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The dissipative delay-feedback control problems for nonlinear stochastic delay systems (NSDSs) based on dissipativity analysis are
studied in this paper. Based on the Lyapunov stability theory and stochastic analysis technique, both delay-independent and delay-
dependent dissipativity criteria are established as linear matrix inequalities- (LMIs-) based feasibility tests. The obtained results in
this paper for the nominal systems include the available results on𝐻

∞
approach and passivity for stochastic delay systems as special

cases.The delay-dependent feedback controller is designed by considering the relationship among the time-varying delay, its lower
and upper bound, and its differential without ignoring any terms, which effectively reduces the conservative. A numerical example
is given to illustrate the theoretical developments.

1. Introduction

The stochastic differential systems appear as a natural de-
scription of many observed phenomena of real world, which
have been come to play an important role in many fields
including population dynamics, macroeconomics, chemical
reactor control, communication network, image processes,
and mobile robot localization. Therefore, the stability and
stabilizability of nonlinear stochastic differential systems
affine in the control have been studied in the past years by
means of the stochastic Lyapunov theory [1–4]. As we all
know, time delay in a control loop is one of the main sources
of instability, oscillation, and poor performance and naturally
encountered in a number of engineering control problems
and physical systems. Therefore, time-delay systems [5, 6]
and stochastic time-delay systems [7–12] have attractedmany
researchers’ attention and have been extensively studied.
The problems include stability analysis [5, 6], stabilization
problems [7, 8], and robust controller design [9–12].

On the other hand, studying the dissipativity analysis and
synthesis problems has a strong motivation due to their sim-
plicity and effectiveness in dealing with robust and nonlinear

systems. Since the notation of dissipative dynamical system
was introduced by Willems [13], dissipative systems have
been of particular interest to researchers in areas of systems,
circuits, networks and control, and so forth. Moreover, pas-
sivity of a certain system in a feedback interconnected system
will ensure the overall stability of that feedback system if
uncertainties or nonlinearities can be characterized by a strict
passive system. Hence, dissipative theory has wide ranging
implications and applications in control theory. For instance,
dissipativity was crucially used in the stability analysis of
nonlinear system [14]; the theory of dissipative systems gener-
alizes basic tools including the passivity theory, bounded real
lemma, Kalman Yakubovich lemma, and the circle criterion
[15]. Among the relevant topics are the dissipativity analysis
and synthesis for time-delay systems [16, 17]. These results
show that the dissipativity-basedmethods are highly effective
in design the robust controller.

Due to what is above mentioned, we believe that time
delay is often harmful factor of systems. However, time delay
is also surprising since plenty of studies have shown that
time delay can also benefit the control, such as time-delay
control. As mentioned previously, many results have been
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published about the control of systems with state delays but
without input delays, which is called memoryless controllers,
or to more general, memoryless controllers only includes an
instantaneous feedback term. The time-delay control is an
approach which gives a small delay ℎ in the controller design,
so as to reduce the effect of instability factor and exogenous
disturbance. See, for example [18–20], and the references
therein. Rather than adjusting control gains or identifying
model parameters, its essential idea is to use past observations
regarding both the control input and system response, which
is an open problem now. In this paper, dissipative delay-
feedback control problems for nonlinear stochastic systems
with time-varying delay are studied based on dissipativity.
The delay-dependent feedback controller is designed by con-
sidering the relationship among the time-varying delay, its
lower and upper bound, and its differential without ignoring
any terms, which effectively reduces the conservative.

2. Problems Statement and Preliminaries

In this paper, we consider the following nonlinear stochastic
delayed systems (NSDSs) defined on a probability space
(Ω,F,P):

d𝑥 (𝑡) = {𝐹 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐵𝑢 (𝑡, 𝑡 − 𝜏 (𝑡))

+𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; 𝑢(𝑡, 𝑡 − 𝜏(𝑡)) ∈ R𝑚 is
the control input, which depends on not only the real time
but also the delay; we call the controller memory controller;
𝑧(𝑡) ∈ R𝑞 is the control output; V(𝑡) ∈ R𝑝 is the exogenous
disturbance input, which satisfies V(𝑡) ∈ 𝐿

2
([0,∞),R𝑝),

where 𝐿
2
([0,∞),R𝑝) is the space of nonanticipatory square-

summable stochastic process with respect to (F
𝑡
)
𝑡>0

with the
following norm: ‖V(𝑡)‖2

2
= E∫

∞

0

‖V(𝑡)‖2d𝑡. 𝜔(𝑡) ∈ R𝑙 is a
scalar Brownian motion defined on a complete probability
space (Ω,F, 𝑃) with E[d𝜔(𝑡)] = 0, E[d2𝜔(𝑡)] = d𝑡.

In the sequel, we seek to study the problems of dissipative
analysis and delay-feedback control for the two cases of time
delay.

Case 1. Time delay is a constant 𝜏.

