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This paper considers the parameter estimation problem for Hammerstein multi-input multioutput finite impulse response (FIR-
MA) systems. Filtered by the noise transfer function, the FIR-MA model is transformed into a controlled autoregressive model.
The key-term variable separation principle is used to derive a data filtering based recursive least squares algorithm.The numerical
examples confirm that the proposed algorithm can estimate parameters more accurately and has a higher computational efficiency
compared with the recursive least squares algorithm.

1. Introduction

Parameter estimation is an important approach to model
dynamical systems and has been widely used in estimating
the parameters for nonlinear systems [1–3], deriving system
identification methods [4–7], identifying state-space models
[8, 9], and developing solutions for matrix equations [10–
13]. For example, Dehghan and Hajarian discussed several
solution methods for different matrix equations [14–16]. In
the area of system control and modeling, Shi and Fang
developed a Kalman filter based identification for systems
with randomly missing measurements [17], gave output
feedback stabilization [18], and presented a robust mixed
𝐻
2
/𝐻
∞

control of networked control systems [19].
The least squares algorithm is a fundamental method

[20–22] and many methods such as the iterative algorithm
[23, 24] and the gradient algorithm [25] are widely used in
the parameter estimation. In the field of Hammerstein system
identification, severalmethods have been developed [26]. For
example, a least squares based iterative algorithm and an
auxiliary model based recursive least squares algorithm have
been presented, respectively, for Hammerstein nonlinear
ARMAX systems and Hammerstein output error systems
[27, 28]; a Newton recursive algorithm and a Newton iter-
ative algorithm for Hammerstein controlled autoregressive
systems are presented in [29].

Consider a multi-input multioutput (MIMO) Hammer-
stein finite impulse response (FIR) system depicted by

y (𝑡) = B (𝑧) u (𝑡) + 𝑁 (𝑧) k (𝑡) , (1)

where u(𝑡) := [𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑟
(𝑡)]
𝑇
∈ R𝑟 is the nonlinear

system input vector with zeromean and unit variances, y(𝑡) ∈
R𝑚 is the measurement of x(𝑡) := B(𝑧)u(𝑡) but is corrupted
by w(𝑡) := 𝑁(𝑧)k(𝑡), k(𝑡) ∈ R𝑚 is the white noise vector with
zero mean, and B(𝑧) and 𝑁(𝑧) are polynomials in the unit
backward shift operator 𝑧−1 [𝑧−1y(𝑡) = y(𝑡 − 1)]:

B (𝑧) := I
𝑚×𝑟

+

𝑛𝑏

∑

𝑖=1

B
𝑖
𝑧
−𝑖
, B
𝑖
∈ R
𝑚×𝑟

,

𝑁 (𝑧) := 1 +

𝑛𝑑

∑

𝑗=1

𝑑
𝑗
𝑧
−𝑗
, 𝑑
𝑗
∈ R
1
.

(2)

It is obvious that the relation between sizes 𝑚 and 𝑟 would
influence the model identification of this multi-input multi-
output Hammerstein system. For example, the dimension of
the output vector is not less than that of the input vector if
𝑚 ⩾ 𝑟; otherwise, when 𝑚 < 𝑟, the output size is smaller
compared with that of the input vector. In this paper, we
discuss the identification problem with𝑚 ⩾ 𝑟.
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The nonlinear block in theHammersteinmodel is a linear
combination of the known basis f := (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑟
):

u (𝑡) = f (u (𝑡))

:= [𝑓
1
(𝑢
1
(𝑡)) , 𝑓

2
(𝑢
2
(𝑡)) , . . . , 𝑓

𝑟
(𝑢
𝑟
(𝑡))]
𝑇

∈ R
𝑟
,

(3)

where the superscript 𝑇 denotes the matrix transpose. The
function 𝑓

𝑖
(𝑢
𝑖
(𝑡)) in (3) is a nonlinear function of a known

basis (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛𝑐
):

𝑓
𝑖
(𝑢
𝑖
(𝑡)) :=

𝑛𝑐

∑

𝑗=1

𝑐
𝑗
𝛾
𝑗
(𝑢
𝑖
(𝑡)) , (4)

where the coefficients c := (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛𝑐
) are unknown.

Substituting (4) into (3) yields

u (𝑡) =
𝑛𝑐

∑

𝑖=1

𝑐
𝑖
𝛾
𝑖
(u (𝑡)) ,

𝛾
𝑖
(u (𝑡)) := [𝛾

𝑖
(𝑢
1
(𝑡)) , 𝛾

𝑖
(𝑢
2
(𝑡)) , . . . , 𝛾

𝑖
(𝑢
𝑟
(𝑡))]
𝑇

∈ R
𝑟
.

(5)

Assume that u(𝑡) = 0, y(𝑡) = 0, and k(𝑡) = 0 for 𝑡 ⩽ 0,
and the orders 𝑛

𝑏
, 𝑛
𝑐
, and 𝑛

𝑑
are known but can be obtained

by trial and error. In general, the orders of the Hammerstein
model should be large when the nonlinear system is used in
prediction; otherwise, the orders should be small if the system
is applied for control.

The objective of this paper is to estimate the unknown
parameter matrices: B

𝑖
, 𝑐
𝑖
, 𝑑
𝑖
from the available input-output

data {u(𝑡), y(𝑡)} of the multivariable Hammerstein finite
impulse response moving average (FIR-MA) models [30].

Recently, the filtering idea has received much attention
[31–33]. Xiao and Yue studied input nonlinear dynamical
adjustment models and presented a recursive generalized
least squares algorithm and a filtering based least squares
algorithm by replacing the unknown terms in the informa-
tion vectors with their estimates [34]. The overparameteriza-
tion method in [34] leads to a redundant estimated product
of the nonlinear systems and requires extra computation.
Differing from the work in [30, 34, 35], this paper discusses
the estimation problem of the MIMO Hammerstein systems
using the data filtering idea and transfers the FIR-MA system
to controlled autoregressive model by means of the key-
term variable separate principle in [36–38]. The proposed
algorithm used in this paper can extend to study parameter
estimation problems of dual-rate/multirate sampled systems
[39–42] and other linear or nonlinear systems [43–46].

Briefly, the rest of this paper is recognized as follows.
Section 2 discusses a recursive least squares algorithm for
theHammerstein systems. Section 3 presents a filtering based
recursive least squares algorithm by transferring an FIR-
MA model to a controlled autoregressive model. Section 4
provides an illustrative example. Finally, some concluding
remarks are offered in Section 5.

