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Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural
optimization, a resizing technique-based hybrid genetic algorithm for the drift design ofmultistory steel frame buildings is proposed
to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence,
a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings
without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied
to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights,
computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm.
Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

1. Introduction

Genetic algorithms (GAs) are a type of evolutionary compu-
tation algorithm that exhibits excellent capability in finding
the global optimal solution [1–4] and have been applied to
various research fields [5–11]. The basic principle of GA is
to find the optimal solution with the highest fitness using
repeated computation [12]. However, one of the limitations
of using GAs is the long computation time since the number
of required iterations for convergence is relatively large.
For structural optimizations, the structural analysis must be
repeated many times, and the required computation time for
convergence is also large [13]. An additional limitation ofGAs
is that the global optimal solution may not be found if early
convergence occurs for a local optimal solution [14].

Hybrid GA (HGA) techniques with various local search
techniques have been studied to improve the convergence
speed and optimal solution search technique of GAs [12,
15]. The HGA techniques that are combined with other
techniques include the distributed hybrid algorithm-based

GA [16], the Tabu search technique-based GA [17], the
optimal criteria technique-basedGA [18, 19], and the Taguchi
technique-based GA [20]. These HGA techniques can be
applied to a wide variety of problems; however, they cannot
provide the fundamental solutions to the improvement of
the convergence speed because they require complicated
sensitivity analysis of structures or reiterated computations
in addition to the structural analysis.

On the other hand, in the drift design based on resiz-
ing techniques, the active members with a relatively high
influence on the magnitude of the lateral displacement to
be controlled are selected and the cross-sectional properties
of the active members are resized or controlled without
any iterative structural analysis or sensitivity analysis [21].
The active members are identified by the displacement
participation factors defined by each member’s contribution
to the displacement. Required information for the calcula-
tion of displacement participation factors include the stress
resultants due to the actual load and the unit load. The
stress resultants due to the actual loads are available in
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Figure 1: Illustration of the application range of the resizing technique according to the constraint ratio.

conventional optimization or design process for calculation
of load-carrying capacities of a structure. Additional calcu-
lations required for displacement participation factors are
stress resultants for a unit load. Thus, the resizing technique
is an optimal drift design technique that requires neither
sensitivity analysis nor repeated structural analysis [22, 23].
However, because the effect of resizing technique heavily
depends on the assumed initial design, the resizing technique
for the optimal drift design is not useful in the global
exploration but is efficient as the local search operator.

Therefore, in this study, a resizing technique-based HGA
for the optimal drift design ofmultistory steel frame buildings
is proposed to increase the convergence speed of GAs
and reduce the number of structural analyses required for
convergence of GAs. To improve the convergence speed of
the optimal drift design procedure based on the GA, the
GA is combined with a resizing technique that does not
require repeated or complicated structural analysis, such as
sensitivity analysis, and allows for effective control of lateral
displacement [21]. In the proposed HGA, the GA and the
resizing technique are utilized as the global search algorithm
and local search operator, respectively.The resizing technique
is adopted in the HGA in two phases. In the first phase,
to generate a diverse group of initial individuals (candidate
designs), the initial points or designs of GA are presented
by applying the resizing technique with the weight control
factors in three different ranges to the initial population.
In the second phase, to enhance the convergence efficiency,
the resizing technique is applied considering the violation
ratios of the displacement constraints in each generation.
The proposed resizing technique-based HGA is applied to
minimumweight design of steel frame buildings. Using three
example structures, optimal design results from the resizing-
based HGA are compared with the results from conventional
GA. To evaluate the performance of the resizing-based
HGA, optimum weights, computational times, and genera-
tion numbers from the proposed algorithm are compared
with those from the GA.

