
Research Article
Improved Confidence Interval Estimation for
Oscillometric Blood Pressure Measurement by
Combining Bootstrap-After-Jackknife Function with
Non-Gaussian Models

Soojeong Lee

Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 133-791, Republic of Korea

Correspondence should be addressed to Soojeong Lee; leesoo86@hanyang.ac.kr

Received 25 August 2014; Accepted 31 October 2014; Published 27 November 2014

Academic Editor: Gwanggil Jeon

Copyright © 2014 Soojeong Lee.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Confidence intervals (CIs) are generally not provided along with estimated systolic blood pressure (SBP) and diastolic blood
pressure (DBP) measured using oscillometric blood pressure devices. No criteria exist to determine the CI from a small sample set
of oscillometric blood pressuremeasurements.We provide an extendedmethodology to improve estimation of CIs of SBP andDBP
based on a nonparametric bootstrap-after-jackknife function and a Bayesian approach. We use the nonparametric bootstrap-after-
jackknife function to reduce maximum amplitude outliers. Improved pseudomaximum amplitudes (PMAs) and pseudoenvelopes
(PEs) are derived from the pseudomeasurements. Moreover, the proposed algorithm uses an unfixed ratio obtained by employing
non-Gaussianmodels based on the Bayesian technique to estimate the SBP andDBP ratios for individual subjects.TheCIs obtained
through our proposed approach are narrower than those obtained using the traditional Student 𝑡-distribution method. The mean
difference (MD) and standard deviation (SD) of the SBP and DBP estimates using our proposed approach are better than the
estimates obtained by conventional fixed ratios based on the PMA and PE (PMAE).

1. Introduction

Oscillometric blood pressure methods are widely used and
monitors are commercially available. Numerous studies have
been performed to improve the accuracy of oscillometric
blood pressure device [1–5]. However, there are still no
standard protocols for these devices and these devices provide
only single estimate with no confidence interval (CI). The
user may therefore not be able to distinguish statistical
variability in the estimates from intrinsic variability due to
physiological status. It would therefore be useful to specify
the CI for blood pressure measurements. For example, a
reading of 110/70 ± (SBP: 7)/(DBP: 5) would assure the user
that 95% of measurements carried out under identical con-
ditions would fall in the CI, corresponding to a systolic
blood pressure (SBP) between 103 and 117 and diastolic
blood pressure (DBP) between 65 and 75. If the CI is
too wide-ranging, an alarm can recommend discarding the

measurement and initiating another measurement. Without
the CI, it is difficult to make any meaningful decision for the
bloodpressure estimates. Based on some aggregated statistics,
in a home-based monitoring setting, the repeated wide-
ranging CI can trigger an alarm and alert either the nurse
station or the family doctor. Even though this is important
to take the measurement uncertainties in blood pressure
into account [6], few attempts have been made to study the
CIs for the systolic and diastolic blood pressures with the
exception of one recent study [3]. However, it is not feasible to
acquire large number of measurements for each subject using
a noninvasive oscillometric blood pressure measurement
device, as repeatable conditions can never be guaranteed [7].
Because blood pressure varies continuously over time accord-
ing to various physiological factors [8], it would be ideal
to calculate CIs based on only a few measurements. This
calls for an innovative methodology that can estimate CIs
from a smaller sample size. Use of a bootstrap approach to
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estimate CIs for oscillometric blood pressure measurements
was proposed in [7]. Although CIs obtained using the
bootstrap approach are narrow and have a lower standard
deviation, values are often too wide or too narrow because
of outliers in the maximum amplitude (MA) positions. In
this paper, we describe an extended methodology to improve
the CI estimates of the SBP and DBP. Specifically, improved
CIs are estimated using pseudomeasurements obtained based
on nonparametric bootstrap (NPB) and a jackknife influence
function is used to remove MA outliers [9]. Improved
pseudomaximum amplitudes (PMAs) and pseudoenvelopes
(PEs) are then derived from the pseudomeasurements.

Currently, the maximum amplitude algorithm (MAA)
is widely used to estimate average arterial blood pressure
(ABP) under oscillometric method [2, 4, 10]. The MAA
estimates the mean arterial pressure (MAP) as the cuff
pressure (CP) at whichmaximumoscillation occurs and then
linearly relates the systolic and diastolic blood pressures using
experimentally obtained ratios [1, 7, 10]. As we mentioned
before, Lee et al. proposed CIs estimation based on the MAA
technique, which shows good performance. However, our
previous method [7] is not significantly different from the
conventional MAA in terms of the mean difference (MD)
because of employing the fixed ratio obtained experimentally
[4, 7]. Although SBP and DBP ratios (SBPR and DBPR) in
the conventional method (MAA) are assumed to be fixed,
these ratios are not fixed [8, 11, 12]. Recently, Raamat et al.
also showed that physiological factors can have significant
effects on characteristic ratios [13]. Also, Lee et al. studied the
determination of blood pressure using the Bayesian approach
[11]. Their method assumes a Gaussian distribution for the a
posteriori distribution of the ratios of systolic and diastolic
blood pressures. More recently, Liu et al. introduced an
error mechanism of the fixed ratio based on oscillometric
blood pressure measurements [14]. As recent as the last year,
an alternative approach using a Gaussian mixture model
(GMM) was proposed to address the fixed ratio problem of
the conventional MAA algorithm [15].

