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Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the
disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed.Thus, simultaneous estimation
of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance
and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two
adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of
the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the
characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

1. Introduction

Induction motors are broadly used in industrial applications
and themajority of power in the world is currently consumed
by them.They are used because of their benefits compared to
other types of rotating electrical machines, such as robust-
ness, reliability, and reducedmaintenance [1]. Manymethods
of control presented in the literature have been proposed to
circumvent the problem of variation of the rotor resistance
for the indirect field-oriented controlled inductionmachines,
which can changewith time due to ohmic heating [2]. Among
these methods, we can mention the adaptive control using an
adaptive scheme of the rotor resistance [3, 4], identification of
rotor resistance based on Lyapunov stabilization theory [5],
and estimator based on fuzzy logic [6–8]. In these studies,
estimation and adaptation mechanisms have been used with
the sole aim to correct the rotor resistance used as a reference
value in the calculation of the slip frequency. To know the
exact position of the rotor flux, the estimation block of the
slip angular speed will be used by the control algorithm.
Following the research done in this field shows that the
performance of the control for the induction motor drive
depends heavily on the precision with which the motor

parameters are known in particular the rotor resistance. Its
mismatch affects significantly the open loop slip estimator
and degrades the performance of the speed control, especially
when the machine is loaded [3–6].

In addition to the adaptive control of the vector control
with rotor resistance adaptation, other works have proposed
the speed sensorless control [9–14]. The elimination of speed
sensors has become an inevitable task to guarantee the
high performance control and operating reliability, not only
because the sensors increase the cost and complexity of
machines, but also the measures are stained by the noise that
affects the robustness of control, especially in hostile environ-
ments. Various technical controls without speed sensor were
presented in this research, such as adaptive speed observer
[9],MRAS speed estimator [10, 11], fuzzy logic speed observer
[12], and backstepping and sliding mode speed observer [13,
14].

A variation of the rotor resistance will cause an error of
estimating the rotor speed [3]. To overcome this drawback,
simultaneous estimation of the motor speed and the rotor
resistance is required [15, 16]. In this paper, a solution based
on the theory of the fuzzy logic is developed.Themethod will
allow the estimation of rotor resistance and reinject it in the
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control loop in order to guarantee the decoupling between the
torque and flux dynamics.This solutionwill guarantee a good
estimation of the slip frequency even in the case of variations
in the rotor resistance. For the speed estimation we have used
themodel reference adaptive systemMRAS observer which is
based on fuzzy logic.Therefore, we have two observers which
use fuzzy logic without interacting with each other. This
paper presents the steps to be followed for the development
of simultaneous estimation of the rotor resistance and rotor
speed using two types of observer based on fuzzy logic.

First we are going to present the mathematical model of
the induction motor in Section 2. Section 3 is dedicated to
present the indirect field-oriented control technique.Thenwe
are going to describe the steps of designing the fuzzy logic
observer of the rotor resistance. The fuzzy logic MRAS speed
estimation and the algorithm to determine the optimal values
of the controller gains are developed in Section 5. Finally,
simulations are presented in the last section using Matlab
environment with some comments to conclude this work.

2. Induction Motor Modeling

The mathematical model of the induction motor can be
described in the reference frame connected to the rotating
field as follows [5, 12]
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𝜎: leakage coefficient,
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: motor angular velocity (electric angle).

The electromagnetic torque developed by the machine is
expressed by
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3. Indirect Field-Oriented Control of
Induction Motor Drive (IFOC)

Two recommended techniques for controlling the induction
motor with high performance have been presented in the
literature. The first one is called direct field-oriented control
(DFOC) and the second one is the indirect field-orientated
control (IFOC) [1]. In order to optimize the performance of
the inductionmotor and reduce the sensitivity of the stability
of the device for controlling the variation of rotor resistance,
we will use the indirect field-oriented control technique. The
main objective of this control strategy is, as in DC machines,
to independently control the torque and the flux; this is
done by using a d-q rotating reference frame synchronously
with the rotor flux space vector [2, 3]. In ideal field-oriented
control, the rotor flux linkage axis is forced to align with the
d-axes, and it follows that
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Applying the result of (3), the torque equation becomes
analogous to theDCmachine and can be described as follows:
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The relationship of mechanical speed and the angular
velocity of rotating reference frame d-q is given by the
following equation:
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4. Strategy for Estimating the Rotor Resistance
Using Fuzzy Logic Method

