
𝑃̃

Λ̃
] + [

𝑏

𝑠
] , (5)

where 𝑇 = diag{𝜏𝑔1, 𝜏𝑔2, . . . , 𝜏𝑔𝑚, 𝜏𝑑1, 𝜏𝑑2, . . . , 𝜏𝑑𝑛}, 𝜏𝑔𝑖 > 0,
𝜏𝑑𝑖 > 0, 𝐶 = diag{−𝑐𝑔1, −𝑐𝑔2, . . . , −𝑐𝑔𝑛, 𝑐𝑑1, 𝑐𝑑2, . . . , 𝑐𝑑𝑛}, 𝑃̃ ∈

𝑅
𝑚+𝑛, Λ̃ ∈ 𝑅𝑛𝑠+1, Λ̃ = [𝜆 𝜇1 ⋅ ⋅ ⋅ 𝜇𝑛

𝑠

], and 𝜇𝑘 is the Lagrange
multiplier for 𝑘 = 1, 2, . . . , 𝑛𝑠.Thematrix 𝑆 corresponds to the
sensitivities of the constraints

[
[
[
[

[

1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ −1

𝑠11 ⋅ ⋅ ⋅ 𝑠1𝑚 𝑠1𝑚+1 ⋅ ⋅ ⋅ 𝑠1𝑚+𝑛
.
.
. ⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

.
.
.
.

𝑠𝑛
𝑠
1 ⋅ ⋅ ⋅ 𝑠𝑛

𝑠
𝑚 𝑠𝑛

𝑠
𝑚+1 ⋅ ⋅ ⋅ 𝑠𝑛

𝑠
𝑚+𝑛

]
]
]
]

]

, (6)

where the first line represents the power balance conditions;
𝑏 = [−𝑏𝑔1 − 𝑏𝑔2 ⋅ ⋅ ⋅ − 𝑏𝑔𝑚 𝑏𝑑1 𝑏𝑑2 ⋅ ⋅ ⋅ 𝑏𝑑𝑛]

T is a cost
vector of linear coefficients; 𝑠 = [0 𝑠1 𝑠2 ⋅ ⋅ ⋅ 𝑠𝑛

𝑠

]
T is a

vectorwith the value of the fixed demand,where 𝑠𝑖 is the value
of the right-hand side for 𝑖 = 1, 2, . . . , 𝑛𝑠 in the constraint
equations in the remaining positions.

2.2. ElectricityMarket StochasticModel. The system (5) has at
least one equilibriumpoint.Through transformation, it could
be changed as follows:

[
𝑇 0

0 0
] [
𝑃̇

Λ̇
] = [

𝐶 𝑆
T

𝑆 0
] [
𝑃

Λ
] . (7)

Usually, there exists 𝑚 + 𝑛 > 𝑛𝑠 + 1. Let rank(𝑆) = 𝑛𝑠 + 1
and let 𝑆 = (𝑆1, 𝑆2), where 𝑆1 corresponds to a nonsingular
(𝑛𝑠 +1) × (𝑛𝑠 +1)-order submatrix of 𝑆. The matrices 𝑇 and 𝐶
can be divided into the following form: 𝑇 = diag{𝑇1, 𝑇2} and
𝐶 = diag{𝐶1, 𝐶2}, where 𝑇1 and 𝐶1 are (𝑛𝑠 + 1) × (𝑛𝑠 + 1)-
order diagonal matrices; 𝑇2 and 𝐶2 are 𝑞 × 𝑞-order diagonal
matrices, and 𝑞 = (𝑚 + 𝑛) − (𝑛𝑠 + 1). So (7) can be formed as

[

[

𝑇1 0 0

0 𝑇2 0

0 0 0

]

]

[

[

𝑃̇1

𝑃̇2

Λ̇

]

]

=
[
[

[

𝐶1 0 𝑆
T
1

0 𝐶2 𝑆
T
2

𝑆1 𝑆2 0

]
]

]

[

[

𝑃1
𝑃2
Λ

]

]

. (8)

Since the matrix 𝑆1 is nonsingular, reduction and elim-
ination to 𝑃1 yield the following purely reduced differential
equation: −𝑇1𝑆

−1

1
𝑆2𝑃̇2 = −𝐶1𝑆

−1

1
𝑆2𝑃2 + 𝑆

T
1
Λ. By obtaining

Λ from the above and substituting it into the second group
equation of (8), we have