2. The MRLS Algorithm

For comparison, the MRLS algorithm is listed in Section 2.
Here we introduce some notations. 𝑡 represents the current
time in this paper and “𝐴 =: 𝑋” or “𝑋 := 𝐴” means that
“𝐴 is defined as 𝑋”. The symbol I

𝑚×𝑟
represents an identity

matrix of size 𝑟 followed by a null matrix of the last 𝑚 − 𝑟

rows when 𝑚 ⩾ 𝑟 and vice versa. The norm of a matrix (or a
column vector) X is defined by ‖X‖2 := tr[XX𝑇]; ⊗ denotes
the Kronecker product or direct product: ifA = [𝑎

𝑖𝑗
] ∈ R𝑚×𝑛,

B = [𝑏
𝑖𝑗
] ∈ R𝑝×𝑞, then A ⊗ B := [𝑎

𝑖𝑗
B] ∈ R𝑚𝑝×𝑛𝑞; col[X]

is supposed to be the vector formed by the column of the
matrix X: if X = [x

1
, x
2
, . . . , x

𝑛
] ∈ R𝑚×𝑛, then col[X] :=

[x𝑇
1
, x𝑇
2
, . . . , x𝑇

𝑛
]
𝑇

∈ R𝑚𝑛.
From (1)–(5), the intermediate variables x(𝑡) andw(𝑡) and

output of the system y(𝑡) can be expressed as

x (𝑡) = [I
𝑚×𝑟

+

𝑛𝑏

∑

𝑖=1

B
𝑖
𝑧
−𝑖
] u (𝑡) ,

w (𝑡) = [1 +

𝑛𝑑

∑

𝑖=1

𝑑
𝑖
𝑧
−𝑖
] k (𝑡) ,

(6)

y (𝑡) =
𝑛𝑐

∑

𝑖=1

𝑐
𝑖
[
𝛾
𝑖
(u (𝑡))
0 ] +

𝑛𝑏

∑

𝑖=1

B
𝑖
u (𝑡 − 𝑖)

+

𝑛𝑑

∑

𝑖=1

𝑑
𝑖
k (𝑡 − 𝑖) + k (𝑡) .

(7)

Note that the subscripts (Roman) 𝑠 and 𝑛 denote the first
letters of “system” and “noise” for distinguishing the types
of the unknown parameter vectors or matrices, respectively.
Define the parameter matrix 𝜃

1
, the parameter vectors 𝜃

2
, 𝜃
𝑛
,

and the information vectors 𝜑
1
(𝑡), 𝜑
2
(𝑡), and 𝜑

𝑛
(𝑡) as

𝜃
𝑇

1
:= [B
1
,B
2
, . . . ,B

𝑛𝑏
] ∈ R

𝑚×(𝑟𝑛𝑏),

𝜃
2
:= [𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛𝑐
]
𝑇

∈ R
𝑛𝑐 ,

𝜃
𝑛
:= [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛𝑑
]
𝑇

∈ R
𝑛𝑑 ,

𝜑
1
(𝑡) := [u𝑇 (𝑡 − 1) , u𝑇 (𝑡 − 2) , . . . , u𝑇 (𝑡 − 𝑛

𝑏
)]
𝑇

∈ R
𝑟𝑛𝑏 ,

𝜑
2
(𝑡) := [𝜂

1
(𝑡) , 𝜂
2
(𝑡) , . . . , 𝜂

𝑛𝑐
(𝑡)] ∈ R

𝑚×𝑛𝑐 ,

𝜂
𝑖
(𝑡) := [
𝛾
𝑖
(u (𝑡))
0 ] ∈ R

𝑚
,

𝜑
𝑛
(𝑡) := [k (𝑡 − 1) , k (𝑡 − 2) , . . . , k (𝑡 − 𝑛

𝑑
)] ∈ R

𝑚×𝑛𝑑 .

(8)

Then, we have

x (𝑡) = 𝜃𝑇
1
𝜑
1
(𝑡) + 𝜑

2
(𝑡) 𝜃
2
,

w (𝑡) = 𝜑
𝑛
(𝑡) 𝜃
𝑛
+ k (𝑡) ,

y (𝑡) = x (𝑡) + w (𝑡)

= 𝜃
𝑇

1
𝜑
1
(𝑡) + 𝜑

2
(𝑡) 𝜃
2
+ 𝜑
𝑛
(𝑡) 𝜃
𝑛
+ k (𝑡) .

(9)
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Distinguished from the hierarchical identification methods,
we reparameterize the model in (7) by using the Kronecker
product to get a parameter matrix 𝜗 and by gathering
the input information vectors 𝜑

1
(𝑡) and 𝜑

2
(𝑡) and output

information matrix 𝜑
𝑛
(𝑡) into one information matrix Ψ(𝑡)

to obtain an information matrixΨ(𝑡) as follows:

𝜗 := [
𝜃
𝑠

𝜃
𝑛

] ∈ R
𝑛0 , 𝑛

0
:= 𝑚𝑟𝑛

𝑏
+ 𝑛
𝑐
+ 𝑛
𝑑
,

𝜃
𝑠
:= [

col [𝜃𝑇
1
]

𝜃
2

] ∈ R
𝑚𝑟𝑛𝑏+𝑛𝑐 ,

Ψ (𝑡) := [𝜑
𝑠
(𝑡) ,𝜑
𝑛
(𝑡)] ∈ R

𝑚×𝑛0 ,

𝜑
𝑠
(𝑡) := [𝜑

𝑇

1
(𝑡) ⊗ I

𝑚
,𝜑
2
(𝑡)] ∈ R

𝑚×(𝑚𝑟𝑛𝑏+𝑛𝑐).

(10)

Thus, we obtain

y (𝑡) = Ψ (𝑡) 𝜗 + k (𝑡) . (11)

Equation (11) is the identification model of the multivariable
Hammerstein FIR-MA system. Defining and minimizing the
cost function

𝐽 (𝜗) :=
󵄩󵄩󵄩󵄩y (𝑡) −Ψ (𝑡) 𝜗

󵄩󵄩󵄩󵄩

2 (12)

and using the least squares search principle, we obtain the
following recursive least squares algorithm [35] to obtain
parameter estimates 𝜗̂(𝑡):

𝜗̂ (𝑡) = 𝜗̂ (𝑡 − 1) + L (𝑡) [y (𝑡) −Ψ (𝑡) 𝜗̂ (𝑡 − 1)] , (13)

L (𝑡) = P (𝑡 − 1)Ψ
𝑇
(𝑡) [I
𝑚
+Ψ (𝑡)P (𝑡 − 1)Ψ

𝑇
(𝑡)]
−1

, (14)

P (𝑡) = [I
𝑛0
− L (𝑡)Ψ (𝑡)]P (𝑡 − 1) , P (0) = 𝑝

0
I
𝑛0
. (15)

Since the information matrix Ψ(𝑡) in (13) contains the
unknown intermediate variables u(𝑡 − 𝑖) and the unmeasur-
able terms k(𝑡−𝑖), the recursive algorithm in (13)–(15) cannot
compute the parameter estimate 𝜃̂(𝑡). The solution here is
replacing the unknown intermediate variables u(𝑡−𝑖) and the
unmeasurable terms k(𝑡−𝑖) inΨ(𝑡)with the variable estimates
(or the outputs of the auxiliary model) û(𝑡 − 𝑖) and the
estimates k̂(𝑡 − 𝑖) based on the auxiliary model identification
idea. The replaced information matrices are defined as