From (1), in steady-state the dynamic of the rotor fluxes can
be expressed as follows:
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By replacing 𝜑
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The angular velocity is expressed as follows:
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where (∗) means reference.
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Figure 1: Effect of variation of the rotor resistance on the shape of
the direct flux.

So the expressions of flux along the two axes become
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Equation (9) is considered as a reference model for the
mechanism of adjusting the rotor resistance by fuzzy logic.
Assuming that the rotor resistance changes from its nominal
value 𝑅
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Finally, the flux components can be expressed in terms of
the reference flux for an ideal decoupling as follows:
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function of 𝜇, and the vertical line in color red represents the
ideal orientation of the rotor flux.
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Figure 2: Effect of variation of the rotor resistance on the shape of
the quadratic flux.

𝛾 is a parameter that reflects the power of the induction
motor. The vertical line is the ideal orientation of the flux.
We identify changes in flux along the two axes of the rotating
frame d-q as follows:
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According to Figures 1 and 2 we can see that
(i) for 𝜇 > 1, there is reduced flux along the two axes,
(ii) for 𝜇 < 1, there is increased flux along the two axes.

According to (9), we can write
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The block diagram of the fuzzy logic adaptation mecha-

nism used in our simulation is given in Figure 3.
The estimated fluxes 𝜑
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and 𝜑
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can be obtained by

measuring the currents and stator voltages. First we will
estimate the stator flux using the following equations:
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Figure 3: Block diagram of the adaptation mechanism of rotor resistance using fuzzy logic.
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Figure 4: Variation law of fuzzy controller for the rotor resistance.

Then we can calculate the estimated flux by the following
equation:
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When choosing the linguistic value it should be taken
into account that the control must be robust and time of
calculation adopted by the fuzzy controller should not be high
to not slow down the process [6, 7]. In this proposed method
linguistic value of 5 is chosen which gives 25 rules.

For fuzzification, we have chosen triangular fuzzification
and for deffuzzification the centroid deffuzzification method
is used in the proposed method. The universe of discourse is
common to all fuzzy variables (Δ𝜑

𝑟𝑑
, Δ𝜑
𝑟𝑞
, and Δ

𝑢
) and is

divided into seven fuzzy sets (NB, NM, NS, ZE, PS, PM, and
PB) with triangular membership functions.

In terms of numerical values, the behavior of this mecha-
nism is characterized by action law shown in Figure 4. Indeed,

Table 1: Fuzzy control rules for calculating Δu.

Δ𝜑
𝑟𝑞

Δ𝜑
𝑟𝑑

NB NM NS ZE PS PM PB
NB PB PM PS PS ZE ZE ZE
NM PM PS PS PS ZE ZE ZE
NS PS PS PS PS ZE ZE ZE
ZE ZE ZE ZE ZE ZE ZE ZE
PS ZE ZE ZE NS NS NS NS
PM ZE ZE ZE NS NS NS NM
PB ZE ZE ZE NS NS NM NB

for each pair of input values (Table 1)the mechanism gener-
ates a variation of the control law (Δ𝑢), which corresponds to
the increase or decrease of the rotor resistance.

5. Fuzzy Logic MRAS Speed Observer Design

In this section we will present the different steps to design
the fuzzy logic MRAS speed observer. This method consists
in comparing the output of both estimators. The first one
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is called the reference model which is independent of the
quantity to estimate, and the second is the adjustable model
[10]. The error between the two estimators of the observing
rotor flux is injected in an adaptation mechanism which can
generate the value of𝜔

𝑟
as a way tominimize the error of flux.

The mechanism of adaptation is a fuzzy logic controller;
the block diagram of the MRAS speed observer and the
structure of the controller is shown in Figure 5.