(𝑇2 + 𝑆
T
3
𝑇1𝑆3) 𝑃̇2 = (𝐶2 + 𝑆

T
3
𝐶1𝑆3) 𝑃2. (9)

Put 𝑆3 = 𝑆
−1

1
𝑆2, 𝑇3 = 𝑇2 + 𝑆

T
3
𝑇1𝑆3, and 𝐶3 = 𝐶2 + 𝑆

T
3
𝐶1𝑆3;

the system (9) could be formed as follows:

𝑇3𝑑𝑃2 = 𝐶3𝑃2𝑑𝑡. (10)

Considering the random nature of demand sides, after
adding a random excitation term to the right-hand side of

(10), the electricity market stochastic model can be described
as

𝑇3𝑑𝑃2 (𝑡) = 𝐶3𝑃2 (𝑡) + 𝑄𝑑𝐵 (𝑡) 𝑡 ∈ [0, +∞) , (11)

where the initial value 𝑃2(0) = 𝑃0 is bounded. 𝐵(𝑡) is the 𝑛-
dimensional Wiener process. 𝑃0 and 𝐵(𝑡) are independent of
each other. 𝑃2(𝑡) and 𝑄 are 𝑛-dimensional column vectors.

3. Stochastic Differential Equation Theories

In order to give the determining conditions of stability for the
electricity market stochastic model (11), we should introduce
some theory referring to stochastic differential equation
firstly. For details, see literature [21].

3.1. Stochastic Differential Equation

Definition 1 (see [21]). Vector stochastic differential equation
with Gauss type white noise can be written as

𝑑𝑋 (𝑡) = 𝑓 (𝑋 (𝑡) , 𝑡) 𝑑𝑡 + 𝐺 (𝑋 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , (12)

where𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), . . . , 𝑋𝑛(𝑡))
Τ is the 𝑛-dimensional

vector random variable; 𝐵(𝑡) = (𝐵1(𝑡), 𝐵2(𝑡), . . . , 𝐵𝑛(𝑡))
Τ is

the 𝑛-dimensional Wiener process. The initial value 𝑋(𝑡0) =
𝑋0 is bounded. 𝑋0 and 𝐵(𝑡) are independent of each other.
The derivative form of 𝐵(𝑡) is denoted as 𝑑𝐵(𝑡)/𝑑𝑡 = 𝑊(𝑡) for
𝑡 ∈ [𝑡0, 𝑇], where𝑊(𝑡) is the vector Gaussian white noise. If
𝑓(𝑋(𝑡)) and𝐺(𝑋(𝑡)) are the linear functions of𝑋(𝑡), namely,
𝑓(𝑋(𝑡), 𝑡) = 𝐴(𝑡)𝑋(𝑡) + 𝑎(𝑡), the special linear stochastic
differential equation can be obtained as follows:

𝑑𝑋 (𝑡) = (𝐴 (𝑡)𝑋 (𝑡) + 𝑎 (𝑡)) 𝑑𝑡 + 𝑄 (𝑡) 𝑑𝐵 (𝑡) , (13)

where 𝑎(𝑡) is the 𝑛-dimensional vector, 𝐴(𝑡) is an 𝑛 × 𝑛-order
matrix, and 𝑄(𝑡) is an 𝑛 × 𝑚-order matrix. If 𝐴(𝑡) = 𝐴 and
the special linear stochastic differential equation (13) satisfies
measurability, Lipschitz continuity, linear growth conditions,
and initial condition [21], then its solution process can be
expressed as

𝑋 (𝑡) = 𝑒
𝐴(𝑡−𝑡

0
)
𝑋0 + ∫

𝑡

𝑡
0

𝑒
𝐴(𝑡−𝑠)

(𝑎 (𝑠) 𝑑𝑠 + 𝑄 (𝑠) 𝑑𝐵 (𝑠)) .

(14)

Particularly, if 𝑎(𝑡) = 0 and 𝑄(𝑡) = 𝑄, its solution process
can be written as

𝑋(𝑡) = 𝑒
𝐴(𝑡−𝑡

0
)
𝑋0 + ∫

𝑡

𝑡
0

𝑒
𝐴(𝑡−𝑠)

𝑄𝑑𝐵 (𝑠) . (15)

Let ‖ ⋅ ‖2 denote norm; it refers tomodular arithmetic and
2-norm for vector and matrix, respectively.

