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The understanding of complex systems has become an area of active research for physicists because such systems exhibit interesting
dynamical properties such as scale invariance, volatility correlation, heavy tails, and fractality. We here focus on traffic dynamic as
an example of a complex system. By applying the detrended cross-correlation coefficient method to traffic time series, we find that
the traffic fluctuation time series may exhibit cross-correlation characteristic. Further, we show that two traffic speed time series
derived from adjacent sections exhibit much stronger cross-correlations than the two speed series derived from adjacent lanes.
Similarly, we also demonstrate that the cross-correlation property between the traffic volume variables from two adjacent sections
is stronger than the cross-correlation property between the volume variables of adjacent lanes.

1. Introduction

Many diversified complex systems are composed of con-
stituents that mutually interact in a complex fashion. The
complexity of the mutual interaction, such as the output of
each constituent which depends not only on its own past
but also on the past values of other constituent outputs,
can be additionally studied if memory is included. Such
complex systems are characterized by both long-range cor-
relations and long-range cross-correlations. A number of
studies suggest the existence of these properties in diverse
systems. Applying the random matrix theory, Stanley et
al. demonstrated the cross-correlation properties between
individual stocks traded in the Korean stock market [1].
By analyzing 48 world financial indices, Wang et al. found
the long-range power-law cross-correlations in the absolute
values of returns [2]. Podobnik et al. studied the cross-
correlation in successive differences of air humidity and
air temperature [3]. Du et al. provided cross-correlation
time delay model to improve earthquake relocation forecasts
[4].

These studies provide strong empirical evidences for
the existence of cross-correlations between the dynamics
of natural systems. Pearson’s correlation coefficient (PCC),

which is used to represent the linear correlation between
two time series which are both assumed to be stationary
[5, 6], is commonly used to gain insight into the dynamics
of cross-correlations in time series. Nevertheless, in natural
systems, the nonlinear and nonstationary characteristics are
usually present [7, 8]. Therefore, PCC may not be suitable
to describe the cross-correlations between time series that
are nonlinear or nonstationary. To address the drawbacks
of PCC, the detrended cross-correlation analysis (DCCA)
method is employed in this paper.

The DCCA method, which is a modification of standard
covariance analysis in which the global average is replaced
by local trends [9, 10], was proposed by Podobnik and
Stanleys. The performance of detrended cross-correlation
analysis method was systematically tested for the effect of
nonstationarities [9–11]. After that, numerous issues referring
to a broad range of applications [12–15] were established
to investigate cross-correlational signal in the presence of
nonstationarities.

In analogywith the cross-correlation coefficient, Zebende
recently introduced the detrended cross-correlation (DCCA)
coefficient [6]. One of the outstanding advantages of the non-
linear cross-correlation coefficient is that it can investigate
the cross-correlations at different time scales [16, 17]. After

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 230537, 7 pages
http://dx.doi.org/10.1155/2014/230537



2 Mathematical Problems in Engineering

0 500 1000 1500 2000 2500
0

20
40
60
80

100

Vo
lu

m
e

0 500 1000 1500 2000 2500
0

50

100

150

Time t (min)

Time t (min)

Sp
ee

d

Figure 1: The time series plot of the speed data and volume data
observed at the Beijing Third Ring Road.

that, Cao et al. adopted the DCCA coefficient to analyze and
quantify cross-correlations between the Chinese exchange
market and stock market [16]. Vassoler et al. quantified the
cross-correlations between time series of air temperature and
relative humidity by DCCA coefficient [18]. Podobnik et al.
showed that the tendency of the Chinese stock market to
follow the US stock market is extremely weak by using the
DCCA coefficient [19]. Wang et al. studied the statistical
properties of the foreign exchange network at different time
scales applying the DCCA coefficient [20].

Here, using the DCCA coefficient method, we model the
traffic data collected on the Beijing Third Ring Road as the
input data which can be readily observed from conventional
point detectors.The preliminary test results demonstrate that
the cross-correlation property between the traffic series from
two adjacent sections is stronger than the cross-correlation
property between the series of adjacent lanes and disjoint
lanes. The scaling results suggest the feasibility of estimating
cross-correlations in traffic variables using point detector
data via the proposed approach.

The organization of this paper is as follows. In the
next section, we present the dataset and DCCA coeffi-
cient method. In Section 3, we show the main empirical
results and discussion. Finally, we draw some conclusions in
Section 4.