The reference model is expressed by using the stator volt-
ages and stator currents. Their components are expressed in
a stationary frame when the flux components are generated.
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Figure 7: Variation law of fuzzy controller for MRAS speed
observer.

The reference value of the rotor flux components is described
by the following equation [3]:
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The adaptive model describes the rotor equation and the
rotor flux according to the d-q axes which are expressed as a
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function of the rotor speed and the stator currents. From (1),
the adaptive model is described by the following equations:
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From (17) and (18), the adaptation mechanism can be
designed to generate the estimated speed value which is used
to minimize the error between the estimate and reference
fluxes. The error between reference model and adjustable
model 𝑒 is minimized by a fuzzy logic controller which
generates the estimated speed. This signal 𝑒 is given by the
following expression:

𝑒 = 𝜑
𝑟𝑞
𝜑
𝑟𝑑
− 𝜑
𝑟𝑑
𝜑
𝑟𝑞
. (19)

For the design of a fuzzy regulator we must, first, study the
system to adjust and make an adequate description. It is
not a proper analysis to establish a mathematical model. We
must rather explore the behavior of the controlled system
vis-à-vis changes in the control variable and determine
measurable quantities characteristic of dynamic behavior.
Thedescriptionmaymake use of linguistic variables andmust
be accompanied by a definition of membership functions
[12]. Then we move on to determining the control strategy
that includes the fuzzification, inference, and deffuzzification.
After implementation, most often on a PC or microprocessor
software or hardware with processor autographed (specific
processors for the fuzzy logic), testing the installation is
usually necessary to change the control strategy interactively
in several steps in order to find proper behavior. This change
is highlighted by Figure 6, since it is an important step in the
design of a fuzzy set.

The quality of adjustment depends not only on the rules
but also on the choice of values with which the input and
output variables are multiplied. To define the values of 𝐺

𝑒
,

𝐺
𝑑𝑒
, and 𝐺

𝑢
we use the following algorithm.

Step 1. Set the gains values of 𝐺
𝑒
, 𝐺
𝑑𝑒
, and 𝐺

𝑢
(in our case

𝐺
𝑒
= 1, 𝐺

𝑑𝑒
= 1, and 𝐺

𝑢
= 1).

Step 2. If the error <1%, go to Step 7.

Step 3. Adjust 𝐺
𝑒
.

Step 4. If the error >10%, go to Step 3.

Step 5. Adjust 𝐺
𝑑𝑒
and 𝐺

𝑢
.

Step 6. If the error >1%, go to Step 5.

Step 7. End of algorithm.

The establishment of rules defining the output results
from operating expertise. For our application, we used the
basic rules given in Table 2, which stems from expertise and
is based on the operating principle of the bang-bang that
offers very good results. The latter is organized in the form

Table 2: Table fuzzy control rules Δu.

𝑒/Δ𝑒 NB NS ZE PS PB
NB NB NB NB NS ZE
NS NB NB NS ZE PS
ZE NB NS ZE PS PB
PS NS ZE PB PB PB
PB ZE PS PB PB PB

of a decision table. The inference method used is the method
(Max-Min) since it is easy to implement. The following table
shows the rules that correspond to these reflections.

In the proposed method each variable of the fuzzy logic
controller has five triangular membership functions. The
fuzzy sets used in the proposed method are NB: Negative
Big, NS: Negative Small, ZE: Zero Equal, PS: Positive Small,
and PB: Positive Big. The variation law of fuzzy controller for
MRAS speed observer is shown in Figure 7.

6. Simulation Results and Discussion

The performances of the proposed solution are evaluated
using Matlab-Simulink. A dynamic three-phase induction
motor model with speed and rotor resistance observer was
built to emulate behavior of the motor. The three-phase
induction motor parameters are given in Table 3. Figure 8
shows the architecture of the vector control algorithm incor-
porating the fuzzy logic MRAS speed observer and rotor
resistance fuzzy logic observer.