Definition 2 (see [22]). If the solution process 𝑋(𝑡) of the
stochastic differential equation (12) satisfies

lim
𝑡→∞

𝐸‖𝑋(𝑡)‖2 < 𝑐, (16)

where 𝑐 is constant and greater than zero, then the system is
of mean stability.

Mean stability implies that themean value of the response
of the system with random input is bounded.
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Figure 1: Simulation path of Brown motion.

3.2. Numerical Computing Method. Generally, it is difficult
to obtain the analytical solution of stochastic differential
equation, while it is feasible to get the trajectory of solution
process with numerical computing methods to approach the
exact solution. Euler-Maruyama (EM) numerical method
is one of important numerical methods for the solution
of stochastic differential equation [23]. Let the stochastic
process of 𝑋(𝑡) be the process of solving (12). Difference
iterative format of EM numerical method is as follows:

𝑋(𝑡𝑗+1) = 𝑋 (𝑡𝑗) + 𝑓 (𝑋 (𝑡𝑗) , 𝑡𝑗) Δ𝑡 + 𝐺 (𝑋 (𝑡𝑗) , 𝑡𝑗) Δ𝑊𝑗,

(17)

where Δ𝑡 = (𝑇 − 𝑡0)/𝑁, 𝑁 is a certain positive integer, and
𝑡𝑗 = 𝑡0 + 𝑗Δ𝑡, 𝑗 = 0, 1, 2, . . . , 𝑁. Based on the conditions
[21] satisfied by Wiener process, we have Δ𝑊𝑗 = 𝑊(𝑡𝑗+1) −
𝑊(𝑡𝑗) and Δ𝑊𝑗 ∼ √Δ𝑡𝑁(0, 1), where 𝑊(𝑡𝑗) is the discrete
Wiener process. A simulation path of Wiener process can be
produced on the interval [0, 10], such as𝑁 = 200, and it can
be seen that the Wiener process is continuous while it is not
differentiable in Figure 1.

The contents above are cited from the related literature.
The following sections are the contribution of the paper, in
which the stability problems and the numerical examples of
random response are investigated.

4. Mean Stability of Electricity Market
Stochastic Model

In this section, the determining conditions of mean stability
for the electricity market stochastic model (11) will be shown
and proved theoretically.

Lemma 3 (see [16]). Let 𝐴𝑛×𝑛 be a real positive semidefinite
matrix, and let 𝑆𝑛×𝑟 be a certain real matrix (as long as 𝑆T𝐴𝑆 is
meaningful); then, 𝐵 = 𝑆T𝐴𝑆 is a positive semidefinite matrix.

Lemma 4 (see [16]). The sum of positive definite matrix and
positive semidefinite matrix will be positive definite matrix;

the sum of negative definite matrix and negative semidefinite
matrix will be negative definite matrix; the sum of two positive
definite matrix will be positive definite matrix; the sum of two
negative definite matrix will be negative definite matrix.

Lemma 5 (see [20]). If𝐴 is an 𝑛×𝑛matrix and 𝜆1, 𝜆2, . . . , 𝜆𝑛
are the eigenvalues of𝐴, then there is a constant𝐿 > 0 satisfying

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴󵄩󵄩󵄩󵄩󵄩2

≤ 𝐿𝑒
𝜆
, (18)

where 𝜆 = max{Re(𝜆1), . . . ,Re(𝜆𝑛)}.

Theorem 6. If all the eigenvalues of 𝐶3 are negative in the
electricity market stochastic model (11), then the model is of
mean stability.

Proof. Since 𝑇 = diag(𝜏𝑔1, . . . , 𝜏𝑔𝑚, 𝜏𝑑1, . . . , 𝜏𝑑𝑛) = diag(𝑇1,
𝑇2),𝑇1 = diag(𝜏𝑔1, . . . , 𝜏𝑔𝑚), and𝑇2 = diag(𝜏𝑑1, . . . , 𝜏𝑑𝑛), 𝜏𝑔𝑖 >
0, 𝜏𝑑𝑗 > 0, thematrices𝑇, 𝑇1, and 𝑇2 are positive definite. By
Lemma 3, thematrix 𝑆T

3
𝑇3𝑆3 is positive semidefinite.Then, by

Lemma 4, 𝑇3 = 𝑇2 + 𝑆
T
3
𝑇1𝑆3 is a positive definite matrix.