Ψ̂ (𝑡) := [𝜑̂
𝑠
(𝑡) , 𝜑̂
𝑛
(𝑡)] ∈ R

𝑚×𝑛0 ,

𝜑̂
𝑠
(𝑡) := [𝜑̂

𝑇

1
(𝑡) ⊗ I

𝑚
,𝜑
2
(𝑡)] ∈ R

𝑚×(𝑚𝑟𝑛𝑏+𝑛𝑐),

𝜑̂
1
(𝑡) := [û

𝑇

(𝑡 − 1) , û
𝑇

(𝑡 − 2) , . . . , û
𝑇

(𝑡 − 𝑛
𝑏
)]

𝑇

∈ R
𝑟𝑛𝑏 ,

𝜑̂
𝑛
(𝑡) := [k̂ (𝑡 − 1) , k̂ (𝑡 − 2) , . . . , k̂ (𝑡 − 𝑛

𝑑
)] ∈ R

𝑚×𝑛𝑑 .

(16)

Define the parameter estimation matrices

𝜗̂ (𝑡) := [
𝜃̂
𝑠
(𝑡)

𝜃̂
𝑛
(𝑡)
] ∈ R

𝑛0 ,

𝜃̂
𝑠
(𝑡) := [

[

col [𝜃̂
𝑇

1
(𝑡)]

𝜃̂
2
(𝑡)

]

]

∈ R
𝑚𝑟𝑛𝑏+𝑛𝑐 ,

𝜃̂
𝑇

1
(𝑡) := [B̂

1
(𝑡) , B̂
2
(𝑡) , . . . , B̂

𝑛𝑏
(𝑡)] ∈ R

𝑚×(𝑟𝑛𝑏),

𝜃̂
2
(𝑡) := [𝑐

1
(𝑡) , 𝑐
2
(𝑡) , . . . , 𝑐

𝑛𝑐
(𝑡)]
𝑇

∈ R
𝑛𝑐 ,

𝜃̂
𝑛
(𝑡) := [𝑑

1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑛𝑑
(𝑡)]
𝑇

∈ R
𝑛𝑑 .

(17)

By replacing the parameters 𝑐
𝑖
(𝑖 = 1, 2, . . . , 𝑛

𝑐
) in (4) with

𝑐
𝑖
(𝑡), the output of the proposed auxiliary model û(𝑡) is given

by

û (𝑡) =
𝑛𝑐

∑

𝑖=1

𝑐
𝑖
(𝑡) 𝛾
𝑖
(u (𝑡))

= 𝑐
1
(𝑡) 𝛾
1
(u (𝑡)) + 𝑐

2
(𝑡) 𝛾
2
(u (𝑡))

+ ⋅ ⋅ ⋅ + 𝑐
𝑛𝑐
(𝑡) 𝛾
𝑛𝑐
(u (𝑡)) .

(18)

From (11), we obtain k(𝑡) = y(𝑡) −Ψ(𝑡)𝜗. ReplacingΨ(𝑡) and
𝜗 with Ψ̂(𝑡) and 𝜗̂(𝑡 − 1), the residual k̂(𝑡) can be written as
k̂(𝑡) = y(𝑡) − Ψ̂(𝑡)𝜗̂(𝑡 − 1).

To summarize, we conclude the following recursive least
squares algorithm for multivariable Hammerstein FIR-MA
models (the MRLS algorithm for short):

𝜗̂ (𝑡) = 𝜗̂ (𝑡 − 1) + L (𝑡) [y (𝑡) − Ψ̂ (𝑡) 𝜗̂ (𝑡 − 1)] ,

L (𝑡) = P (𝑡 − 1) Ψ̂
𝑇

(𝑡) [I
𝑚
+ Ψ̂ (𝑡)P (𝑡 − 1) Ψ̂

𝑇

(𝑡)]

−1

,

P (𝑡) = [I
𝑛0
− L (𝑡) Ψ̂ (𝑡)]P (𝑡 − 1) ,

û (𝑡) =
𝑛𝑐

∑

𝑖=1

𝑐
𝑖
(𝑡) 𝛾
𝑖
(u (𝑡)) ,

k̂ (𝑡) = y (𝑡) − Ψ̂ (𝑡) 𝜗̂ (𝑡 − 1) ,

Ψ̂ (𝑡) = [𝜑̂
𝑇

1
(𝑡) ⊗ I

𝑚
,𝜑
2
, 𝜑̂
𝑛
(𝑡)] ,

𝜑̂
1
(𝑡) = [û

𝑇

(𝑡 − 1) , û
𝑇

(𝑡 − 2) , . . . , û
𝑇

(𝑡 − 𝑛
𝑏
)]

𝑇

,

𝜑
2
(𝑡) = [𝜂

1
(𝑡) , 𝜂
2
(𝑡) , . . . , 𝜂

𝑛𝑐
(𝑡)] ,

𝜂
𝑖
(𝑡) = [
𝛾
𝑖
(u (𝑡))
0 ] ,

𝜑̂
𝑛
(𝑡) = [k̂ (𝑡 − 1) , k̂ (𝑡 − 2) , . . . , k̂ (𝑡 − 𝑛

𝑑
)] ,
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𝜗̂ (𝑡) =
[
[
[

[

col [𝜃̂
𝑇

1
(𝑡)]

𝜃̂
2
(𝑡)

𝜃̂
𝑛
(𝑡)

]
]
]

]

,

𝜃̂
𝑇

1
(𝑡) = [B̂

1
(𝑡) , B̂
2
(𝑡) , . . . , B̂

𝑛𝑏
(𝑡)] ,

𝜃̂
2
(𝑡) = [𝑐

1
(𝑡) , 𝑐
2
(𝑡) , . . . , 𝑐

𝑛𝑐
(𝑡)]
𝑇

,

𝜃̂
𝑛
(𝑡) = [𝑑

1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑛𝑑
(𝑡)]
𝑇

.