In practice, for any subject, blood pressure varies contin-
uously over time according to various physiological factors
[8]. However, the fixed ratio can be viewed as a value
reliant on measurements of an experimental group with a
minimum mean error with respect to the auscultatory nurse
measurements as a reference. If the fixed ratio obtained from
the subjects in one group is used for another group, one
would not be able to acquire reliable blood pressure estimates.
Thus, the MAA derived by a fixed ratio is not adequate to
accurately determine for the SBP and DBP, because these
blood pressures (BPs) show significant continuous variability
over time [8].

For these reasons, it is necessary to develop a technique
that can efficiently estimate improvedCIs froma small sample
of blood pressure measurements and accurately determine
oscillometric blood pressure measurements. In this paper, we
propose a novel technique to determine these ratios and to
estimate improved CIs that combines an NPB-after-jackknife
influence function with non-Gaussian models based on a
Bayesian approach. We confirm that the proposed method-
ology decreases the mean difference (MD) and the standard

deviation (SD), and the CIs become tighter compared to
conventional methods since we compare the results of our
proposed method with those measured by the professional
nurses (auscutatory results). Summarizing our technique, the
goal of this paper is to reduce uncertainty for blood pressure
measurements based on the following contributions:

(i) we develop a method that reduces the SD of PMA [7]
using a jackknife influence function [9];

(ii) non-Gaussian models are employed based on a
Bayesian technique to decrease the MD between the
results of our proposed method and those of the
auscutatory nurse measurements.

The proposed method consists of two main parts:
obtaining the improved pseudomaximum amplitude (PMA)
and the pseudoenvelope (PE) using NPB with a jackknife
influence function and estimating the SBPR and DBPR by
employing the non-Gaussian models based on the Bayesian
approach [7, 9, 11, 16, 17].

The block diagram of our algorithm is given in Figure 1.
The PMAs and PEs are represented in the part (a), which
are called pseudomaximum amplitude and envelope (PMAE)
method [7]. First, the oscillometric envelopes are obtained
from each subject (5 measurements × 85 subjects = 425
total measurements), respectively. The envelopes are then
smoothed utilizing the Gaussian fitting and these are also
used to obtain the PEs. For more detail, the MA locations
using the MAA are found in Step 3. In Step 4, the MA outlier
is then removed by using the jackknife influence function.
We obtain the PMA locations using the NPB technique in the
following step. Using the CI method, the upper, middle, and
lower PMA locations are selected as shown in Step 6 of
Figure 1. In Step 7, the fitted envelopes are adjusted to obtain
the identical lengths, and the PEs are also achieved using the
NPB technique. The upper, middle, and lower PEs are then
determined in Step 8. In the previous step, the PMAs and PEs
using the NPB were obtained. If the PMA locations do not
match with end (start) point of the systolic (diastolic) PEs, it
will be necessary to use signal processing method to ensure
that the PMA locations are on the PEs as shown in Step 9 of
Figure 1. For more detailed description to obtain the PMAs
and PEs, the interested reader is referred to [7]. Specifically,
the part (b) in Figure 1 is to estimate the systolic and diastolic
ratios using non-Gaussian models based on a Bayesian
approach that will be more described in (12)–(21).

2. Methods

2.1. Subjects and Data Collection. We follow the standard
guidance, that is, currently available for blood pressure
measurements. Our experimental dataset was obtained from
85 healthy subjects aged from 12 to 80, out of which thirty-
seven were females and forty-eight were males. No recruited
subject had any history of cardiovascular disease. Five sets
of oscillometric BP measurements were obtained from each
volunteer (5 ∗ 85 = 425 total measurements; duration range:
31–95 sec., durationmedian: 55 sec.) using a wrist worn UFIT
TEN-10 blood pressure device (Biosign Technologies Inc.,
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Figure 1: Block diagram for improved CI estimation combining the bootstrap-after-jackknife function influence function with a generalized
Gaussian model based on a Bayesian technique. (a) CI estimation using bootstrap-after-jackknife function influence function. (b) Ratio
estimation for the SBP and DBP employing non-Gaussian models based on a Bayesian technique. Note that we use different background
colors, where gray box denotes the proposed approach for the PMAE (white box) [7].

Toronto, ON, Canada) at a sample rate of 100Hz. Our num-
ber of measurements exceed the recommendations of the
American National Standard Institute (ANSI) association for
the advancement of medical instrumentation (AAMI) SP-
10 standard which requires a minimum of 3 measurements
from 85 subjects, 255 measurements in total. Corresponding
to each cuff pressure waveform, two reference readings were
also recorded using the auscultatorymethod by two indepen-
dent trained observers (nurses), and these twomeasurements
were utilized as the reference BP for each subject. Nurse
measurements were used as golden standard since there
are no set standard so far for oscillometric blood pressure
measurements. Nurse readings were relatively stable in that
the maximum difference between the two nurses was no
more than 2mmHG. This meets the recommendations of
the ANSI/AAMI SP 10 standard, which requires the mean
difference to be no more than 5mmHG. Nurse reading of
SBP ranged from 78 to 147mmHG while those of DBP
ranged from 42 to 99mmHG across total 85 subjects [12]. We
used oscillometric blood pressure recoding to measure BP,
followed by readings of SBP andDBPwith help of two trained
nurse after a one-minute break. This was then followed by
another oneminute break.This procedure was repeated again
four more times to obtain five measurements [12]. During
data collection, each subject sat on an upright posture in a

chair and the UFIT device’s cuff was strapped to the left wrist
of the subject, which was raised to heart level [12]. Another
cuff for auscultatory BP measurement was placed on the
upper left arm, also at heart level.