2. Data and Methodology

2.1.TheDataset. Traffic systems have a number of parameters
that can be measured. The speed and volume are employed
in collecting and studying traffic data here. The data was
observed on the Beijing Third Ring Road (BTRR) over a
period of about 7 days, from 0:00 AM on March 21, 2011, to
23:30 PM on March 27, 2011. Figure 1 shows the time series
plot of the speed data and volume data observed at the Beijing
Third Ring Road.
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Figure 2: The twelve datasets of traffic time series.

The BTRR is a closed road system without any traffic-
signal control.There are threemain lanes as well as one or two
auxiliary lanes related to on-and-off ramps for each direction.
The data were downloaded from the Highway Performance
Measurement Project (FPMP).The periodic time of detecting
is 2min and the distance between two adjacent detectors is
about 500m. For investigating the cross-correlations in traffic
time series, we will analyze twelve datasets as follows (see
Figure 2):

(1) {V𝑚𝑛
𝑖
: 𝑚 = 1, 2; 𝑛 = 1, 2, 3}: the speed series of Lane

𝑛 in Section𝑚;

(2) {𝑞𝑚𝑛
𝑖
: 𝑚 = 1, 2; 𝑛 = 1, 2, 3}: the volume series of Lane

𝑛 in Section𝑚.

2.2. DCCA Coefficient Method. DCCA coefficient method is
an extension of detrended cross-correlation analysis (DCCA)
and detrended fluctuation analysis (DFA) method, and both
methods are based on random walk theory [6, 21, 22]. For
two nonstationary time series {𝑥

𝑘
} and {𝑦

𝑘
}, 𝑘 = 1, 2, . . . , 𝑇,

where 𝑇 is the length of data, the DCCA coefficient is given
as follows.

Step 1. Compute the profiles of underlying time series using

𝑋 (𝑖) =

𝑖

∑
𝑘=1

(𝑥
𝑘
− ⟨𝑥⟩) ,

𝑌 (𝑖) =

𝑖

∑
𝑘=1

(𝑦
𝑘
− ⟨𝑦⟩) ,

(1)

where ⟨𝑥⟩ = (1/𝑘)∑𝑘
𝑗=1
𝑥
𝑗
and ⟨𝑦⟩ = (1/𝑘)∑𝑘

𝑗=1
𝑦
𝑗
are the

mean.

Step 2. Cut the profiles𝑋 and𝑌 into𝑁
𝑠
= [𝑁/𝑠] nonoverlap-

ping segments of equal length 𝑠, respectively. In each segment
V, we calculate the local trend by a least-square fit of the data
and obtain the difference between the original time series and
the fits.



Mathematical Problems in Engineering 3

Step 3. Calculate the covariance of the residuals in each
segment:

𝑓
2

DCCA (𝑠, V) =
1

𝑠

𝑠

∑
𝑖=1

(𝑋
(V−1)𝑠+𝑖 − 𝑋𝑖,V) (𝑌(V−1)𝑠+𝑖 − 𝑌̃𝑖,V) ,

𝑓
2

DFA,{𝑥𝑖}
(𝑠, V) =

1

𝑠

𝑠

∑
𝑖=1

(𝑋
(V−1)𝑠+𝑖 − 𝑋𝑖,V)

2

,

𝑓
2

DFA,{𝑦𝑖}
(𝑠, V) =

1

𝑠

𝑠

∑
𝑖=1

(𝑌
(V−1)𝑠+𝑖 − 𝑌̃𝑖,V)

2

,

(2)

for each segment V = 1, 2, . . . , 𝑁
𝑠
, and

𝑓
2

DCCA (𝑠, V) =
1

𝑠

𝑠

∑
𝑖=1

(𝑋
𝑁−(V−𝑁𝑆)𝑠+𝑖 − 𝑋𝑖,V)

× (𝑌
𝑁−(V−𝑁𝑆)𝑠+𝑖 − 𝑌̃𝑖,V) ,

𝑓
2

DFA,{𝑥𝑖}
(𝑠, V) =

1

𝑠

𝑠

∑
𝑖=1

(𝑋
𝑁−(V−𝑁𝑆)𝑠+𝑖 − 𝑋𝑖,V)