According to literature [16], there exists an 𝑛-order
reversible matrix 𝑇33 such that 𝑇3 = (𝑇

−1

33
)
T
𝑇
−1

33
. Substituting

it into (11) yields that (𝑇−1
33
)
T
𝑇
−1

33
𝑑𝑃2(𝑡) = 𝐶3𝑃2(𝑡) + 𝑄𝑑𝐵(𝑡).

By (𝑇−1
33
)
T
= (𝑇

T
33
)
−1, we have

𝑇
−1

33
𝑑𝑃2 (𝑡) = 𝑇

T
33
𝐶3𝑇33𝑇

−1

33
𝑃2 (𝑡) + 𝑇

T
33
𝑄𝑑𝐵 (𝑡) . (19)

Put 𝑋(𝑡) = 𝑇−1
33
𝑃2(𝑡); then, 𝑑𝑋(𝑡) = 𝑇

−1

33
𝑑𝑃2(𝑡). Equation

(19) can be written as

𝑋 (𝑡) = 𝑇
T
33
𝐶3𝑇33𝑑𝑋 (𝑡) + 𝑇

T
33
𝑄𝑑𝐵 (𝑡) , (20)

where 𝑇33𝑃0 = 𝑋0. Its explicit expression is

𝑋 (𝑡) = 𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0 + ∫

𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠) . (21)

The matrix 𝐶3 is real symmetric so that its eigenvalues
are real numbers. On account of the conditions, all the
eigenvalues of 𝐶3 are negative. The matrix 𝑇

T
33
𝐶3𝑇33 is

the contragradient transformation of 𝐶3, so they have the
same eigenvalues symbol. Let 𝜆𝑗 denote the eigenvalues of
𝑇
T
33
𝐶3𝑇33 for 𝑗 = 1, . . . , 𝑛; then, 𝜆𝑗 < 0.
By Cauchy-Schwarz inequation, we have

(E‖𝑋 (𝑡)‖2)
2

≤ E‖𝑋 (𝑡)‖2
2
= E [𝑋T

(𝑡) 𝑋 (𝑡)]

= E [(𝑒𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0)

T
𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0]

+ E [(𝑒𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0)

T
∫

𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠)]
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+ E[(∫
𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠))

T

𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0]

+ E[(∫
𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠))

T

× ∫

𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠) ] .

(22)

Using the definition of 2-norm of vector and the expec-
tation properties of nonrandom variable, it can be obtained
that

E [(𝑒𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0)

T
𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0] =

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0

󵄩󵄩󵄩󵄩󵄩󵄩

2

2
. (23)

Because the formal derivative of 𝐵(𝑡) is a Wiener process,
(𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0)

T
∫
𝑡

0
𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵(𝑠) is also aWiener pro-

cess and its expectation value of Wiener process is 0. Hence,

E [(𝑒𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0)

T
∫

𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠)] = 0. (24)

In a similar argument as above, we obtain

E[(∫
𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠))

T

𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0] = 0. (25)

By the stochastic integral property of Wiener process
using real value function, we have [24]

E[(∫
𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)
𝑇
T
33
𝑄𝑑𝐵 (𝑠))

T

∫

𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)
𝑇
T
33
𝑄𝑑𝐵 (𝑠)]

= E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄𝑑𝐵 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

= ∫

𝑡

0

E
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄
󵄩󵄩󵄩󵄩󵄩󵄩

2

2
𝑑𝑠

= ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄
󵄩󵄩󵄩󵄩󵄩󵄩

2

2
𝑑𝑠.

(26)

Substituting (23)∼(26) into (22), it can be yielded as

E [𝑋T
(𝑡) 𝑋 (𝑡)]

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0

󵄩󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄
󵄩󵄩󵄩󵄩󵄩󵄩

2

2
𝑑𝑠.

(27)

By the norm property and Lemma 5, the above equation
satisfies

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
𝑋0

󵄩󵄩󵄩󵄩󵄩󵄩

2

2
≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
𝑡
󵄩󵄩󵄩󵄩󵄩󵄩

2

2

󵄩󵄩󵄩󵄩𝑋0
󵄩󵄩󵄩󵄩
2

2
≤ 𝑚0𝑙

2

0
𝑒
2𝜆𝑡
, (28)

where 𝑚0 = ‖𝑋0‖
2

2
> 0, 𝜆 = max1≤𝑗≤𝑛{𝜆𝑗} < 0, and 𝑙0 is a

certain positive content. The second item of the right-hand
side of above equation satisfies

∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

𝑇
T
33
𝑄
󵄩󵄩󵄩󵄩󵄩󵄩

2

2
𝑑𝑠

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇
T
33
𝐶
3
𝑇
33
(𝑡−𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩

2

2

󵄩󵄩󵄩󵄩󵄩
𝑇
T
33
𝑄
󵄩󵄩󵄩󵄩󵄩

2

2
𝑑𝑠

≤ 𝑚1𝑙
2

1
∫

𝑡

0

𝑒
2(𝑡−𝑠)

𝑑𝑠 =
𝑚1𝑙
2

1

2𝜆
(𝑒
2𝜆𝑡
− 1) ,

(29)

where𝑚1 = ‖𝑇
T
33
𝑄‖
2

2
> 0.

Therefore, (27) can be changed as

E [𝑋T
(𝑡) 𝑋 (𝑡)] ≤ 𝑚0𝑙

2

0
𝑒
2𝜆𝑡
+
𝑚1𝑙
2

1

2𝜆
(𝑒
2𝜆𝑡
− 1) . (30)

According to (22), (30) can be written as

lim
𝑡→∞

(E‖𝑋 (𝑡)‖2)
2
≤ lim
𝑡→∞

(𝑚0𝑙
2

0
𝑒
2𝜆𝑡
+
𝑚1𝑙
2

1

2𝜆
(𝑒
2𝜆𝑡
− 1)) .

(31)

Owing to 𝜆 < 0, we have

lim
𝑡→∞

(𝑚0𝑙
2

0
𝑒
2𝜆𝑡
+
𝑚1𝑙
2

1

2𝜆
(𝑒
2𝜆𝑡
− 1)) = −

𝑚1𝑙
2

1

2𝜆
> 0. (32)

Hence, if we take a positive constant 𝐿 that satisfies 𝐿 >
√−𝑚1𝑙

2

1
/2𝜆 such as 𝐿 = √−(𝑚1𝑙

2

1
/2𝜆) + 1, then we get

lim𝑡→∞E‖𝑋(𝑡)‖2 ≤ 𝐿. By Definition 2, the system (11) is of
mean stability.

The matrices 𝐶 = diag{𝐶1, 𝐶2}, 𝐶1 = diag{−𝑐𝑔1, . . . ,
−𝑐𝑔𝑚}, and 𝐶2 = diag{𝑐𝑑1, . . . , 𝑐𝑑𝑛}. If the diagonal elements
of𝐶1 are nonpositive, then the matrix𝐶1 is negative semidef-
inite. By Lemma 3, 𝑆T

3
𝐶1𝑆3 is a negative semidefinite matrix.

If the diagonal elements of𝐶2 are negative, then thematrix𝐶2
is negative definite. By Lemma 4, thematrix𝐶3 = 𝐶2+𝑆

T
3
𝐶1𝑆3

is real symmetric negative definite. Hence, the following
corollary can be obtained.

Corollary 7. If the diagonal elements of 𝐶1 are nonpositive
and the diagonal elements of 𝐶2 are negative, then the system
(11) is of mean stability.

By the theory, it should be worthy to note that if the
demand elasticity of suppliers is positive and the demand
elasticity of consumers is negative, then the electricity market
stochastic model (11) is of mean stability. Furthermore, by the
corollary, we can get the conclusion that if the demand elas-
ticity of suppliers is nonnegative and the demand elasticity of
consumers is negative, then the electricity market stochastic
model (11) is of mean stability.

5. The Numerical Examples

Now, we begin to use the theories above to analyze the
mean stability of the electricity market stochastic model
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Figure 2: The dynamic responses of demand for consumer 1 over a
path.

(11) specifically. Some computation results are presented as
follows. These deterministic data are derived from Table 4
in [2], corresponding to a determinacy electricity market
dynamic model, proposed by Alvarado.

Example 8. In the electricity market stochastic model (11),
consider the set of differential/algebraic equations (DAE)
corresponding to the case 𝑛𝑠 = 2 of three suppliers and two
consumers.The demands elasticity of suppliers is 0.3, 0.5, and
0.2, and response speeds of generation power output are 0.1,
0.3, and 0.2, respectively; the demands elasticity of consumers
is−0.5 and−0.6, and expansion speeds of consumer demands
are 0.2 and 0.25, respectively. The steady state values of the
electricity demand are 7.68 and 8.05, respectively.