2.2. Conventional MAA Based on the Oscillometric Envelope.
The MAA is generally utilized to estimate the SBP and DBP
based on the oscillometric waveform (OMW). Indeed, the
MAA needs to find the point of envelope that corresponds to
the MAP, which is estimated to be the maximum amplitude
(MA) position on the envelope of the OMW as shown
in Figure 2(c). This position on the deflation curve (cuff
pressure) gives us to acquire the MAP in mmHg [8]. The left
part of the MAP represents the SBP side and the right part of
the MAP denotes the DBP side. The MAA then uses fixed
characteristic ratios to find the points that correspond to the
SBP and DBP, respectively. TheMA is multiplied by the fixed
SBPR andDBPR [4, 7] to obtain the amplitudes of the systolic
position and the diastolic position, respectively, as follows:

𝑠(𝑖,𝑗) = 𝑚(𝑖,𝑗) ⋅ 𝑟𝑠,

𝑑(𝑖,𝑗) = 𝑚(𝑖,𝑗) ⋅ 𝑟𝑑,

(1)

where 𝑠(𝑖,𝑗) and 𝑑(𝑖,𝑗) denote the oscillometric amplitudes cor-
responding to the SBP and DBP, respectively, 𝑚(𝑖,𝑗) denotes
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Figure 2: The fundamental concept of the MAA based on the
oscillometric waveform (OMW). (a) Cuff pressure (CP). (b) OMW.
(c) Envelope of smoothed OMW.

the MA based on the oscillometric envelope, and 𝑟𝑠 and
𝑟𝑑 denote the fixed SBPR and DBPR. Also, 𝑖 = 1, . . . , 𝑁,
𝑗 = 1, . . . ,𝑀; 𝑁 and 𝑀 denote the number of subjects and
the number of measurements per subject, respectively. Thus,
points of the oscillometric amplitudes corresponding to the
SBP and DBP are mapped back to the cuff pressure to obtain
the SBP and DBP values in mmHg as shown in Figure 2.

2.3. Review of CI Estimation Based on the Bootstrap Technique.
In this subsection, we introduce the fundamental concept of
the bootstrap technique, which is a computational tool used
to improve the accuracy of estimates from a small number
of measurements in situations where conventional method-
ologies fail [7, 16, 18]. The basic idea behind the bootstrap
technique is to provide a large number of independent BP
parameters by resampling the original blood pressure esti-
mate, Ψ = (𝜓1, 𝜓2, . . . , 𝜓𝑛) of say 𝑛measurements at random
from an unknown probability distribution ΩΨ. A bootstrap
resample Ψ∗ = (𝜓

∗
1 , 𝜓
∗
2 , . . . , 𝜓

∗
𝑛 ) is obtained as a random

sample of size 𝑛 drawn randomly with replacement from the
original measurement set Ψ with elements occurring zero,
once, or multiple times. Let 𝜇 = 𝜇(Ψ) be an estimator of
the mean of ΩΨ. The goal is to find characteristics of 𝜇(Ψ)
similar to the distribution of 𝜇(Ψ). Thus, the distribution of
the estimated mean 𝜇 is approximated by the distribution of
the pseudoestimated mean 𝜇 from the bootstrap resample
Ω̂Ψ∗ .

Based on the principle of the bootstrap technique,
the CI can be obtained by using the NPB technique.
Let 𝜇∗𝛼 denote the 100 𝛼th percentile [7] of 𝑁 bootstrap

replications 𝜇∗(1), 𝜇∗(2), . . . , 𝜇∗(𝑁). The percentile band 𝜇𝑙,
𝜇𝑢 of intended coverage 1 − 2𝛼 is defined by

[𝜇𝑙, 𝜇𝑢] = [𝜇
∗

𝛼 , 𝜇
∗

1−𝛼] , (2)
where 𝑙 and 𝑢 denote the lower and upper limits of the CI,
respectively.

2.4. Improved PMA Estimates Using a Bootstrap-After-
Jackknife Function Influence Function. In this subsection,
we obtain the maximum amplitudes and the length of
occurrence of the maxima from all the five BPmeasurements
for each subject. These preliminary MA values are used to
determine improved PMAs based on theNPB technique after
implementation of a jackknife influence function [7, 9]. The
principle of our proposed algorithm is similar to that under-
lying the PMA technique [7]. The difference is that we use
the jackknife influence function to remove the MA outlier.
The main objective of this subsection is to describe how to
removeMAoutlier using the jackknife influence function [9].
Suppose that x = {𝑥1, . . . , 𝑥5} is based on the oscillometric
BP envelope. Let x(𝑘) denote the remaining length positions
of the MAs with the 𝑘th observation removed such that

x(𝑘) = {𝑥1, 𝑥2, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝐾} . (3)
For a given set, the jackknife influence function is defined by

𝑢𝑘 (𝜇) = (𝐾 − 1) [𝜇(⋅) − 𝜇(𝑘)] , (4)
where 𝜇(𝑘) ≡ 𝜇(x(𝑘)), 𝜇(⋅) is the mean of the jackknifed values
as 𝜇(⋅) ≡ ∑

𝐾

𝑘=1 𝜇(𝑘)/𝐾, and 𝐾 is the number of BP measure-
ments. From 𝑢𝑘(𝜇), the relative jackknife influence function
is given by

𝑢
+

𝑘 (𝜇) =
𝑢𝑘 (𝜇)

√∑𝑢𝑖 (𝜇)
2
/ (𝐾 − 1)

, (5)

where sup𝑘(|𝑢
+
𝑘 (𝜇)|) < 2 indicates a robust statistic value.