(19)

3. The F-MRLS Algorithm

The convergence rate of the MRLS algorithm in Section 2
is slow because the noise information intermediate variables
w(𝑡) contain unmeasurable time-delay noise k(𝑡−𝑖).The solu-
tion here is to present a filtering based recursive least squares
algorithm (the F-MRLS algorithm) for the multivariable
Hammerstein models by filtering the rational function𝑁(𝑧)

and transferring the FIR-MA model in (1) into a controlled
autoregressive (CAR) model. Multiplying both sides of (1) by
𝑁
−1
(𝑧) yields

𝑁
−1
(𝑧) y (𝑡) = B (𝑧)𝑁

−1
(𝑧) u (𝑡) + k (𝑡) , (20)

or

y
𝑓
(𝑡) = B (𝑧) u

𝑓
(𝑡) + k (𝑡) , (21)

where

u
𝑓
(𝑡) :=

1

𝑁 (𝑧)
u (𝑡)

=
1

𝑁 (𝑧)

𝑛𝑐

∑

𝑖=1

𝑐
𝑖
(𝑡) 𝛾
𝑖
(u (𝑡))

= 𝑐
1
U
1
(𝑡) + 𝑐

2
U
2
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
U
𝑛𝑐
(𝑡) ,

y
𝑓
(𝑡) :=

1

𝑁 (𝑧)
y (𝑡)

= [1 − 𝑁 (𝑧)] y𝑓 (𝑡) + y (𝑡)

= y (𝑡) −
𝑛𝑑

∑

𝑖=1

𝑑
𝑖
(𝑡) y
𝑓
(𝑡 − 𝑖) ,

U
𝑖
(𝑡) :=

1

𝑁 (𝑧)
𝛾
𝑖
(u (𝑡)) ∈ R

𝑟
, 𝑖 = 1, 2, . . . , 𝑛

𝑐
,

𝜁
𝑗
(𝑡) := [

U
𝑗
(𝑡)

0 ] ∈ R
𝑚
, 𝑗 = 1, 2, . . . , 𝑛

𝑐
.

(22)

Thus, (21) can be rewritten as

y
𝑓
(𝑡) = [I

𝑚×𝑟
+

𝑛𝑏

∑

𝑖=1

B
𝑖
𝑧
−𝑖
] u
𝑓
(𝑡) + v (𝑡)

= [
u
𝑓
(𝑡)

0 ] + B
1
u
𝑓
(𝑡 − 1) + B

2
u
𝑓
(𝑡 − 2)

+ ⋅ ⋅ ⋅ + B
𝑛𝑏
u
𝑓
(𝑡 − 𝑛

𝑏
) + v (𝑡) ,

= 𝑐
1
𝜁
1
(𝑡) + 𝑐

2
𝜁
2
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
𝜁
𝑛𝑐
(𝑡) + B

1
u
𝑓
(𝑡 − 1)

+ B
2
u
𝑓
(𝑡 − 2) + ⋅ ⋅ ⋅ + B

𝑛𝑏
u
𝑓
(𝑡 − 𝑛

𝑏
) + v (𝑡) .

(23)

Define the filtered information matrices:

Ψ
𝑓
(𝑡) := [𝜑

𝑇

𝑓1
(𝑡) ⊗ I

𝑚
,𝜑
𝑓2
(𝑡)] ∈ R

𝑚×(𝑚𝑟𝑛𝑏+𝑛𝑐), (24)

𝜑
𝑓1
(𝑡) := [u𝑇

𝑓
(𝑡 − 1) , u𝑇

𝑓
(𝑡 − 2) , . . . , u𝑇

𝑓
(𝑡 − 𝑛

𝑏
)]
𝑇

∈ R
(𝑟𝑛𝑏),

(25)

𝜑
𝑓2
(𝑡) := [𝜁

1
(𝑡) , 𝜁
2
(𝑡) , . . . , 𝜁

𝑛𝑐
(𝑡)] ∈ R

𝑚×𝑛𝑐 . (26)

Since the polynomial 𝑁(𝑧) is unknown and to be estimated,
it is impossible to use u

𝑓
(𝑡) to construct 𝜑

𝑓1
(𝑡) in (25). Here,

we adopt the principle of the MRLS algorithm in Section 2
and replace the unmeasurable variables and vectors with their
estimates to derive the following algorithm.

By using the parameter estimates 𝜃̂
1
(𝑡) and 𝜃̂

𝑛
(𝑡), the

estimates of polynomials B(𝑧) and 𝑁(𝑧) at time 𝑡 can be
constructed as

B̂ (𝑡, 𝑧) := I
𝑚×𝑟

+

𝑛𝑏

∑

𝑖=1

B̂
𝑖
(𝑡) 𝑧
−𝑖
,

𝑁̂ (𝑡, 𝑧) := 1 + 𝑑
1
(𝑡) 𝑧
−1
+ 𝑑
2
(𝑡) 𝑧
−2
+ ⋅ ⋅ ⋅ + 𝑑

𝑛𝑑
(𝑡) 𝑧
−𝑛𝑑 .

(27)

w(𝑡) in model (1) can be rewritten as

w (𝑡) = y (𝑡) − x (𝑡)

= y (𝑡) − [I
𝑚×𝑟

+

𝑛𝑏

∑

𝑖=1

B
𝑖
(𝑡) 𝑧
−𝑖
] u (𝑡)

= y (𝑡) − 𝜑
𝑠
(𝑡) 𝜃
𝑠
.

(28)

Let ŵ(𝑡) be the estimate of w(𝑡). Replacing w(𝑡), y(𝑡), 𝜑
𝑠
(𝑡),

𝜑
𝑛
(𝑡), 𝜃
𝑛
, and 𝜃

𝑠
with their estimates ŵ(𝑡), ŷ(𝑡), 𝜑̂

𝑠
(𝑡), 𝜑̂
𝑛
(𝑡),

𝜃̂
𝑛
(𝑡), and 𝜃̂

𝑠
(𝑡 − 1) leads to

ŵ (𝑡) = y (𝑡) − 𝜑̂
𝑠
(𝑡) 𝜃̂
𝑠
(𝑡 − 1) . (29)

Defining and minimizing the cost function

𝐽 (𝜃
𝑛
) :=

𝑡

∑

𝑗=1

[w (𝑗) − 𝜑
𝑛
(𝑗) 𝜃
𝑛
]
2 (30)
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and using the least squares search principle, we list the
recursive least squares algorithm to compute 𝜃̂

𝑛
(𝑡):

𝜃̂
𝑛
(𝑡) = 𝜃̂

𝑛
(𝑡 − 1) + L

𝑛
(𝑡) [ŵ (𝑡) − 𝜑̂

𝑛
(𝑡) 𝜃̂
𝑛
(𝑡 − 1)] ,

L
𝑛
(𝑡) = P

𝑛
(𝑡 − 1) 𝜑̂

𝑇

𝑛
(𝑡) [I
𝑚
+ 𝜑̂
𝑛
(𝑡)P
𝑛
(𝑡 − 1) 𝜑̂

𝑇

𝑛
(𝑡)]
−1

,

P
𝑛
(𝑡) = [I

𝑛𝑑
− L
𝑛
(𝑡) 𝜑̂
𝑛
(𝑡)]P
𝑛
(𝑡 − 1) , P

𝑛
(0) = 𝑝

0
I.
(31)

Let ĉ(𝑡) := [𝑐
1
(𝑡), 𝑐
2
(𝑡), . . . , 𝑐

𝑛𝑐
(𝑡)]
𝑇
∈ R𝑛𝑐 be the estimate of c

at time 𝑡, filtering y(𝑡) with 1/𝑁̂(𝑡, 𝑧) to obtain the estimate
ŷ
𝑓
(𝑡):

ŷ
𝑓
(𝑡) =

1

𝑁̂ (𝑡, 𝑧)

y (𝑡)

= [1 − 𝑁̂ (𝑡, 𝑧)] ŷ
𝑓
(𝑡) + y (𝑡)

= −

𝑛𝑑

∑

𝑖=1

𝑑
𝑖
(𝑡) ŷ
𝑓
(𝑡 − 𝑖) + y (𝑡) .