2

,

𝑓
2

DFA,{𝑦𝑖}
(𝑠, V) =

1

𝑠

𝑠

∑
𝑖=1

(𝑌
𝑁−(V−𝑁𝑆)𝑠+𝑖 − 𝑌̃𝑖,V)

2

,

(3)

for each segment V = 𝑁
𝑠
+ 1, 𝑁

𝑠
+ 2, . . . , 2𝑁

𝑠
. Here 𝑋

𝑖,V
and 𝑌̃

𝑖,V are the fitting polynomials in segment V, respectively.
Then the averages over all segments to obtain the fluctuation
function are as follows:

𝑓
2

DCCA (𝑠) =
1

2𝑁
𝑠

2𝑁𝑠

∑
V=1
𝑓
2

DCCA (𝑠, V) , (4)

𝑓DFA,{𝑥𝑖} (𝑠) = {
1

2𝑁
𝑠

2𝑁𝑠

∑
V=1
𝑓
2

DFA,{𝑥𝑖}
(𝑠, V)}

1/2

, (5)

𝑓DFA,{𝑦𝑖} (𝑠) = {
1

2𝑁
𝑠

2𝑁𝑠

∑
V=1
𝑓
2

DFA,{𝑦𝑖}
(𝑠, V)}

1/2

. (6)

Step 4. For the two nonstationary time series {𝑥
𝑖
} and {𝑦

𝑖
},

the DCCA coefficient is defined as the ratio between the
detrended covariance function 𝑓2DCCA(𝑠) of (4) and two
detrended variance functions 𝑓DFA(𝑠) of (5) and (6):

𝜌DCCA (𝑠) =
𝑓
2

DCCA (𝑠)

𝑓DFA,{𝑥𝑖} (𝑠) 𝑓DFA,{𝑦𝑖} (𝑠)
, (7)

where 𝜌DCCA(𝑠) ranges from −1 to 1 [6, 20]. A value of
𝜌DCCA(𝑠) = 1 or 𝜌DCCA(𝑠) = −1 implies that the two
nonstationary time series {𝑥

𝑖
} and {𝑦

𝑖
} are completely cross-

correlated or anti-cross-correlated, at the time scale 𝑠,
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Figure 3: The DFA and DCCA fluctuate function for traffic speed
fluctuation series {V(11)

𝑖
} and the traffic volume fluctuation series

{𝑞
(11)

𝑖
}.

whereas a value of 𝜌DCCA(𝑠) = 0 indicates that there is
no cross-correlation between the two time series {𝑥

𝑖
} and

{𝑦
𝑖
} [6, 19]. Obviously, the DCCA coefficient 𝜌DCCA(𝑠) is a

function of the different window size 𝑠 of data, which means
that it can investigate the cross-correlations between two time
series {𝑥

𝑖
} and {𝑦

𝑖
} at different window scales.

3. Empirical Results and Analysis

3.1.The Cross-Correlation of the Speed and Volume Series. For
two nonstationary cross-correlated time series {𝑥

𝑖
} and {𝑦

𝑖
},

the power-law relationship 𝑓2DCCA(𝑠) ∼ 𝑠
2𝜆 exists. The scaling

exponent 𝜆 represents the degrees of the cross-correlation
between the two time series {𝑥

𝑖
} and {𝑦

𝑖
}. For time series

𝑥
𝑖
= 𝑦
𝑖
, the DCCA fluctuate function reduces to the DFA

fluctuate function 𝑓DFA(𝑠).
In order to study the dynamics of the traffic time series

over time, we first consider two time series, both of which
can be considered as two outputs of traffic system: the
traffic speed fluctuation series {V(11)

𝑖
} and the traffic volume

fluctuation series {𝑞(11)
𝑖
}. Here {V(11)

𝑖
} are the speeds of Lane 1

in Section 1 and {𝑞(11)
𝑖
} are the volumes of Lane 1 in Section 1.

Figure 3 displays the DFA and DCCA curve obtained
between traffic speed fluctuation series {V(11)

𝑖
} and the traffic

volume fluctuation series {𝑞(11)
𝑖
}. The curves exhibit obvious

power-law behavior withDFA exponent𝐻
𝑞
(11) = 1.37,𝐻V(11) =

1.12 and the DCCA exponent 𝜆 = 1.23, implying long-range
autocorrelation and cross-correlations in traffic dynamics.