The statistic values of the relative jackknife influence function
suggested by Efron [9] can be used to evaluate the extremity
of the position of the suspect MA outliers.

According to the previous observation, we obtain a new
set x+ = {𝑥1, . . . , 𝑥𝐾−1} of length positions of the MAs after
removing the largest value max |𝑢+𝑘 (𝜇)| for each individual
subject. To obtain the new set y+ = {𝑦1, . . . , 𝑦𝐾−1} of
corresponding MA values, we perform the same procedure
described above. In practice, we obtain three improved
positions of PMAs using the NPB, as described below, to
estimate improved CIs of the SBP and DBP. By subjecting the
new sets to the NPB, we generate a number of 𝑁(= 1000)

resamples, x∗𝑛 , y
∗
𝑛 , 𝑛 = 1, . . . , 𝑁, where x∗𝑛 = {𝑥

∗
1𝑛, . . . , 𝑥

∗
4𝑛}

and y∗𝑛 = {𝑦
∗
1𝑛, . . . , 𝑦

∗
4𝑛}, respectively. Next, we calculate the

mean of all measurements in x∗𝑛 and y∗𝑛 to obtain 𝜇∗x(𝑛) and
𝜇
∗
y(𝑛), given by

𝜇
∗

x(𝑛) =
1

𝐾 − 1

𝐾−1

∑

𝑘=1

𝑥
∗

𝑘,𝑛,

𝜇
∗

y(𝑛) =
1

𝐾 − 1

𝐾−1

∑

𝑘=1

𝑦
∗

𝑘,𝑛,

(6)
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where 𝐾 = 5 and 𝑛 = 1, . . . , 𝑁. The distributions of the
bootstrap estimates 𝜇∗x(𝑛) and 𝜇

∗
y(𝑛) are shown in [7], which

indicate the length of occurrence of the pseudomaxima and
PMAs from all five measurements per subject, respectively.
We then sort the bootstrap estimates, 𝜇∗x(𝑛) and 𝜇

∗
y(𝑛) in

increasing order. Thus, the sorted PMAs are given by 𝜇∗y(1) ≤
𝜇
∗
y(2) ≤ 𝜇

∗
y(3) ⋅ ⋅ ⋅ ≤ 𝜇

∗
y(𝑁−1) ≤ 𝜇

∗
y(𝑁) and the length locations

of the PMAs are given by 𝜇
∗
x(1) ≤ 𝜇

∗
x(2) ≤ 𝜇

∗
x(3) ⋅ ⋅ ⋅ ≤

𝜇
∗
x(𝑁−1) ≤ 𝜇

∗
x(𝑁).The desired 100 ⋅ (1−𝛼)% nonparametric CIs

for the position of the PMAs are given by (𝜇
∗
x(𝑄
1
), 𝜇
∗
x(𝑄
2
))

and (𝜇∗y(𝑄
1
), 𝜇
∗
y(𝑄
2
)), respectively, where 𝑄1 is the quotient of

𝑁 ⋅ 𝛼/2, 𝑄2 = 𝑁 − 𝑄1 + 1, and 𝑄3 = 𝑁/2. For 𝛼 = 0.05 and
𝑁 = 1000, we obtain𝑄1 = 25,𝑄2 = 976, and𝑄3 = 500.Thus,
we take the three positions of the PMAs that will be used by
the algorithm to estimate CIs of the SBP and DBP.

2.5. Review of Pseudoenvelopes (PEs) Using NPB. To obtain
the PEs to estimate the CIs of the SBP andDBPusingNPB, we
construct a BP measurement matrix B as in (7). This matrix
consists of envelopes for five measurements for the systolic
and diastolic part of each subject as described in [7]:

B =

[
[
[
[
[

[

𝑏11 𝑏12 ⋅ ⋅ 𝑏1𝐾

𝑏21 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

𝑏𝐿1 ⋅ ⋅ ⋅ 𝑏𝐿𝐾

]
]
]
]
]

]

, (7)

where 𝐿 denotes the length of the PE, 𝐾(= 5) denotes the
number of envelopes, and each column denotes an envelope
of oscillometric measurements. Particularly, all measure-
ments are forced to be of length 𝐿 by either extrapolating
to length 𝐿 if the measurement is shorter or truncating
the length to 𝐿 if the measurement is longer. From the BP
envelope matrix B, we achieve𝑁 resample envelope matrices
B∗1 , . . . ,B

∗
𝑁 by employing NPB method. The envelopes in the

𝑛th resample envelope matrix B∗𝑛 are given by

B∗𝑛 =
[
[
[
[
[
[

[

𝑏
∗
11 𝑏
∗
12 ⋅ ⋅ 𝑏

∗
1𝐾

𝑏
∗
21 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

𝑏
∗
𝐿1 ⋅ ⋅ ⋅ 𝑏

∗
𝐿𝐾

]
]
]
]
]
]

]

, (8)

where 𝑛 = 1, . . . , 𝑁(= 1000). The SBP and DBP parts of the
envelope are identified by utilizing the peak of the envelope.
The section from the beginning to the peak of the BP envelope
(corresponding to decreasing cuff pressure) represents SBP,
while the section from the peak to the end of the BP envelope
represents DBP. We then reorder resampled BP envelope
matrices (for systolic and diastolic parts of the envelopes)
using ascending and descending sort techniques (for the SBP
and DBP parts of the envelopes, resp.). Each of the sorted
matrices has five columns and each column corresponds to
a BP measurement of length 𝐿. We then obtain a single BP
envelope per subject as the last step of the PE process, where
the desired 100 ⋅ (1 − 𝛼)%NPB CIs are given by (PE𝑄