(32)

The estimate of U
𝑗
(𝑡) can be computed by

Û
𝑗
(𝑡) =

1

𝑁̂ (𝑡, 𝑧)

𝛾
𝑗
(u (𝑡))

= [1 − 𝑁̂ (𝑡, 𝑧)] Û
𝑗
(𝑡) + 𝛾

𝑗
(u (𝑡))

= −

𝑛𝑑

∑

𝑖=1

𝑑
𝑖
(𝑡) Û
𝑗
(𝑡 − 𝑖) + 𝛾

𝑗
(u (𝑡)) .

(33)

Define the estimate of 𝜁
𝑗
(𝑡) by

𝜁̂
𝑗
(𝑡) := [

Û
𝑗
(𝑡)

0 ] ∈ R
𝑚
, 𝑗 = 1, 2, . . . , 𝑛

𝑐
, (34)

and construct the estimate ofΨ
𝑓
(𝑡)with 𝜑̂

𝑓1
(𝑡) and 𝜑̂

𝑓2
(𝑡) as

follows:

Ψ̂
𝑓
(𝑡) = [𝜑̂

𝑇

𝑓1
(𝑡) ⊗ I

𝑚
, 𝜑̂
𝑓2
(𝑡)] ,

𝜑̂
𝑓1
(𝑡) = [û

𝑇

𝑓
(𝑡 − 1) , û

𝑇

𝑓
(𝑡 − 2) , . . . , û

𝑇

𝑓
(𝑡 − 𝑛

𝑏
)]

𝑇

,

𝜑̂
𝑓2
(𝑡) = [𝜁̂

1
(𝑡) , 𝜁̂
2
(𝑡) , . . . , 𝜁̂

𝑛𝑐
(𝑡)] .

(35)

The filtered model in (21) can be rewritten in a matrix form:

y
𝑓
(𝑡) = Ψ

𝑓
(𝑡) 𝜃
𝑠
+ v (𝑡) , (36)

or

v (𝑡) = y
𝑓
(𝑡) −Ψ

𝑓
(𝑡) 𝜃
𝑠
. (37)

Based on the MRLS search principle, we can obtain the
estimate of 𝜃

𝑠
by the following algorithm:

𝜃̂
𝑠
(𝑡) = 𝜃̂

𝑠
(𝑡 − 1) + L

𝑓
(𝑡) [ŷ
𝑓
(𝑡) − Ψ̂

𝑓
(𝑡) 𝜃̂
𝑠
(𝑡 − 1)] ,

L
𝑓
(𝑡) = P

𝑓
(𝑡 − 1) Ψ̂

𝑇

𝑓
(𝑡) [I
𝑚
+ Ψ̂
𝑓
(𝑡)P
𝑓
(𝑡 − 1) Ψ̂

𝑇

𝑓
(𝑡)]

−1

,

P
𝑓
(𝑡) = [I

𝑟𝑛𝑏+𝑛𝑐
− L
𝑓
(𝑡) Ψ̂
𝑓
(𝑡)]P
𝑓
(𝑡 − 1) ,

P
𝑓
(0) = 𝑝

0
I.

(38)

The estimate û(𝑡) can be computed by

û (𝑡) = 𝑐
1
(𝑡) 𝛾
1
(u (𝑡)) + 𝑐

2
(𝑡) 𝛾
2
(u (𝑡))

+ ⋅ ⋅ ⋅ + 𝑐
𝑛𝑐
(𝑡) 𝛾
𝑛𝑐
(u (𝑡)) .

(39)

Filter û(𝑡) by 1/𝑁̂(𝑡, 𝑧) to obtain the estimate û
𝑓
(𝑡):

û
𝑓
(𝑡) =

1

𝑁̂ (𝑡, 𝑧)

û (𝑡)

=
1

𝑁̂ (𝑡, 𝑧)

𝑛𝑐

∑

𝑖=1

𝑐
𝑖
(𝑡) 𝛾
𝑖
(u (𝑡))

= 𝑐
1
(𝑡) Û
1
(𝑡) + 𝑐

2
(𝑡) Û
2
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
(𝑡) Û
𝑛𝑐
(𝑡) .

(40)

Replacing k(𝑡), y
𝑓
(𝑡), Ψ

𝑓
(𝑡), and 𝜃

𝑠
in (37) with their

estimates k̂(𝑡), ŷ
𝑓
(𝑡), Ψ̂

𝑓
(𝑡), and 𝜃̂

𝑠
(𝑡) at time 𝑡, the noise

vector can be computed by

v̂ (𝑡) = ŷ
𝑓
(𝑡) − Ψ̂

𝑓
(𝑡) 𝜃̂
𝑠
(𝑡) . (41)

In conclusion, we can summarize the following filtering
based recursive least squares algorithm for multivariable
Hammerstein models (the F-MRLS algorithm for short):

𝜃̂
𝑠
(𝑡) = 𝜃̂

𝑠
(𝑡 − 1) + L

𝑓
(𝑡) [ŷ
𝑓
(𝑡) − Ψ̂

𝑓
(𝑡) 𝜃̂
𝑠
(𝑡 − 1)] ,

(42)

L
𝑓
(𝑡) =

P
𝑓
(𝑡 − 1) Ψ̂

𝑇

𝑓
(𝑡)

I
𝑚
+ Ψ̂
𝑓
(𝑡)P
𝑓
(𝑡 − 1) Ψ̂

𝑇

𝑓
(𝑡)

, (43)

P
𝑓
(𝑡) = [I

𝑟𝑛𝑏+𝑛𝑐
− L
𝑓
(𝑡) 𝜑̂
𝑓
(𝑡)]P
𝑓
(𝑡 − 1) , (44)

Ψ̂
𝑓
(𝑡) = [𝜑̂

𝑇

𝑓1
(𝑡) ⊗ I

𝑚
, 𝜑̂
𝑓2
] , (45)

𝜑̂
𝑓1
(𝑡) = [û

𝑇

𝑓
(𝑡 − 1) , û

𝑇

𝑓
(𝑡 − 2) , . . . , û

𝑇

𝑓
(𝑡 − 𝑛

𝑏
)]

𝑇

, (46)

𝜑̂
𝑓2
(𝑡) = [𝜁̂

1
(𝑡) , 𝜁̂
2
(𝑡) , . . . , 𝜁̂

𝑛𝑐
(𝑡)] , (47)