2. GAs for Structural Optimization

2.1. Formulation of Minimum Weight Design. The objective
function of this study is set to minimize the sum of the
weights of members in a structure, as shown in

Minimize 𝑊 =

𝑚

∑

𝑖=1

𝜌
𝑖
𝐴
𝑖
𝐿
𝑖
, (1)

where 𝜌
𝑖
, 𝐴
𝑖
, and 𝐿

𝑖
denote the density, cross-sectional area,

and length of the 𝑖th structural member, respectively.𝑚 is the
total number of members in a structure.

The structural optimization problem includes the con-
straints on interstory drift ratio and member strength. The
constraint on interstory drift ratio for each story is expressed
as follows:

𝑔
𝑗
=

𝛿
𝑗
/𝐻
𝑗

𝑅
𝑡

− 1 ≤ 0, 𝑗 = 1 to 𝑛
𝑠
, (2)

where𝑔
𝑗
denotes the interstory drift ratio constraint at the 𝑗th

story and 𝛿
𝑗
= Δ
𝑗
−Δ
𝑗−1

. Δ
𝑗
is the lateral displacement at the

𝑗th story.The height of the 𝑗th story is denoted by𝐻
𝑗
, and the

limit of the interstory drift ratio is denoted by 𝑅
𝑡
(𝑅
𝑡
= 1/400

in general). 𝑛
𝑠
is the total number of stories in a structure.

The constraint on the strength of a member is expressed
for the beams as follows:

𝑔
𝑘
= (

𝑀
𝑢

𝜙
𝑏
𝑀
𝑛

) − 1 ≤ 0, 𝑘 = 1, . . . , 𝑚
𝐵
, (3)

where 𝑔
𝑘
denotes the constraint function of the 𝑘th beam

and 𝑀
𝑢
and 𝑀

𝑛
denote the required flexural strength and

nominal bending moment, respectively. The AISC-LRFD
[24] strength reduction factor of the beam members is 𝜙

𝑏
=

0.9, and the number of beam members is𝑚
𝐵
.

The constraint function on the strength of the 𝑙th column
member 𝑔

𝑙
is examined using (4) and (5) depending on the

value of 𝑃
𝑢
/(𝜙
𝑐
𝑃
𝑛
) as follows.
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Figure 2: Flowchart of the resizing technique-based hybrid genetic algorithm.
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𝑐
𝑃
𝑛

+
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otherwise,

𝑔
𝑙
=

𝑃
𝑢

2𝜙
𝑐
𝑃
𝑛

+ (
𝑀
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+

𝑀
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) − 1 ≤ 0, 𝑙 = 1, . . . , 𝑚
𝐶
,

(5)

where 𝑚
𝐶

denotes the total number of columns in the
structure, 𝑃

𝑢
is the required axial strength, 𝑃

𝑛
is the nominal
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Figure 3: Elevation of the three-story example structure.

axial strength, 𝜙 is the resistance factor (tension = 0.9,
compression = 0.9), 𝑀

𝑢𝑥
and 𝑀

𝑢𝑦
are the required flexural

strengths in the𝑥 and𝑦 directions, respectively,𝑀
𝑛𝑥
and𝑀

𝑛𝑦

are the nominal flexural strengths in the 𝑥 and 𝑦 directions,
respectively (for 2D structures,𝑀

𝑛𝑦
is equal to zero), andΦ

𝑏

is the flexural resistance reduction factor (𝜙
𝑏
= 0.9).

2.2. Fitness Evaluation. In this study, the penalty function
approach as the constraint handling method is employed to
transform the constrained problem into the unconstrained
problem.The fitness evaluation for the individuals (candidate
designs) is expressed in (6), which considers the object
function values and constraint violation ratio [25]:

Minimize 𝑃 = (1 + ℎ)𝑊, (6)

where ℎ denotes the constraint violation ratio of the individ-
ual and is expressed as follows:

ℎ =

𝑛
𝑠

∑

𝑗=1

ℎ
𝑗
+

𝑚
𝐵

∑

𝑘=1

ℎ
𝑘
+

𝑚
𝐶

∑

𝑙=1

ℎ
𝑙
. (7)