1

,PE𝑄
2

)

[7]. Here, 𝑄1 = ⌊𝑁 ⋅ 𝛼/2⌋ is the quotient of 𝑁 ⋅ 𝛼/2, 𝑄2 =
𝑁−𝑄1+1, and𝑄3 = ⌊𝑁/2⌋ is the quotient of𝑁/2. As a result,
we have

PE𝑄
1

= 𝐾
−1
𝐾

∑

𝑘=1

B∗𝑄
1

(:, 𝑘) ,

PE𝑄
2

= 𝐾
−1
𝐾

∑

𝑘=1

B∗𝑄
2

(:, 𝑘) ,

PE𝑄
3

= 𝐾
−1
𝐾

∑

𝑘=1

B∗𝑄
3

(:, 𝑘) ,

(9)

whereB∗𝑄
1

(:, 𝑖),B∗𝑄
2

(:, 𝑖), andB∗𝑄
3

(:, 𝑖) denote the 𝑖th column of
matrices B∗𝑄

1

, B∗𝑄
2

, and B∗𝑄
3

and 𝑖 = 1, . . . , 𝑁. Thus, we obtain
upper, lower, and middle PEs that can be used to estimate the
CIs for SBP and DBP utilizing the systolic and diastolic BP
envelope matrices, respectively [7].

In the previous subsection, we obtained the value of the
improved PMA by using NPB with a jackknife influence
function.As the PMAestimatesmaynot connectwith the end
(start) point of the systolic (diastolic) PEs or amplitudes, we
take advantage of signal processing (padding and clipping) to
ensure that the location values (both amplitude and length) of
the PMAs are based on the PEs. In the final step, we need to
obtain the mean cuff pressure to find the CI estimates of SBP
and DBP [7]. To find the SBP and DBP, the SBPR and DBPR
are estimated using the generalized Gaussian model-based
Bayesian technique as described in detail in the following
subsection.

2.6. Ratio Estimation Employing Non-Gaussian Models Based
on a Bayesian Technique. We previously described the
Bayesian technique to determine systolic and diastolic ratios
[11, 12]. Using this approach, we determine the systolic and
diastolic ratios for any 𝑖th subject and any 𝑗th measurement
[11]. However, this approach assumes a Gaussian distribution
for a posteriori distribution of the ratios of the systolic and
diastolic blood pressures [11]. The proposed methodology
herein adopts a more tractable model, namely, non-Gaussian
models [19] for a posteriori distribution because the random
process may not adhere to the Gaussian model and there
is a potential for a posteriori distribution to be successfully
characterized by the non-Gaussian models which includes
the Laplacian and Cauchy-Lorentz (CL) models as special
cases [19]. Among the various extensions of the Gaussian
models, the generalized Gaussian model is one of the most
popular models such that

𝑓𝑥 =
𝑗𝜂

2Γ (1/𝑗)
exp(−𝜂|𝑥−𝛽|)

2

, (10)

where Γ(⋅) denotes the Gamma function Γ(𝑥) = ∫
∞

0
𝑡
𝑥−1

exp−𝑡𝑑𝑡 and 𝜂 denotes a constant given by

𝜂 = 𝜎
−1
√Γ(

3

𝑗
)(Γ(

1

𝑗
))

−1

, (11)
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where 𝜎 represents the standard deviation as the scale
parameter of the distribution 𝜎 > 0 while the impulsiveness
is determined by the parameter 𝑗 > 0. A special case of
the generalized Gaussian model is the well-known Laplacian
model in the case 𝑗 = 1.

According to the non-Gaussian models, we then choose
the value of the likelihood function that maximizes a posteri-
ori probability using the Bayesian approach [20]. An equally
likely a priori assumption is utilized to derive a likelihood
function based on blood pressure values acquired by the
MAA algorithm for each priori probability.

In this paper, the systolic and diastolic ratios acquired
using the non-Gaussian model-based Bayesian technique are
used to estimate the SBP and DBP for any 𝑖th subject as
follows:

𝑟𝑠 (𝑖) =
𝑠 (𝑖)

𝑚 (𝑖)
,

𝑟𝑑 (𝑖) =
𝑑 (𝑖)

𝑚 (𝑖)
,

(12)

where 𝑟𝑠 and 𝑟𝑑 denote the estimated systolic and diastolic
ratios, respectively, for each subject, 𝑠(𝑖) and 𝑑(𝑖) denote the
oscillometric amplitude corresponding to the SBP and DBP,
respectively, while𝑚(𝑖) is the MA based on the oscillometric
envelope, and 𝑖 = 1, . . . , 𝐼 and 𝐼(= 85) denote the number
of subjects. We assume that the systolic and diastolic ratios
of the current measurement have no dependence on any
of the previous measurements and are only reliant on the
physiological status, ℎ, of the person, as in [11]. Furthermore,
it is assumed that the physiological processes of a person are
random processes [7, 8] and that a priori probability of the
ratios 𝑃(𝑟(𝑖) | ℎ) is uniformly distributed between the known
a prioriminimum and maximum values.