𝜁̂
𝑗
(𝑡) = [

Û
𝑗
(𝑡)

0 ] , (48)
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Û
𝑗
(𝑡) = −

𝑛𝑑

∑

𝑖=1

𝑑
𝑖
(𝑡) Û
𝑗
(𝑡 − 𝑖) + 𝛾

𝑗
(u (𝑡)) , (49)

û
𝑓
(𝑡) = 𝑐

1
(𝑡) Û
1
(𝑡) + 𝑐

2
(𝑡) Û
2
(𝑡) + ⋅ ⋅ ⋅ + 𝑐

𝑛𝑐
(𝑡) Û
𝑛𝑐
(𝑡) ,

(50)

ŷ
𝑓
(𝑡) = −

𝑛𝑑

∑

𝑖=1

𝑑
𝑖
(𝑡) ŷ
𝑓
(𝑡 − 𝑖) + y (𝑡) , (51)

𝜃̂
𝑛
(𝑡) = 𝜃̂

𝑛
(𝑡 − 1) + L

𝑛
(𝑡) [ŵ (𝑡) − 𝜑̂

𝑛
(𝑡) 𝜃̂
𝑛
(𝑡 − 1)] , (52)

L
𝑛
(𝑡) = P

𝑛
(𝑡 − 1) 𝜑̂

𝑇

𝑛
(𝑡) [I
𝑚
+ 𝜑̂
𝑛
(𝑡)P
𝑛
(𝑡 − 1) 𝜑̂

𝑇

𝑛
(𝑡)]
−1

,

(53)

P
𝑛
(𝑡) = [I

𝑛𝑑
− L
𝑛
(𝑡) 𝜑̂
𝑛
(𝑡)]P
𝑛
(𝑡 − 1) , (54)

ŵ (𝑡) = y (𝑡) − 𝜑̂
𝑠
(𝑡) 𝜃̂
𝑠
(𝑡 − 1) , (55)

Ψ̂ (𝑡) = [𝜑̂
𝑠
(𝑡) , 𝜑̂
𝑛
(𝑡)] , (56)

𝜑̂
𝑠
(𝑡) = [𝜑̂

𝑇

1
(𝑡) ⊗ I

𝑚
,𝜑
2
(𝑡)] , (57)

𝜑̂
1
(𝑡) = [û

𝑇

(𝑡 − 1) , û
𝑇

(𝑡 − 2) , . . . , û
𝑇

(𝑡 − 𝑛
𝑏
)]

𝑇

, (58)

𝜑
2
(𝑡) = [𝜂

1
(𝑡) , 𝜂
2
(𝑡) , . . . , 𝜂

𝑛𝑐
(𝑡)] , (59)

𝜂
𝑖
(𝑡) = [
𝛾
𝑖
(u (𝑡))
0 ] , (60)

𝜑̂
𝑛
(𝑡) = [v̂ (𝑡 − 1) , v̂ (𝑡 − 2) , . . . , v̂ (𝑡 − 𝑛

𝑑
)] , (61)

v̂ (𝑡) = ŷ
𝑓
(𝑡) − Ψ̂

𝑓
(𝑡) 𝜃̂
𝑠
(𝑡) , (62)

û (𝑡) =
𝑛𝑐

∑

𝑖=1

𝑐
𝑖
(𝑡) 𝛾
𝑖
(u (𝑡)) , (63)

𝜗̂ (𝑡) = [
𝜃̂
𝑠
(𝑡)

𝜃̂
𝑛
(𝑡)
] , (64)

𝜃̂
𝑠
(𝑡) = [

[

col [𝜃̂
𝑇

1
(𝑡)]

𝜃̂
2
(𝑡)

]

]

, (65)

𝜃̂
𝑇

1
(𝑡) = [B̂

1
(𝑡) , B̂
2
(𝑡) , . . . , B̂

𝑛𝑏
(𝑡)] , (66)

𝜃̂
2
(𝑡) = [𝑐

1
(𝑡) , 𝑐
2
(𝑡) , . . . , 𝑐

𝑛𝑐
(𝑡)]
𝑇

, (67)

𝜃̂
𝑛
(𝑡) = [𝑑

1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑛𝑑
(𝑡)]
𝑇

. (68)

The steps involved in the F-MRLS algorithm for multi-
variable Hammerstein systems are listed in the following.

(1) To initialize, let 𝑡 = 1, set the initial values of
the parameter estimation variables and covariance
matrices as follows: 𝜃̂

𝑠
(𝑖) = 1

𝑚𝑟𝑛𝑏+𝑛𝑐
/𝑝
0
, 𝜃̂
𝑛
(𝑖) =

1
𝑛𝑑
/𝑝
0
, ŷ
𝑓
(𝑖) = 1

𝑚
/𝑝
0
, û
𝑓
(𝑖) = 1

𝑟
/𝑝
0
, û(𝑖) = 1

𝑟
/𝑝
0
,

k̂(𝑖) = 1
𝑚
/𝑝
0
for 𝑖 ⩽ 0, Û

𝑗
(𝑖) = 1

𝑟
/𝑝
0
for 𝑖 ⩽ 0

and 𝑗 = 1, 2, . . . , 𝑛
𝑐
, P
𝑓
(0) = 𝑝

0
I
𝑟𝑛𝑏+𝑛𝑐

, P
𝑛
(0) = 𝑝

0
I
𝑛𝑑
,

𝑝
0
= 10
6, and give the basis functions 𝛾

𝑗
(⋅).

(2) Collect the input-output data u(𝑡) and y(𝑡), and
construct 𝜂

𝑖
(𝑡) by (60), and 𝜑̂

1
(𝑡), 𝜑
2
(𝑡) by (58), (59).

Form the information vectors 𝜑̂
𝑠
(𝑡) by (57), 𝜑̂

𝑛
(𝑡) by

(61), and Ψ̂(𝑡) by (56), respectively.
(3) Compute ŵ(𝑡) by (55), the gain vector L

𝑛
(𝑡) by (53),

and the covariance matrix P
𝑛
(𝑡) by (54), respectively.

Update the parameter estimate 𝜃̂
𝑛
(𝑡) by (52).

(4) Compute ŷ
𝑓
(𝑡) by (51), Û

𝑗
(𝑡) by (49). Construct 𝜁̂

𝑗
(𝑡),

𝜑̂
𝑓2
(𝑡), and 𝜑̂

𝑓1
(𝑡) by (48), (47), and (46), respectively.

Compute Ψ̂
𝑓
(𝑡) by (45).

(5) Compute the gain vector L
𝑓
(𝑡) by (43) and the covari-

ance matrix P
𝑓
(𝑡) by (44). Update the parameter

estimate 𝜃̂
𝑠
(𝑡) by (42).