In (7), ℎ
𝑗
, ℎ
𝑘
, and ℎ

𝑙
denote the constraint violation ratios

with respect to the interstory drift ratio and the member
strengths of the beam members and column members,
respectively. The values of (2)–(5) are divided into three
ranges: smaller than zero, between zero and one, and greater
than one. Taking the example of ℎ

𝑗
in (7) is defined as follows:

ℎ
𝑗
=

{{

{{

{

0, if 𝑔
𝑗
≤ 0,

𝑔
𝑗
, if 0 < 𝑔

𝑗
≤ 1.0,

𝑔
2

𝑗
, if 𝑔

𝑗
> 1.0,

𝑗 = 1, . . . , 𝑛
𝑠
. (8)

ℎ
𝑘
and ℎ

𝑙
in (7) are also defined by the same manner as

shown in (8). If an individual does not satisfy any constraint
condition, the value greater than zero is assigned to the
penalty parameter ℎ and the fitness value of the individual
becomes greater than the structural weight of the individual
as shown in (6). On the other hand, if an individual satisfies
all constraint conditions, zero is assigned to the penalty
parameter ℎ and the fitness value of the individual becomes
the structural weight of the individual. Thus the fitness
value of the individuals satisfying all constraint conditions is
proportional to the weight of the individuals.

3. Resizing Technique-Based HGA

3.1. Resizing Technique. In this study, the resizing technique
is applied to improve the convergence speed of GA for the
optimal drift design procedure.The resizing technique, which
is based on energy theory, reduces the lateral displacement
of a structure by calculating the displacement participation
factors of the individuals for the top-floor displacement using
member forces and by resizing the weights of individuals
according to the participation factors. Using the unit load
method based on energy theory, the lateral displacement in
(9) is defined by the sum of the displacement participation
factor of members as follows [22]:

𝛿 =

𝑚

∑

𝑖=1

𝛿
𝑖

=

𝑚

∑

𝑖=1

{∫

𝑙

0

𝑁
𝐿

𝑖
𝑁
𝑈

𝑖

𝐸
𝑖
𝐴
𝑖

𝑑𝑥 + ∫

𝑙

0

𝑀
𝐿

𝑖
𝑀
𝑈

𝑖

𝐸
𝑖
𝐼
𝑖

𝑑𝑥

+ 𝑎∫

𝑙

0

𝑉
𝐿

𝑖
𝑉
𝑈

𝑖

𝐺
𝑖
𝐴
𝑖

𝑑𝑥 + ∫

𝑙

0

𝑇
𝐿

𝑖
𝑇
𝑈

𝑖

𝐺
𝑖
𝐼
𝑝𝑖

𝑑𝑥} ,

(9)

where𝑁
𝑖
,𝑀
𝑖
, 𝑉
𝑖
, and 𝑇

𝑖
denote the member forces in the 𝑖th

member due to axial force,moment, shear force, and torsional
forces, respectively.Themember forces due to the actual load
and the unit load are identified by the superscripts 𝐿 and 𝑈,
respectively. 𝐴

𝑖
, 𝐼
𝑖
, and 𝐼

𝑝𝑖
denote the cross-sectional area,

moment of inertia of the area, and moment of inertia of the
polar area of the 𝑖thmember, respectively.𝐸

𝑖
,𝐺
𝑖
, and 𝑎 denote

the elastic modulus, shear modulus, and shape factor of the
𝑖th member, respectively.

From (9), the displacement participation factor of the 𝑖th
member, 𝛿

𝑖
, can be assumed to be reciprocally proportional

to the weight of themember. If the weightmodification factor
that controls the change in weight of each member is defined
as 𝛽
𝑖
, the objective function of the optimization problem in

which the displacement in (9) is to beminimized is expressed
as follows:

Minimize 𝛿 =

𝑚

∑

𝑖=1

𝛿
𝑖

𝛽
𝑖

, (10)

Subject to
𝑚

∑

𝑖=1

𝜌
𝑖
𝐴
𝑖
𝐿
𝑖
= 𝛼

𝑚

∑

𝑖=1

𝛽
𝑖
𝜌
𝑖
𝐴
𝑖
𝐿
𝑖
, (11)

where 𝜌, 𝐴, and 𝑙 are the weight density, cross-sectional area,
and length of the member. 𝛼 is the weight control factor: the
total weight of the structure is unchanged before and after
the resizing if 𝛼 is 1.0, decreased if 𝛼 is smaller than 1.0, and
increased if 𝛼 is greater than 1.0 during the resizing process.