Let r𝑐𝑠 and r𝑐𝑑 be vectors of possible candidates for the
SBP and DBP ratios, respectively. Consider

r𝑐𝑠 = [𝛼1, 𝛼2, . . . , 𝛼𝐾] ,

r𝑐𝑑 = [𝛽1, 𝛽2, . . . , 𝛽𝐾] ,
(13)

where r𝑐𝑠 and r𝑐𝑑 represent the vectors of possible candidates
for the SBP andDBP ratios, respectively, and𝐾 is determined
in a priorimanner where𝐾 is the number of candidate ratios.
In this work,𝐾 = 31, (𝛼1 = 0.65 to𝛼𝐾 = 0.95 and𝛽1 = 0.30 to
𝛽𝐾 = 0.60) for the SBP and DBP, respectively, in increments
of 0.01. Consider

p𝑠 = [𝛾1, 𝛾2, . . . , 𝛾𝐾] ,

p𝑑 = [𝛿1, 𝛿2, . . . , 𝛿𝐾] ,
(14)

where p𝑠 and p𝑑 represent a priori probability vectors and the
elements of the vector are 1/𝐾 = 0.032. Because we have no a
priori information, equal a priori probabilities are assigned to
all candidate ratios. Note that r𝑐𝑠(𝑖) = r𝑐𝑠, r𝑐𝑑(𝑖) = r𝑐𝑑, p𝑠(𝑖) =
p𝑠, and p𝑑(𝑖) = p𝑑 for all 𝑖.

Subsequently, a posteriori probability (POP) for every 𝑘,
𝑘 = 1, . . . , 𝐾, is found as

𝑝 (r (𝑘)𝑐𝑠(𝑖) | 𝑟𝑠(𝑖)) =
p (𝑘)𝑠(𝑖) 𝑓 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑠(𝑖))

∑
𝐾

𝑘=1 p (𝑘)𝑠(𝑖) 𝑓 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑠(𝑖))
,

𝑝 (r (𝑘)𝑐𝑑(𝑖) | 𝑟𝑠(𝑖)) =
p (𝑘)𝑑(𝑖) 𝑓 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑑(𝑖))

∑
𝐾

𝑘=1 p (𝑘)𝑑(𝑖) 𝑓 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑑(𝑖))
,

(15)

where p(𝑘)𝑠(𝑖) and p(𝑘)𝑑(𝑖) represent a priori probabilities for
the 𝑘th candidate ratio and 𝑓(𝑟𝑠(𝑖) | r(𝑘)𝑟𝑠(𝑖)) and 𝑓(𝑟𝑠(𝑖) |

r(𝑘)𝑐𝑑(𝑖)) represent the likelihoods for the SBP and DBP at the
chosen ratio, respectively.The distributions of conditional BP
measurements, 𝑟𝑠(𝑖) | r(𝑘)𝑐𝑠(𝑖) and 𝑟𝑠(𝑖) | r(𝑘)𝑐𝑑(𝑖), are Gaussian
with a known mean and variance. Their densities are defined
such that

𝑓 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑠(𝑖)) =
1

√2𝜋𝜎

exp−(1/2𝜎
2

)(𝑟
𝑠(𝑖)
−r(𝑘)
𝑐𝑠(𝑖)
)
2

𝑓 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑑(𝑖)) =
1

√2𝜋𝜎

exp−(1/2𝜎
2

)(𝑟
𝑠(𝑖)
−r(𝑘)
𝑐𝑑(𝑖)
)
2

,

(16)

where 𝜎 represents the standard deviation (SD). We per-
formed an experiment by varying 𝜎 from 0.02 to 0.2 for the
chosen range of systolic and diastolic ratios, namely, 0.65 to
0.95 and 0.30 to 0.60, respectively.The results confirmed that
the likelihood function was largely unaffected by changes in
𝜎 as mentioned in [20].

The likelihoods 𝑓(𝑟𝑠(𝑖) | r(𝑘)𝑐𝑠(𝑖)) of each ratio are the
values of the measurement distribution at a measurement
value, where 𝑟𝑠(𝑖) are the ratios of the pressure values obtained
from the auscultatory nurse measurements and the maxi-
mum amplitude as given by (17). The rationale behind our
approach is to find the SBP ratio r(𝑘)𝑐𝑠(𝑖) that maximizes
the likelihood ratio for the available SBP auscultatory nurse
measurements for each subject. The same idea holds for the
DBP ratio. Because two auscultatory nurse measurements
are available, we use average SBP and DBP measurements as
references to obtain the SBP and DBP ratios. Reference SBP
and DBP ratios are obtained for the 𝑖th subject as follows:

𝑟𝑠(𝑖) =

𝑠(𝑖)

𝑚(𝑖)

, (17)

𝑟𝑑(𝑖) =

𝑑(𝑖)

𝑚(𝑖)

, (18)

where 𝑟𝑠(𝑖) and 𝑟𝑑(𝑖) represent the reference SBP and DBP
ratios obtained from the averaged nurse measurements and
𝑠(𝑖) and 𝑑(𝑖) denote the amplitudes of the SBP and DBP iden-
tified on the OMW’s envelope through the deflation curve
giving the auscultatory average nurse measurements for
the SBP and DBP, respectively. 𝑚(𝑖) denotes the MA in the
OMW [11, 12].

The proposed methodology is an extended version of
that in our previous paper [7, 11, 12] and applies non-
Gaussianmodels such as Laplacian andCauchy-Lorentz (CL)
functions to obtain a posteriori probability (POP) for every 𝑘,
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Figure 3: Summary of the MD and SD obtained using the MAA, PMAE, PMAE with BG (PMAEBG), PMAE with BL (PMAEBL), and
PMAE with BC (PMAEBC) relative to the auscultatory nurse measurements, where BG, BL, and BC represent the Gaussian, Laplacian,
Cauchy-Lorentz models based on the Bayesian technique, respectively, where black color denotes the results of SBP and where gray color
denotes the results of DBP. (a) Summary of the MD. (b) Summary of the SD.