Figure 9 shows the effect of sudden change on the shape
of direct and quadratic flux. At 𝑡 = 2 s we introduced a
50% increase of the rotor resistance. Just at the moment of
variation (Figure 9(a)) the orientation of the fluxes is lost,
which has a negative effect on the control. Using an estimate
of the rotor resistance by the fuzzy logic guarantees the
orientation of flux (Figure 9(b)).

Figure 10 shows the evolution of the real and estimated
rotor resistance. When increasing the value of the rotor
resistance, the fuzzy controllers calculate the new value and
inject it into the control loop to ensure decoupling between
the flux and torque dynamics.

Figure 11 shows the effect of a slow change of the rotor
resistance on the flux behavior. Without adaptation it is clear
that we will lose the direction of flux (Figure 11(a)). However,
with rotor resistance adaptation we can keep the orientation
of the flux (Figure 11(b)).

Figure 12 shows the response of the fuzzy controller for
a slow variation of rotor resistance; the estimated and actual
rotor resistances are almost the same.

Figure 13 represents the reference, estimated, and actual
speed.This figure illustrates the speed system response under
a load torque of 10Nmapplied at 𝑡 = 0.5 s; the reference speed
is increased from zero to its rated value 157 rd/s. The motor
reaches its steady state after 0.4 s. At 𝑡 = 1 s, we applied a
slow increase of 50% of the value of the rotor resistance and
a change in the reference speed at 𝑡 = 1.5 s. The real and
estimated speed are nearly similar and the difference between
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Figure 8: Block diagram of the vector control including speed and rotor resistance fuzzy logic observer.
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Figure 9: Simulated results with sudden change of the rotor resistance with and without adaptation: (a) without adaptation and (b) with
adaptation.
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Figure 10: Tracking of the rotor resistance by fuzzy logic controller (case: sudden change).
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Figure 11: Simulated results with slow change of the rotor resistance with and without adaptation: (a) without adaptation, and (b) with
adaptation.
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Figure 12: Tracking of the rotor resistance by fuzzy logic controller
(case: slow change).

Table 3: Parameters of induction motor.

Designation Notations Rating values
Stator resistance 𝑅

𝑠
2.3Ω

Rotor resistance 𝑅
𝑟

1.83Ω
Stator self-inductance 𝐿

𝑠
261mH

Rotor self-inductance 𝐿
𝑟

261mH
Mutual inductance 𝐿

𝑚
245mH

Moment of inertia 𝐽 0.03 kgm2

Friction coefficient 𝑓 0.002Nm
Number of poles 𝑛

𝑝
2

Rated voltage 𝑉
𝑠𝑛

220V

0 0.5 1 1.5 2 2.5 3
−200

−150

−100

−50

0

50

100

150

200
Rotor speed

Time (s)

Sp
ee

d 
(r

d/
s)

Reference speed
Actual speed
Estimated speed

0.7 0.72 0.74 0.76 0.78 0.8
156.5

157

157.5
Zoom

Figure 13: Simulation result of the fuzzy logic MRAS speed
observer.

them is better shown in Figure 14 which does not exceed 1%
of the nominal value.

7. Conclusion

To sum up we say that this paper presents a method to
estimate the rotor resistance for induction machines based
on the theory of fuzzy logic. A standard IFOC without speed
sensor has been used for the induction machine based on
the same theory to design a MRAS speed observer. The
modeling approach proposed for both observers makes a
high-performance control strategy to be used with induction
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Figure 14: Error between real and estimated speed.

motor drive system.Thedrive systemhas been simulatedwith
adaptivemechanisms to identify the values of rotor resistance
and rotor speed based on fuzzy logic.The different simulation
results have shown that the designed fuzzy logic observer
has realized a good dynamic and performance for motor
monitoring even in the case of the rotor resistance variation.
The efficacity of the speed sensorless of the IFOC with
rotor resistance is proved by extensive simulation results.The
IFOC, the speed observer, and the rotor resistance observer
described in the previous sections are to be implemented in
the future work on a digital processor (DSP) to validate the
proposed scheme.
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