When 𝑛𝑠 = 2, according to the data above, there are the
following in model (11):

𝐶1 = diag {−0.3, −0.5, −0.2} , 𝐶2 = diag {−0.5, −0.6} ,

𝑇1 = diag {0.1, 0.3, 0.2} , 𝑇2 = diag {0.2, 0.25} ,

𝑆1 =
[

[

1 1 1

0.1 −0.1 0

0.2 0 0.3

]

]

, 𝑆2 =
[

[

−1 −1

0.1 −0.1

−0.1 −0.1

]

]

,

𝑃2 (𝑡) = [𝑃𝑑1 (𝑡) 𝑃𝑑2 (𝑡)]
T
.

(33)

Obviously, the matrices 𝐶1 and 𝐶2 are negative definite.
According to the theorem, it can be concluded that this
stochastic dynamic model on electricity market is of mean
stability. Combined with the data above, some numerical
simulation and computation results are illustrated with the
random excitation intensity of 𝑄 = [0.2 0.3]

T.
Referring to Section 3.2, the simulations of system (11) are

performed using EM method and the dynamic responses of
𝑃𝑑2(𝑡) and 𝑃𝑑2(𝑡) solution processes on a path are shown in
Figures 2 and 3, respectively.
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Figure 3: The dynamic responses of demand for consumer 2 over a
path.
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Figure 4: Average demand for consumer 1 when 𝑄 = [0.2 0.3]
T

over 400 paths.

Based on statistics theory, if one solution process is
regarded as a sample from population, the average value
of many solution processes is the mean value of samples.
The simulation of sample mean of 𝑃𝑑1(𝑡) and 𝑃𝑑2(𝑡) solution
processes on 400 paths is shown in Figures 4 and 5; path 1 and
path 2 are two of the 400 paths. It is obvious to conclude that
the samplemean variation range of the two solution processes
is small and close to the steady state values 7.68 and 8.05,
respectively. It is implied that 𝑃𝑑1(𝑡) and 𝑃𝑑2(𝑡) are of mean
stability.

Example 9. For the electricity market stochastic model in
Example 8, if the demand elasticity of some suppliers became
zero and other data were unchanged, for instance, we take
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Figure 5: Average demand for consumer 2 when 𝑄 = [0.2 0.3]
T

over 400 paths.
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Figure 6: Average demand for consumer 1 when 𝑄 = [0.2 0.3]
T

over 400 paths.

𝐶1 = diag{0, 0, −0.2} and other data as shown in Example 8,
then the diagonal elements of 𝐶1 are nonpositive and the
diagonal elements of 𝐶2 are negative. By the corollary, this
modified stochastic electricity market model is also of mean
stability.

Combined with the data above, some numerical simula-
tion and computation results are illustrated with the random
excitation intensity of 𝑄 = [0.2 0.3]

T. Similar to Figures 2
and 3, the dynamic responses of 𝑃𝑑1(𝑡) and 𝑃𝑑2(𝑡) solution
processes on a path are no longer illustrated. Figures 6 and
7 correspond to Figures 4 and 5. Graphical presentation
further indicates that if the demand elasticity of suppliers
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Figure 7: Average demand for consumer 2 when 𝑄 = [0.2 0.3]
T

over 400 paths.

is nonnegative and the demand elasticity of consumers is
negative, then the system is of mean stability.

6. Conclusions

(1) Taking advantage of small Gauss type random excitation
to describe the random nature of demand sides, a stochastic
dynamic electricity market model is presented to reveal the
dynamic characteristics of electricity market more accurately
based on the deterministic electricity market dynamic model
proposed by Alvarado.

(2) Using the theory of stochastic differential equations,
stochastic process theory, and eigenvalue techniques, the
determining conditions of the mean stability for this model
are provided. The conditions manifest that the stability of
electricity market can be judged directly by the initial data’s
symbol of the demand elasticity.

(3) For the stochastic electricitymarket model, numerical
examples in which the data partially comes from a deter-
ministic electricity market are analyzed and examined from
a statistical viewpoint. The results of numerical examples
are consistent with the stability analysis using determining
conditions. It is illustrated that the determining conditions
of stability are effective, practical, and advantageous.

Based on the deterministic electricity market dynamic
model proposed by Alvarado, a stochastic electricity market
model is provided and its stability is studied. In recent years,
the increase of the proportion of randompower capacity such
as renewable energy sources will bring great influence on the
stability of the power market. The effect of randomness as a
result of renewable energy sources on electricity market will
be researched in the next step.
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