𝑘 = 1, . . . , 𝐾. We first apply the Laplacianmodel to obtain the
likelihoods of each ratio [19] as follows:

𝑓𝐿 (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑠(𝑖)) =
1

√2𝜎

exp−(√2/𝜎)|𝑟𝑠(𝑖)−r(𝑘)𝑐𝑠(𝑖)|,

𝑓𝐿 (𝑟𝑑(𝑖) | r (𝑘)𝑐𝑑(𝑖)) =
1

√2𝜎

exp−(√2/𝜎)|𝑟𝑑(𝑖)−r(𝑘)𝑐𝑑(𝑖)|.
(19)

Then, we use the Cauchy-Lorentz (CL) function to acquire
the likelihood for the ratios of SBP and DBP:

𝑓CL (𝑟𝑠(𝑖) | r (𝑘)𝑐𝑠(𝑖)) =
1

Π

𝛾

𝛾
2
+ (𝑟𝑠(𝑖) − r (𝑘)𝑐𝑠(𝑖))

2
,

𝑓CL (𝑟𝑑(𝑖) | r (𝑘)𝑐𝑑(𝑖)) =
1

Π

𝛾

𝛾
2
+ (𝑟𝑑(𝑖) − r (𝑘)𝑐𝑑(𝑖))

2
,

(20)

where 𝛾 = 1 represents the dispersion and is similar to the
variance in a Gaussian model [19].

We also obtain SBP and DBP estimates using non-
Gaussian models based on a Bayesian technique [19, 20] and
then compare the results of the conventional MAA and the
proposed method. Specifically, we estimate SBP and DBP
ratios using the non-Gaussian models based on a Bayesian
technique.

(1) Step 1: we use the ranges of the SBP and DBP ratios,
which are initially found experimentally [2, 4].

(2) Step 2: a priori probability (𝑃) is computed as shown
in (14).

(3) Step 3: the reference SBP (DBP) ratio is obtained
from the auscultatory nurse measurements, which
are themselves obtained using cuff pressure, refer-
ence auscultatory measurements, and the maximum
amplitude for each subject.

(4) Step 4: a priori likelihoods are also obtained using
non-Gaussian models such as the Laplacian (L) and
Cauchy-Lorentz (CL) models.

(5) Step 5: a posteriori probability (POP) is calculated to
find the final ratios of SBP and DBP using (15).

(6) Step 6: the ratios of SBP and DBP obtained using
the maximum a posteriori probability in (21) are

considered as the best ratios for the measurement.
Consider

𝑟𝑠(𝑖) = arg max
r(𝑘)
𝑐𝑠(𝑖)

𝑝 (r (𝑘)𝑐𝑠(𝑖) | 𝑟𝑠(𝑖)) ,

𝑟𝑑(𝑖) = arg max
r(𝑘)
𝑐𝑑(𝑖)

𝑝 (r (𝑘)𝑐𝑑(𝑖) | 𝑟𝑑(𝑖)) .
(21)

Using these ratios, SBP and DBP points are finally obtained
on the oscillometric envelope and they are mapped back
to deflation curve resulting in the SBP and DBP values in
millimeter of mercury [15].

3. Results and Discussion

To verify the performance of BP estimation, we calculated
and compared the MDs and SDs of estimated BP and aus-
cultatory nurse measurements based on the recommended
AAMI standard protocol [21]. Indeed, we used five measure-
ments to evaluate theMDs and SDs of our algorithm,whereas
average ratios of five measurements were used to obtain the
CIs for each of 85 subjects. A device is considered acceptable
according to the AAMI criteria if the measurement error has
a mean value of less than 5mmHg with a SD of no more
than 8mmHg [21]. Thus, lower values of MD correspond
to better overall performance. We compared the MD of the
SBP and DBP obtained using our proposed algorithm to
those obtained using the conventional methods. The results,
as shown in Figure 3(a), confirm that our proposed method
has an effect on the error of the estimate. We also used SD
as a measure of error variability between the auscultatory
nurse measurements and the estimates obtained using our
proposed method. The SD between the proposed method
(PMAEBG) and the auscultatory nurse measurements was
found to be 3.33mmHg for the SBP and 3.45mmHg for
the DBP, respectively, which were superior to those obtained
from the nurse measurements and the conventional methods
as shown in Figure 3(b). Additionally, the CI results for
the PMAEBG were smaller than those obtained using the
conventional methods of MAAST and MAAGUM (Table 1).

This is the first study to describe analysis of automated
oscillometric blood pressure measurement by combining the
bootstrap-after-jackknife function influence function with
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Figure 4:The Bland-Altman plots comparison of the performance between the (PMAEBG) and auscultatory nursemeasurements. (a) Bland-
Altman plot for the SBP. (b) Bland-Altman plot for the DBP.

Table 1: Comparison of average results (85 subjects with five
measurements) with respect to the upper limit and lower limit of CIs
(95%) for SBP andDBP using theMAAwith Student’s 𝑡-distribution
(MAAST) [7], MAA with GUM (MAAGUM), PMAE, PMAEBG,
PMAEBL, and PMAEBC, where 𝜎 is a standard deviation and GUM
is the guide to the expression of uncertainty inmeasurement (GUM)
[22].