(6) Construct the parameter vectors 𝜃̂
1
(𝑡), 𝜃̂
2
(𝑡), and 𝜃̂

𝑛
(𝑡)

by (66), (67), and (68). Form 𝜃̂
𝑠
(𝑡) and 𝜗̂(𝑡) by (65) and

(64). Compute û
𝑓
(𝑡) by (50), k̂(𝑡) by (62), and û(𝑡) by

(63).
(7) Increase 𝑡 by 1 and go to step 2.

4. Examples

Example 1. Consider the following 2-input 2-output Ham-
merstein FIR-MA system:

[
𝑦
1
(𝑡)

𝑦
2
(𝑡)
] = [

𝑢
1
(𝑡)

𝑢
2
(𝑡)
] + B [

𝑢
1
(𝑡 − 1)

𝑢
2
(𝑡 − 1)

]

+ [
V
1
(𝑡)

V
2
(𝑡)
] + 𝑑
1
[
V
1
(𝑡 − 1)

V
2
(𝑡 − 1)

] ,

(69)

where

B (𝑧) = [
0.13 0.25

−1.21 0.13
] 𝑧
−1
,

𝐷 (𝑧) = 1 + 𝑑
1
𝑧
−1

= 1 + 0.68𝑧
−1
,

u (𝑡) = 𝑐
1
u (𝑡) + 𝑐

2
u2 (𝑡) ,

c = [𝑐
1
, 𝑐
2
]
𝑇

= [1.00, −0.14]
𝑇
,

𝜗 = [0.13, −1.21, 0.25, 0.13, −0.14, 0.68]
𝑇
.

(70)

In simulation, the inputs {𝑢
1
(𝑡)} and {𝑢

2
(𝑡)} are taken as two

uncorrelated persistent excitation signal sequences with zero
mean and unit variances and {V

1
(𝑡)} and {V

2
(𝑡)} as two white

noise sequences with zero mean and variances 𝜎2
1
= 𝜎
2

2
=

𝜎
2
(𝜎
2
= 0.50

2
, 𝜎
2
= 1.00

2
). Applying the MRLS algorithm

in (19) and the F-MRLS algorithm in (42)–(68) to estimate
the parameters of this multivariable Hammerstein system,
the F-MRLS parameter estimates and their estimation errors
are shown in Table 1, the comparison between the F-MRLS
algorithm and the MRLS algorithm in the estimation error
𝛿 := ‖𝜗̂(𝑡) − 𝜗‖/‖𝜗‖ versus 𝑡 is shown in Table 2, and the
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Table 1: The F-MRLS estimates and errors in Example 1 (𝜎2 = 0.50
2 and 𝜎2 = 1.00

2).

𝜎
2

𝑡 𝐵(1, 1) 𝐵(2, 1) 𝐵(1, 2) 𝐵(2, 2) 𝑐
2

𝑑
1

𝛿 (%)

0.50
2

100 0.10919 −1.60279 0.39771 0.12515 −0.16795 0.46319 33.14292
200 0.08155 −1.44298 0.31145 0.09590 −0.13875 0.51078 21.01533
500 0.10144 −1.33934 0.25923 0.08705 −0.15442 0.60335 11.18663
1000 0.12452 −1.30385 0.26703 0.11599 −0.14796 0.65282 7.04142
2000 0.13930 −1.27241 0.26711 0.12703 −0.14550 0.69136 4.66378
3000 0.14008 −1.25781 0.26567 0.11928 −0.14361 0.70371 4.03373

1.00
2

100 0.09530 −1.72159 0.52726 0.13387 −0.15869 0.52551 42.21841
200 0.03631 −1.52223 0.36553 0.07113 −0.11792 0.58022 25.56872
500 0.07400 −1.40400 0.25492 0.04715 −0.16037 0.64763 15.50868
1000 0.12015 −1.36311 0.27803 0.10606 −0.15335 0.68001 11.08080
2000 0.14849 −1.31457 0.28056 0.12704 −0.15048 0.70624 7.98334
3000 0.15005 −1.29138 0.27909 0.10998 −0.14680 0.71335 6.79480

True values 0.13000 −1.21000 0.25000 0.13000 −0.14000 0.68000

Table 2: The MRLS and F-MRLS estimates and errors in Example 1 (𝜎2 = 0.50
2).

Algorithms 𝑡 𝐵(1, 1) 𝐵(2, 1) 𝐵(1, 2) 𝐵(2, 2) 𝑐
2

𝑑
1

𝛿 (%)

MRLS

100 −0.01946 −1.84785 0.44644 0.04712 −0.16528 0.39802 52.11950
200 −0.03340 −1.60645 0.31299 0.05091 −0.14456 0.46017 34.45327
500 0.03788 −1.39775 0.28600 0.03749 −0.14940 0.56178 18.20046
1000 0.08074 −1.34458 0.28178 0.07949 −0.14078 0.61722 11.71737
2000 0.11167 −1.28751 0.27285 0.10106 −0.13785 0.66411 6.24292
3000 0.12600 −1.27455 0.26866 0.10656 −0.13729 0.68367 4.99772

F-MRLS

100 0.10919 −1.60279 0.39771 0.12515 −0.16795 0.46319 33.14292
200 0.08155 −1.44298 0.31145 0.09590 −0.13875 0.51078 21.01533
500 0.10144 −1.33934 0.25923 0.08705 −0.15442 0.60335 11.18663
1000 0.12452 −1.30385 0.26703 0.11599 −0.14796 0.65282 7.04142
2000 0.13930 −1.27241 0.26711 0.12703 −0.14550 0.69136 4.66378
3000 0.14008 −1.25781 0.26567 0.11928 −0.14361 0.70371 4.03373

True values 0.13000 −1.21000 0.25000 0.13000 −0.14000 0.68000

estimation errors 𝛿 := ‖𝜗̂(𝑡) − 𝜗‖/‖𝜗‖ versus 𝑡 are shown in
Figures 1 and 2.

Example 2. Consider the following 2-input 2-output Ham-
merstein FIR-MA system:

[
𝑦
1
(𝑡)

𝑦
2
(𝑡)
] = [

𝑢
1
(𝑡)

𝑢
2
(𝑡)
] + B [

𝑢
1
(𝑡 − 1)

𝑢
2
(𝑡 − 1)

]

+ [
V
1
(𝑡)

V
2
(𝑡)
] + 𝑑
1
[
V
1
(𝑡 − 1)

V
2
(𝑡 − 1)

] ,

(71)

where

B (𝑧) = [
0.14 0.25

−0.15 0.125
] 𝑧
−1
,

𝐷 (𝑧) = 1 + 𝑑
1
𝑧
−1

= 1 + 0.50𝑧
−1
,

u (𝑡) = 𝑐
1
u (𝑡) + 𝑐

2
u2 (𝑡) + 𝑐

3
u3 (𝑡) ,

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

𝛿
𝜎
2
= 1.00

2

𝜎
2
= 0.50

2

Figure 1:The F-RLS estimation errors 𝛿 versus 𝑡 in Example 1 (𝜎2 =
0.50
2 and 𝜎2 = 1.00

2).

c = [𝑐
1
, 𝑐
2
, 𝑐
3
]
𝑇

= [1.00, −0.19, 1.19]
𝑇
,

𝜗 = [0.14, −0.15, 0.25, 0.125, −0.19, 1.19, 0.50]
𝑇
.