The optimization problem defined in (10) and (11) can
be converted to an unconstrained minimization problem
using the Lagrange multiplier method. Then, the weight
modification factor of each member, 𝛽

𝑖
, can be obtained as

follows:

𝛽
𝑖
= 𝛼√

𝛿
𝑖

𝜌
𝑖
𝐴
𝑖
𝐿
𝑖

∑
𝑚

𝑖=1
𝜌
𝑖
𝐴
𝑖
𝐿
𝑖

∑
𝑚

𝑖=1
√𝛿𝜌
𝑖
𝐴
𝑖
𝐿
𝑖

. (12)
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Figure 5: Number of the individuals to which the resizing technique was applied.

The weight modification factor 𝛽
𝑖
obtained from (12) is

multiplied with the cross-sectional area of the 𝑖th member
to resize the weight of the 𝑖th member to minimize the
lateral displacement. As a result, each member now has an
adjusted cross-sectional area according to the displacement
participation factor; thus, they can effectively determine how
to control the target lateral displacement of a building [23].
In this manner, the lateral displacement of a building (i.e.,
the stiffness) is effectively controlled by the resizing technique
without repetition of structural analysis.

3.2. Generation of Initial Designs Using the Resizing Technique
(Phase 1). In this study, the resizing technique is used to
secure various individuals in the initial GA population. At
first, in the list of cross sections from which each structural
member could choose, the cross sections with the median

cross-sectional area are selected. The structural members
within the same group have the same cross sections and the
structural members with the different group can have the
different cross sections. Then, the initial design in which all
members consisting of the structure have the cross sections
with the median cross-sectional area from the available cross
sections of each member is generated. The initial design
is duplicated as many times as the number of individuals
(the size of the population) in a GA. All individuals in the
population have the same design (the initial design).

To secure various individuals in the initial population,
the resizing techniques with different values of weight control
factors in (11) are applied to duplicated individuals. In this
study, the weight control factors, 𝛼, are divided into three
different ranges: 0.85-0.95, 0.96–1.05, and 1.06–1.1. The resiz-
ing techniques with the same range of factors were applied
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Figure 6: Elevation of the 10-story example structure.

to the duplicated individuals, which is one-third of the
population size.Theweight control factors for the individuals
are randomly determined within the same range. In this
manner, various individuals to which the resizing technique
was applied could be secured in the initial population.

3.3. Application of the Resizing Technique Based on the Con-
straint Ratio (Phase 2). To enhance the convergence speed
of GAs, the resizing technique is applied to the individuals
at each generation. Resizing technique is not applied to all
individuals in the evolutionary procedure since computa-
tional time is increased by the structural analysis required to
obtain the member forces in a structure due to the unit loads.
Because the resizing technique is a displacement control
technique, the resizing techniques are applied according to
the ratio of the maximum displacement at the top of a
building to the allowable displacement.The ratio is expressed
as follows:

DR (displacement ratio) =
Disptop
Dispallow

. (13)

When the DR value of (13) violates the upper limit, which
is shown in Figure 1, the resizing technique is applied because
the resizing method improves the stiffness of a building
structure considerably. And when the DR value of (13) is
satisfied below the lower limit, the resizing technique is
applied by using the weight control factor smaller than 1.0.

This means that the weight and stiffness of the structure are
reduced.

3.4. Flowchart of the Resizing Technique-Based HGA. As
shown in Figure 2, the HGA is composed of two phases:
phase 1, which is the initial setting phase, where the initial
population is generated and the fitness is evaluated, and phase
2, where the optimal solution is obtained by repeating the
evolutionary procedure. The optimal solution is obtained
through the following 15 steps.