BP (mmHg) SBP (𝜎)
Lower limit

SBP (𝜎)
Upper limit

DBP (𝜎)
Lower limit

DBP (𝜎)
Upper limit

MAAST 106.7 (14.3) 120.2 (16.5) 62.4 (10.4) 71.7 (11.0)
MAAGUM 106.4 (14.3) 120.5 (16.4) 62.0 (10.4) 72.1 (10.9)
PMAE 112.4 (13.9) 115.0 (14.9) 66.7 (10.5) 68.2 (9.9)
PMAEBG 110.7 (13.0) 113.6 (13.9) 67.1 (10.3) 68.8 (10.2)
PMAEBL 110.7 (13.0) 113.6 (13.9) 67.1 (10.3) 68.8 (10.2)
PMAEBC 110.7 (13.0) 113.6 (13.9) 67.1 (10.3) 68.8 (10.2)

non-Gaussian models using a Bayesian technique to deter-
mine ratios and estimate the CIs of MAA for the SBP and
DBP. We evaluated the accuracy of the readings obtained
using our proposed method and those obtained using the
ausculatory nurse method by comparing the MD and SD
values obtained using these two approaches [21]. As shown in
Figure 3(a), our proposed PMAEBLhad an effect on themean
difference (MD), compared with the conventional methods.
The MDs obtained using our proposed method are smaller
than those obtained using conventional methods for both
SBP and DBP. Note that the PMAEBL resulted in lower MDs
for both SBP and DBP (6.25 and 5.00mmHg, resp.).

In addition, we used SD to assess error variability between
the auscultatory nurse measurements and the estimates
obtained using our proposed method. The SDs of our pro-
posed methods were 3.33 mmHg for SBP and 3.45mmHg
for DBP, which are superior to those obtained from the
auscultatory nurse measurements and conventional methods
[2] as shown in Figure 3(b). In contrast, our proposedmethod
(PMAEBL) also showed improved performance relative to
that of the PMAE [7]; the proposed method decreased the
SBP and DBP estimation error by 2.98 and 1.10mmHg,
respectively. These results that our proposed method has
an large effect on the variability of the estimate compared
to the conventional methods [7]. Bland-Altman plots com-
paring the performance of PMAEBL and the auscultatory
nurse measurements (425 measurements) are presented in
Figure 4 [23]. The performance of conventional MAA and
auscultatory nurse measurements (425 measurements) was
also compared by Bland-Altman plots (Figure 5). The limits
of agreement (see bold horizontal lines in Figures 4 and 5)
that we used are (MD ± 2 × SD) for all plots. Bias (see
horizontal center lines), for all plots, was negligible (≤
±1.5mmHg). This indicates that the BP estimates obtained
by MAA and PMAEBL were in close agreement with those
obtained by auscultatory nurse measurements without being
overly biased in any particular direction. Note that the
vertical spreads of the proposed algorithm (PMAEBL) for the
SBP and DBP were smaller than those of the conventional
MAA method, as shown in Figures 4 and 5. Clearly, the
proposed algorithm (PMAEBL) improves oscillometric BP
estimation. The consequences of such improvements could
be very significant given that the AAMI standard protocol
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Figure 5: The Bland-Altman plots comparison of the performance between the MAA and auscultatory nurse measurements. (a) Bland-
Altman plot for the SBP. (b) Bland-Altman plot for the DBP.
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Figure 6: Comparison of average results (85 subjects with five measurements) with respect to the CIs (95%) for SBP and DBP using the
MAAST, MAAGUM, PMAE, PMAEBG, PMAEBL, and PMAEBC, where 𝜎 is a standard deviation.

recommends an accuracy of standard deviation (SD) of no
more than 8 mmHg for an automated BP device [21].

The experimental results for the CIs of the SBP and DBP
using PMAEBL, PMAE [7], and the conventional MAA are
compared in Figure 6. The CIs obtained using the PMAEBL
are similar to those obtained using the PMAE, because these
algorithms estimate CIs based on increasing the pseudomea-
surements using the NPB technique with the average results
for 85 subjects. However, the MD and SD of PMAEBL were
smaller than theMD and SD of PMAE, respectively, as shown
in Figure 3. This indicates that our proposed methodology
reduces both the MD and SD, thereby improving accuracy.
Consequently, the proposed methodology may reduce the
uncertainty of blood pressure measurements. Note that the
PMAEBG, PMAEBL, andPMAEBC results were very similar.
This implies that the proposed methodology is robust to the

use of different likelihood functions. In addition, the SDs of
the SBP and DBP of the PMAEBL are similar to those of the
SBP and DBP of the MAA and PMAE as shown in Table 1.
These results clearly show that the distribution of the SBP
and DBP using PMAEBL accurately represents the sampling
distribution of the original measurement [24]. Practically,
these results lead us to the conclusion that the CIs can provide
a basis of decision with respect to health risks in the future for
patient.

4. Conclusion

We demonstrated that the CI obtained using the proposed
method is narrower and has a narrower standard deviation
than CIs obtained using other methods. This is the first
known work that combines the bootstrap-after-jackknif with
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non-Gaussian models to estimate individualized ratios and
these are then utilized to estimate SBP and DBP and the
CIs for SBP andDBP. By combining bootstrap-after-jackknife
function influence function with non-Gaussian function
based on the Bayesian technique, we decreased the MD and
SD of the CIs of the SBP and DBP compared with those
obtained using conventional methods. Our approach is the
first way to explicitly address small samplemeasurement sizes
of SBP and DBP relative to currently used methods, while
concurrently estimating the CIs of the SBP and DBP.
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