It is apparent that the traffic flow series can be character-
ized by a local variability of the DCCA coefficient as shown
in Figure 4. The small fluctuations exhibited by the 𝜌DCCA(𝑠)
provide evidence that a more complex evolution dynamics
characterizes the traffic flow.
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Figure 4: The DCCA coefficient between traffic time series.
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Figure 5:TheDFA andDCCA curve of traffic speed variables {V(11)
𝑖
}

and {V(21)
𝑖
}.

3.2. The Cross-Correlation of the Speed Series. It is worth
noticing the fact that, according to the definition of cross-
correlation [9], each of the two variables at any time depends
not only on its own past values but also on past values of the
other variable.

Here, we firstly investigate the cross-correlations between
two traffic speed fluctuation variables {V(11)

𝑖
} and {V(21)

𝑖
},

which are derived from two adjacent sections of a high-
way and simultaneously recorded every two minutes (see
Figure 2). Figure 5 displays the DFA and DCCA curve for
traffic speed fluctuation variables {V(11)

𝑖
} and {V(21)

𝑖
}. The

curves also exhibit obvious power-law behavior with DFA
exponent𝐻V(21) = 1.14,𝐻V(11) = 1.12 and the DCCA exponent
𝜆 = 1.13, implying long-range autocorrelation and cross-
correlations in traffic speed time series.

The DCCA coefficient curve is given in Figure 6. We find
that 𝜌DCCA(𝑠) fluctuate around the value 𝜌DCCA = 0.97 and
show that the cross-correlated behavior between the time
series {V(11)

𝑖
} and {V(21)

𝑖
} is very strong.
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Figure 6: The cross-correlations between two traffic speed fluctua-
tion variables from two adjacent sections.
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And then, we consider the case when two time series
of variables {V(11)

𝑖
} and {V(12)

𝑖
} are derived from two adjacent

lanes (see Figure 2). For convenience, we study the difference
between the DCCA coefficient of the data from two adjacent
sections of one lane and the data from two adjacent lanes by
using the error function.

The error function is defined as 𝛿(𝑠) = 𝜌DCCA(𝑠) −

𝜌
(1)

DCCA(𝑠), where 𝜌DCCA(𝑠) is the DCCA coefficient of traffic
speed fluctuation variables {V(11)

𝑖
} and {V(21)

𝑖
} and 𝜌(1)DCCA(𝑠)

is the DCCA coefficient of traffic speed fluctuation variables
{V(11)
𝑖
} and {V(12)

𝑖
}.

From Figure 7, we can see that the error function 𝛿(𝑠) >
0 (circles) indicates that the cross-correlation of speed series
between two adjacent lanes is weaker than the time series of
two adjacent sections.
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In addition, we also find that cross-correlation exists
between the two time series of variables {V(11)

𝑖
} and {V(13)

𝑖
},

which are derived from Lane 1 and Lane 3 (see Figure 2). We
employ the error function 𝛿󸀠(𝑠) = 𝜌DCCA(𝑠) − 𝜌

(2)

DCCA(𝑠) once
again, where 𝜌(2)DCCA(𝑠) is theDCCA coefficient of traffic speed
fluctuation variables {V(11)

𝑖
} and {V(13)

𝑖
}. For comparison, the

error function 𝛿󸀠(𝑠) = 𝜌DCCA(𝑠) − 𝜌
(2)

DCCA(𝑠) is also plot in
Figure 7 (filled dots). Obviously, the error function 𝛿󸀠(𝑠) >
0 (filled dots) indicates that the cross-correlation between
speed series from two disjoint lanes is weaker than the cross-
correlation between the time series of two adjacent sections.

To analyze the statistical properties of the speed time
series, we compute the𝑃 value for 𝜌DCCA(𝑠) and𝜌

(1)

DCCA(𝑠).The
result 𝑃 = 6.38 × 10−16 indicates that the difference between
two quantities is statistically significant. Similarly, the𝑃 value
of 𝜌DCCA(𝑠) and 𝜌

(2)

DCCA(𝑠) also shows significant difference
(𝑃 = 2.51 × 10

−22

).