Step 1. An initial design is generated by using the median
cross-sectional area, which is chosen from a list of the
members’ cross sections.

Step 2. An initial design is duplicated 𝑁 times (𝑁 is the
number of individuals in the initial population).

Step 3. The duplicated initial designs are divided into three
groups, and the individuals of the initial population are
modified by applying the resizing technique using the weight
control factors with values in three different ranges.

Step 4. Structural analyses are performed with the generated
individuals.

Step 5. The constraints in (2)–(5) are evaluated using the
results from structural analysis.

Step 6. The fitness in (6) is evaluated. A certain number of
individuals having the high fitness values are preserved using
the elitist strategy.

Phase 1 is comprised of Steps 1–6, which are followed by
the evolutionary procedure that consists of the following.

Step 7. Selection.

Step 8. Crossover.

Step 9. Mutation.

Step 10. A structural analysis is performed with the popula-
tion that has undergone the evolutionary procedure, and then
the constraints are evaluated.

Step 11. The individuals that exceed the upper limit in
Figure 1 undergo the resizing process, structural analysis,
and constraint evaluation in Steps 11-1 and 11-2 as shown in
Figure 2. Then, the strength conditions and the condition in
(13) are evaluated. The individuals that have failed to satisfy
the strength conditions and the conditions in (13) after the
resizing process undergo Steps 11-4 and 11-5 as shown in
Figure 2. The individuals that do not satisfy the conditions
in Step 11 continue to Step 12.

Step 12. The individuals below the lower limits in Figure 1
undergo the resizing procedure in Steps 12-1 and 12-2 as
shown in Figure 2 , whereas those that are over the lower limit
continue to Step 13.
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Figure 8: Number of individuals to which the resizing technique was applied for Example 2.

Step 13. The fitness is evaluated for all individuals.

Step 14. A certain number of individuals having the high
fitness values are preserved for the next generation using the
elitist strategy.

Step 15. Convergence is tested. The algorithm is stopped
if the stopping criteria are satisfied. Otherwise, Steps 10–
14 are repeated through the evolutionary procedure. In
this study, the optimization procedure is terminated when
either the generation number reaches the maximum number
or the highest fitness remains constant during the certain
generations.
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4. Application to Minimum Weight Designs of
Steel Moment Frames

The resizing technique-based HGA proposed in this paper is
applied to the minimum weight design of three steel frame
structures in literature [18, 25]. For the three examples, the
modulus of elasticity of steel is 199,948 MPa (29,000 ksi) and
the yield strength is 248 MPa (36 ksi). The limit of interstory
drift ratio is set to 1/400. For the evaluation of the constraints,
OpenSees [26] is used as the structural analysis tool. To eval-
uate the performance of the resizing-based HGA, optimum
weights, computational times, and generation numbers from
the proposed algorithm are compared with those from the
GA. The GA used for comparison in this paper is the same
as the procedure shown in Figure 2 but skipped the resizing
steps. For the three examples, the size of population is set
to 60 for both HGA and GA. In the comparison, optimal
solutions from the HGA with two different values of the
weight control factors of 1.0 and 0.9 in Step 11-1 are obtained
from five independent runs.

The shape of the lateral load influences the lateral
response of structures. To evaluate the effect of the proposed
optimal algorithm, the load conditions used at [18, 25]
are identically applied for the verification of the proposed
algorithm.

4.1. Example 1: Two-Bay Three-Story Frame. A two-bay,
three-story steel frame shown in Figure 3 is used to test the
performance of the HGA. The details of the design for the
example are provided in [25]. For this example, the same

section selected from 256 W shapes in AISC-LRFD [24] is
used for all the beam members. With the consideration of
constructability, the same section selected from 32 W shapes
with a depth of 254mm (10 in) or less is used for all the
column members. The load values in Figure 3 are assumed
to define a factored load level that is appropriate for direct
application of the strength/stability provisions of the AISC-
LRFD specification [27].