(72)
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Table 3: The F-RLS estimates and errors in Example 2 (𝜎2 = 0.50
2 and 𝜎2 = 1.00

2).

𝜎
2

𝑡 𝐵(1, 1) 𝐵(2, 1) 𝐵(1, 2) 𝐵(2, 2) 𝑐
2

𝑐
3

𝑑
1

𝛿 (%)

0.50
2

100 0.12373 −1.02307 0.27283 0.10358 −0.39300 1.25093 0.32512 16.33820
200 0.12306 −1.03981 0.24977 0.11748 −0.29306 1.19925 0.35407 10.57344
500 0.13109 −1.05853 0.24655 0.11563 −0.25013 1.19098 0.40948 6.44687
1000 0.13728 −1.06400 0.25207 0.12027 −0.22484 1.21159 0.45612 3.63495
2000 0.14372 −1.06203 0.25315 0.12346 −0.20822 1.20110 0.49970 1.46876
3000 0.14389 −1.05999 0.25321 0.12156 −0.20281 1.19897 0.51458 1.43078

1.00
2

100 0.10227 −0.88895 0.29620 0.02428 −0.45977 1.39972 0.43173 23.55652
200 0.10022 −0.94211 0.26126 0.06755 −0.30135 1.31216 0.41341 13.31668
500 0.11893 −1.01753 0.24656 0.08815 −0.27093 1.24343 0.43981 7.40054
1000 0.13195 −1.05047 0.25483 0.10514 −0.24217 1.26386 0.47397 5.67199
2000 0.14551 −1.05983 0.25634 0.11672 −0.21751 1.22939 0.51038 3.02299
3000 0.14632 −1.06041 0.25650 0.11459 −0.20918 1.22061 0.52227 2.68962

True values 0.14000 −1.05000 0.25000 0.12500 −0.19000 1.19000 0.50000

Table 4: The comparison of parameter estimates and errors in Example 2 (𝜎2 = 0.50
2).

Algorithms 𝑡 𝐵(1, 1) 𝐵(2, 1) 𝐵(1, 2) 𝐵(2, 2) 𝑐
2

𝑐
3

𝑑
1

𝛿 (%)

MRLS

100 0.10379 −1.49022 0.30877 0.11454 −0.37596 0.96745 0.25108 34.46417
200 0.08551 −1.31358 0.29070 0.10159 −0.30829 1.05130 0.24601 24.37082
500 0.10950 −1.17837 0.27162 0.09651 −0.24919 1.13023 0.30548 14.80320
1000 0.12218 −1.13050 0.26705 0.10410 −0.21956 1.17878 0.36159 9.76634
2000 0.13294 −1.09517 0.26234 0.11047 −0.20567 1.18593 0.42481 5.36992
3000 0.13715 −1.08439 0.25990 0.11297 −0.20141 1.18517 0.45571 3.49648

F-MRLS

100 0.12373 −1.02307 0.27283 0.10358 −0.39300 1.25093 0.32512 16.33820
200 0.12306 −1.03981 0.24977 0.11748 −0.29306 1.19925 0.35407 10.57344
500 0.13109 −1.05853 0.24655 0.11563 −0.25013 1.19098 0.40948 6.44687
1000 0.13728 −1.06400 0.25207 0.12027 −0.22484 1.21159 0.45612 3.63495
2000 0.14372 −1.06203 0.25315 0.12346 −0.20822 1.20110 0.49970 1.46876
3000 0.14389 −1.05999 0.25321 0.12156 −0.20281 1.19897 0.51458 1.43078

True values 0.14000 −1.05000 0.25000 0.12500 −0.19000 1.19000 0.50000

Table 5: Comparison of the computational efficiency of the F-MRLS
and MRLS algorithms.

Algorithms Number of multiplications Number of additions
MRLS 2𝑛

2
+ 5𝑛 2𝑛

2
+ 2𝑛

F-MRLS 2𝑛
2

𝑏
+ 2𝑛
2

𝑐
+ 2𝑛
2

𝑑
+ 5𝑛 2𝑛

2

𝑏
+ 2𝑛
2

𝑐
+ 2𝑛
2

𝑑
+ 2𝑛 + 1

In simulation, the inputs {𝑢
1
(𝑡)} and {𝑢

2
(𝑡)} and noise data

{V
1
(𝑡)} and {V

2
(𝑡)} are settled in the same way as in Example 1,

where variances 𝜎2
1
= 𝜎
2

2
= 𝜎
2
(𝜎
2
= 0.50

2). Applying the
MRLS algorithm and the F-MRLS algorithm in (42)–(68),
the F-MRLS parameter estimates and their estimation errors
are shown in Table 3, the comparison between the F-MRLS
algorithm and the MRLS algorithm in the estimation error
𝛿 := ‖𝜗̂(𝑡) − 𝜗‖/‖𝜗‖ versus 𝑡 is shown in Table 4, and the
estimation errors 𝛿 := ‖𝜗̂(𝑡) − 𝜗‖/‖𝜗‖ versus 𝑡 are shown in
Figures 3 and 4.

To illustrate the advantages of the proposed algorithm,
the numbers of multiplications and additions for each step
of the F-MRLS algorithm and the MRLS algorithm are listed
in Table 5.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MRLS

F-MRLS

t

𝛿

Figure 2: The parameter estimation errors 𝛿 versus 𝑡 in Example 1
(𝜎2 = 0.50

2).

From Tables 1–5, Figures 1–4, we can draw the following
conclusions.

(i) The parameter estimation errors are getting smaller
with 𝑡 increasing, which proves that the proposed
algorithms are effective.
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2
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Figure 3:The F-RLS estimation errors 𝛿 versus 𝑡 in Example 2 (𝜎2 =
0.50
2 and 𝜎2 = 1.00

2).
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Figure 4: The parameter estimation errors 𝛿 versus 𝑡 in Example 2
(𝜎2 = 0.50

2).

(ii) The F-MRLS algorithm is more accurate than the
MRLS algorithm,whichmeans the proposed F-MRLS
algorithm has a better performance compared with
the MRLS algorithm.

(iii) The parameter estimates given by the F-MRLS algo-
rithm have faster convergence than those given by the
MRLS algorithm.

5. Conclusions

This paper presents a data filtering based recursive least
squares algorithm for MIMO nonlinear FIR-MA systems.
The simulation results show that the proposed data filtering
based recursive least squares algorithm is more accurate and
reduces computational burden compared with the recursive
least squares algorithm.
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