3.3. The Cross-Correlation of the Traffic Volume Series. Next,
we investigate the cross-correlations between two traffic
volume time series {𝑞(11)

𝑖
} and {𝑞(21)

𝑖
} (see Figure 2). The DFA

curves in Figure 8 show that each of two volume time series
{𝑞
(11)

𝑖
} and {𝑞(21)

𝑖
} exhibits autocorrelated behavior by DFA

exponent𝐻
𝑞
(21) = 1.32,𝐻

𝑞
(11) = 1.37. Figure 8 also illuminates

that the cross-correlated behavior between {𝑞(11)
𝑖
} and {𝑞(21)

𝑖
}

exists by DCCA exponent.
Figure 9 shows the DCCA coefficient of traffic volume

fluctuation variables {𝑞(11)
𝑖
} and {𝑞(21)

𝑖
}.TheDCCA coefficient

𝜌DCCA(𝑠) fluctuates around the value 𝜌DCCA = 0.78 and shows
that the cross-correlations between {𝑞(11)

𝑖
} and {𝑞(21)

𝑖
} exists.

Further, we investigate the case when two time series
of variables {𝑞(11)

𝑖
} and {𝑞(12)

𝑖
} are derived from two adja-

cent lanes (see Figure 2). The error function is employed
once again. In Figure 10, we give the error function
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Figure 9:The cross-correlations between two traffic volume fluctu-
ation variables from two adjacent sections.
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Figure 10: The error function 𝛿(𝑠) of traffic volume series for the
data from two adjacent sections and the data from two adjacent lanes
(circles) and 𝛿󸀠(𝑠) for the data from two adjacent sections and the
data from two disjoint lanes (filled dots).

𝛿(𝑠) = 𝜌DCCA(𝑠) − 𝜌
(1)

DCCA(𝑠), where 𝜌DCCA(𝑠) is the DCCA
coefficient of traffic volume variables {𝑞(11)

𝑖
} and {𝑞(21)

𝑖
} and

𝜌
(1)

DCCA(𝑠) is theDCCA coefficient of traffic volume fluctuation
variables {𝑞(11)

𝑖
} and {𝑞(12)

𝑖
}. The error function 𝛿(𝑠) > 0

(circles) demonstrates that the cross-correlation of volume
fluctuation series between two adjacent lanes is weaker than
the time series of two adjacent sections.

For convenience, Figure 10 also shows the error function
𝛿
󸀠

(𝑠) = 𝜌DCCA(𝑠) − 𝜌
(2)

DCCA(𝑠), where 𝜌
(2)

DCCA(𝑠) is the DCCA
coefficient of traffic volume series {𝑞(11)

𝑖
} and {𝑞(13)

𝑖
}. Similarly,

it is apparent that the cross-correlation of volume series
between two disjoint lanes is weaker than the time series
of two adjacent sections by direct observation of the error
function 𝛿󸀠(𝑠) > 0 (filled dots).
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In the statistical analysis, the 𝑃 value for 𝜌DCCA(𝑠) and
𝜌
(1)

DCCA(𝑠) is 2.22 × 10
−8 which indicates that the difference

between two quantities is statistically significant. 𝜌DCCA(𝑠)

and 𝜌(2)DCCA(𝑠) of volume time series are also statistically
significant based on permutation testing (𝑃 = 6.61 × 10−14).

4. Conclusion

In the paper, we consider DCCA coefficients method to
understand the complexity of traffic dynamic. The technique
has been implemented on the time series of the original
traffic variables from adjacent lanes and adjacent sections.
For the traffic speed time series and volume time series, the
DCCA coefficients fluctuate around the value 𝜌DCCA = 0.82
and provide evidence that cross-correlation characteristic
exists in traffic dynamic. Then, we apply DCCA coefficients
method to study the cross-correlation between traffic speed
series. We find that two traffic speed fluctuation parameters
derived from adjacent sections exhibit much stronger cor-
relation than the traffic parameters derived from adjacent
lanes and disjoint lanes. Similarly, by applying DCCA coeffi-
cients method to traffic volume series, the cross-correlation
property between the volume variables from two adjacent
sections is stronger than the cross-correlation property
between the volume variables of adjacent lanes and disjoint
lanes.

The relationship of traffic series between two adjacent
sections or lanes in China is investigated with the data from
BTRR.The results that the traffic series between two adjacent
sections or lanes exhibit cross-correlation are attributable to
each of the two variables at any time depending not only
on its own past values but also on past values of the other
variable. Therefore, the findings presented here encourage us
to think that this method reveals the relation in anomalous
traffic conditions.
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