In Figure 4, the weights of optimal solutions and com-
putational times obtained from 5 independent runs for the
weight control factors of 0.9 and 1.0 are compared with those
from the GA. The average of weights of the five optimum
solutions by the GA, which are the dotted lines in Figure 4(a),
is 832.15 kN.The average of weights of optimal solutions from
the HGAs with the weight control factors of 0.9 and 1.0 is
803.33 kN. Figure 4(b) shows the computational times for
five independent runs for the HGAs with the weight control
factors of 0.9 and 1.0. For the GA, the optimum solution
was found in an average of 25.4 generations, and the time
taken was 446.65 s. For the HGA with the weight control
factor of 1.0, the optimal solution was found in an average
of 16.6 generations, and the time taken was 466.82 s. When
the weight control factor was 0.9, the optimum solution was
found in an average of 12.2 generations, and the time taken
was 365.73 s.

In this study, the resizing technique was used so that
it could be applied to only a certain number of designs or
individuals for each generation. To verify this approach, the
weight curve with the number of individuals to which the
resizing technique was applied in each generation is shown
in Figure 5. In each iteration, for this example, the resizing
technique was applied to about 10 individuals (approximately
1/6 of 60 individuals).

4.2. Example 2: One-Bay Ten-Story Frame. This example is a
one-bay and ten-story steel frame shown in Figure 6 [25].The
same section is used for beammembers in every three stories
except for the roof. The same section is used for column
members in every two stories. All 256 W-shapes in AISC-
LRFD [24] are considered for available sections for both
beams and columns.The load values in Figure 6 are assumed
to define the service-load level [27].

In Figure 7, optimum solutions obtained from 5 indepen-
dent runs for the weight control factors of 0.9 and 1.0 are
compared with those from the GA.The average of weights of
the five optimum solutions by the GA, which are the dotted
lines in Figure 7(a), is 2,741.91 kN. The average of weights
of the optimum solutions from the GA is greater than the
average of weights of optimum solutions from the HGAs
with the weight control factors of 0.9 and 1.0. Figure 7(b)
shows the computational times for five independent runs
for the HGAs with the weight control factors of 0.9 and 1.0.
For the GA, the optimal weight was found in an average of
53.2 generations, and the time taken was 1,213.02 s. For the
HGA with the weight control factor of 1.0, the weight of
2,609.57 kN was found in an average of 36 generations, and
the time taken was 718.22 s. When the weight control factor
was 0.9, the weight of 2,620.16 kN was found in an average
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Figure 10: Optimum weights and computational times for Example 3.
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Figure 11: Number of individuals to which the resizing technique was applied for Example 3.

of 36.4 generations, and the time taken was 803.16 s. It was
shown that quality of optimum solutions and convergence
speed of HGA were improved by the applications of resizing
technique. As shown in Figure 8, the resizing technique was
applied to most individuals in the first three generations, but
it was applied to only approximately 1/6 of the individuals in
the later generations.

4.3. Example 3: Three-Bay Forty-Story Frame. This example
is a three-bay, 40-story steel frame shown in Figure 9. The
details of the design are found in [18]. The same section from
W-14 shapes in AISC-LRFD [24] is used for columnmember

in every two stories. The same section from W-18 and W-
24 shapes in AISC-LRFD [24] is used for beam members
in every two stories. The lateral load values in Figure 9 are
estimated based on the Hong Kong Wind Code (1983) with
the general terrain wind profile [18].

In Figure 10, optimum solutions obtained from 5 inde-
pendent runs for the weight control factors of 0.9 and 1.0 are
compared with those from the GA. The average of the five
optimum solutions by the GA, which are the dotted lines in
Figure 10(a), is 85,042.77 kN. The average of the weights for
the optimal solutions from the GA is greater than the average
of weights of optimal solutions from the HGAs. Figure 10(b)
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shows the computational times for five independent runs
for the HGAs with the weight control factors of 0.9 and
1.0. For the GA, the weight was found in 172.4 generations,
and the time taken was 2,874.59 s. For the HGA, when
the weight control factor was 1.0, the optimal weight of
83,743.68 kN was found in an average of 49.8 generations,
and the time taken was 1,694.61 s. When the weight control
factor was 0.9, the average weight of 83,950.68 kN was found
in 53.4 generations, and the time taken was 1,841.11 s. It was
shown that quality of optimum solutions and convergence
speed of HGA were improved by the applications of resizing
technique. As shown in Figure 11, the resizing technique
was applied to approximately 1/6 of the individuals in each
generation.

5. Conclusions

In this paper, to overcome the shortcomings of excessive com-
putational time of GA for the optimal drift design method
of multistory steel frame buildings, a resizing technique-
based hybrid GA is presented. In the HGA, to increase the
convergence speed of genetic algorithms by reducing the
number of structural analyses required for the convergence,
a genetic algorithm is combined with a resizing technique
that is an efficient optimal technique to control the drift of
buildings without the repetitiveness structural analysis.

The resizing technique-based HGA is applied to the
minimum weight design of three steel frame structures.
To evaluate the performance of the algorithm, optimum
weights, computational times, and generation numbers from
the proposed algorithm are compared with those from a
genetic algorithm. For the small example of the three-story
steel frame structure, the HGA could obtain an optimum
solution with slightly less weight but in a similar time for
the convergence compared to the GA. This result may occur
since the resizing technique for the control of lateral dis-
placements could not be effectively applied due to the small
lateral displacement of the three-story example. However,
for the 10- and 40-story steel frame structures, which were
dominantly affected by the lateral displacement, the quality
of the optimum solutions was improved, and the time to
reach convergence was decreased by introducing the resizing
technique. The computational time for the HGA to obtain
an optimum solution was decreased by approximately 41%
in the case of the 40-story steel frame structure. Therefore,
it may be concluded that the hybrid genetic algorithm shows
clear improvements in convergence properties of GAs for
structural optimizations.
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“CIXL2: a crossover operator for evolutionary algorithms
based on population features,” Journal of Artificial Intelligence
Research, vol. 24, pp. 1–48, 2005.

[5] C. Liu, “A hybrid genetic algorithm to minimize total tardiness
for unrelated parallel machine scheduling with precedence
constraints,” Mathematical Problems in Engineering, vol. 2013,
Article ID 537127, 11 pages, 2013.

[6] H. Song, R. Xu, Y. Ma, and G. Li, “Classification of ETM+
remote sensing image based on hybrid algorithm of genetic
algorithm and back propagation neural network,”Mathematical
Problems in Engineering, vol. 2013, Article ID 719756, 8 pages,
2013.

[7] R. Qing-dao-er-ji and Y. Wang, “Inventory based bi-objective
flow shop scheduling model and its hybrid genetic algorithm,”
Mathematical Problems in Engineering, vol. 2013, Article ID
976065, 7 pages, 2013.

[8] D. Tuyttens, H. Fei, M. Mezmaz, and J. Jalwan, “Simulation-
based genetic algorithm towards an energy-efficient railway
traffic control,”Mathematical Problems in Engineering, vol. 2013,
Article ID 805410, 12 pages, 2013.

[9] R. Sali, H. Roohafza, M. Sadeghi, E. Andalib, H. Shavandi, and
N. Sarrafzadegan, “Validation of the revised stressful life event
questionnaire using a hybrid model of genetic algorithm and
artificial neural networks,” Computational and Mathematical
Methods inMedicine, vol. 2013, Article ID 601640, 7 pages, 2013.

[10] Z. Miao, K. Fu, and F. Yang, “A hybrid genetic algorithm for
the multiple crossdocks problem,” Mathematical Problems in
Engineering, vol. 2012, Article ID 316908, 18 pages, 2012.

[11] T.-H. Yi, H.-N. Li, and M. Gu, “Optimal sensor placement
for health monitoring of high-rise structure based on genetic
algorithm,” Mathematical Problems in Engineering, vol. 2011,
Article ID 395101, 12 pages, 2011.

[12] J. Yen and B. Lee, “Simplex genetic algorithm hybrid,” in Pro-
ceedings of the IEEE International Conference on Evolutionary
Computation (ICEC ’97), pp. 175–180, April 1997.

[13] W. Tang, L. Tong, and Y. Gu, “Improved genetic algorithm
for design optimization of truss structures with sizing, shape
and topology variables,” International Journal for Numerical
Methods in Engineering, vol. 62, no. 13, pp. 1737–1762, 2005.

[14] S.-F. Hwang and R.-S. He, “A hybrid real-parameter genetic
algorithm for function optimization,” Advanced Engineering
Informatics, vol. 20, no. 1, pp. 7–21, 2006.



Mathematical Problems in Engineering 11

[15] K. E. Mathias, L. D. Whitley, C. Stork, and T. Kusuma, “Staged
hybrid genetic search for seismic data imaging,” in Proceedings
of the 1st IEEE Conference on Evolutionary Computation, pp.
356–361, June 1994.

[16] H. S. Park, Y. H. Kwon, J. H. Seo, and B.-H. Woo, “Distributed
hybrid genetic algorithms for structural optimization on a PC
cluster,” Journal of Structural Engineering, vol. 132, no. 12, pp.
1890–1897, 2006.

[17] S. O. Degertekin, M. P. Saka, and M. S. Hayalioglu, “Optimal
load and resistance factor design of geometrically nonlinear
steel space frames via tabu search and genetic algorithm,”
Engineering Structures, vol. 30, no. 1, pp. 197–205, 2008.

[18] C.-M. Chan andK.-M.Wong, “Structural topology and element
sizing design optimisation of tall steel frameworks using a
hybrid OC-GAmethod,” Structural and Multidisciplinary Opti-
mization, vol. 35, no. 5, pp. 473–488, 2008.

[19] G. Li, H. Lu, and X. Liu, “A hybrid genetic algorithm and
optimality criteria method for optimum design of RC tall
buildings under multi-load cases,”The Structural Design of Tall
and Special Buildings, vol. 19, no. 6, pp. 656–678, 2010.

[20] J.-T. Tsai, T.-K. Liu, and J.-H. Chou, “Hybrid Taguchi-genetic
algorithm for global numerical optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 8, no. 4, pp. 365–377,
2004.

[21] H. S. Park and C. L. Park, “Drift control of high-rise buildings
with unit load method,”The Structural Design of Tall Buildings,
vol. 6, no. 1, pp. 23–35, 1997.

[22] H. S. Park, K. Hong, and J. H. Seo, “Drift design of steel-frame
shear-wall systems for tall buildings,” The Structural Design of
Tall Buildings, vol. 11, no. 1, pp. 35–49, 2002.

[23] J. H. Seo, W.-K. Song, Y. H. Kwon, K. Hong, and H. S. Park,
“Drift design model for high-rise buildings based on resizing
algorithm with a weight control factor,”The Structural Design of
Tall and Special Buildings, vol. 17, no. 3, pp. 563–578, 2008.

[24] AISC-LRFD, Steel Construction Manual, American Institute of
Steel Construction, Chicago, Ill, USA, 2011.

[25] S. O. Degertekin, “Optimum design of steel frames using
harmony search algorithm,” Structural and Multidisciplinary
Optimization, vol. 36, no. 4, pp. 393–401, 2008.

[26] S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves,
OpenSees Command Language Manual, Pacific Earthquake
Research Center, University of California at Berkeley, Berkeley,
Calif, USA, 2006.

[27] S. Pezeshk, C. V. Camp, and D. Chen, “Design of nonlinear
framed structures using genetic optimization,” Journal of Struc-
tural Engineering, vol. 126, no. 3, pp. 387–388, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