Case 2. 𝜏(𝑡) is the time-varying delay, which is a differential
function satisfying

0 ≤ 𝜏
1
≤ 𝜏 (𝑡) ≤ 𝜏

2
, ̇𝜏 (𝑡) ≤ 𝜏

𝑑
≤ 1, (2)

where 𝜏
1
, 𝜏
2
, and 𝜏

𝑑
are nonnegative constants.

Remark 1. Obviously, when 𝜏
𝑑
= 0, 𝜏(𝑡) = 𝜏

1
= 𝜏
2
, that means

the time delay is a constant; this case has been extensively
studied. On the other hand, the time-varying delay 𝜏(𝑡) ≥ 𝜏

1
;

here 𝜏
1
is equal to or greater than 0, which has less conserva-

tiveness than 𝜏(𝑡) > 0.

Assumption 2. 𝐹(⋅, ⋅, ⋅) is a nonlinear vector function which
can be decomposed as follows:

𝐹 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

= 𝐴
0
𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑓

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) ,

(3)

where 𝑓, 𝑓
𝑑
are vector-valued functions; we assume

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤ 𝛽 ‖𝑥 (𝑡)‖ , (4)

󵄩󵄩󵄩󵄩𝑓𝑑 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))
󵄩󵄩󵄩󵄩 ≤ 𝛽𝑑 ‖𝑥 (𝑡 − 𝜏 (𝑡))‖ , (5)

where 𝛽, 𝛽
𝑑
are known real positive constants.

Obviously, we know that

𝑓 (0, 0) = 0, 𝑓
𝑑
(0, 0) = 0. (6)

Equivalently stated, condition (4) implies that there exists
a scalar 𝜅 > 0 such that

𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡))) ≥ 0. (7)

Similarly, condition (5) implies that there exists a scalar
𝜅
𝑑
> 0 such that

𝜅
𝑑
(𝛽
2

𝑑
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

−𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑓

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))) ≥ 0.

(8)

Assumption 3. 𝐺(⋅, ⋅, ⋅) is a nonlinear vector function which
satisfies

Trace (𝐺𝑇 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))))

≤ 𝑥
𝑇

(𝑡) Θ
𝑇

1
Θ
1
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) Θ
𝑇

2
Θ
2
𝑥 (𝑡 − 𝜏 (𝑡)) ,

(9)

where Θ
1
, Θ
2
are known real matrices.

Hence, nonlinear stochastic delay systems (NSDSs) (1)
can be rewritten as

d𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐵𝑢 (𝑡, 𝑡 − 𝜏 (𝑡)) + 𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) .

(10)

Definition 4 (see [21]). Given matrices 𝑄𝑇 = 𝑄 ≤ 0, 𝑅𝑇 =
𝑅 ≥ 0, and 𝑆, nonlinear stochastic delay systems (NSDSs) (10)
are called (𝑄, 𝑆, 𝑅)-dissipative if, for some real function 𝜂(⋅),
𝜂(0) = 0,

E∫
𝑇

0

[𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) + 2V𝑇 (𝑠) 𝑆𝑧 (𝑠) + V𝑇 (𝑠) 𝑅V (𝑠)] d𝑠

+ 𝜂 (𝑥
0
) ≥ 0, ∀𝑇 ≥ 0.

(11)
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Furthermore, if, for a scalar 𝛼 > 0,

E∫
𝑇

0

[𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) + 2V𝑇 (𝑠) 𝑆𝑧 (𝑠) + V𝑇 (𝑠) 𝑅V (𝑠)] d𝑠

+ 𝜂 (𝑥
0
) ≥ E∫

𝑇

0

𝛼V𝑇 (𝑠) V (𝑠) d𝑠, ∀𝑇 ≥ 0,

(12)

NSDSs (10) are called strictly (𝑄, 𝑆, 𝑅)-dissipative.

Lemma 5 (see [22]). Given three constant matrices 𝑆
1
, 𝑆
2
, and

𝑆
3
, where 𝑆

3
= 𝑆
𝑇

3
< 0 and 𝑆

1
= 𝑆
𝑇

1
< 0, then 𝑆

1
− 𝑆
𝑇

2
𝑆
−1

3
𝑆
2
< 0

holds if and only if ( 𝑆1 𝑆2
𝑆
𝑇

2
𝑆
3

) < 0 or ( 𝑆3 𝑆2
𝑆
𝑇

2
𝑆
1

) < 0.

Lemma6 (see [23]). For given positive symmetricmatrix𝑀 =

𝑀
𝑇

> 0, two scalars 𝑎 and 𝑏 satisfying 𝑎 < 𝑏, and vector
function 𝑥(𝑡) : [𝑎, 𝑏] → R𝑛, then

[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑀[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠] ≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑥
𝑇

(𝑠)𝑀𝑥 (𝑠) 𝑑𝑠.

(13)

3. Dissipativity Analysis for NSDSs

In this section, our primary purpose is to develope delay-
independent and delay-dependent stochastically stability and
dissipativity criteria for NSDSs (10) based on Definition 4.

3.1. Delay-Independent Dissipativity. In this sequel, we con-
sider the time delay as unknown constant pertaining to
Case 1 and hence the results developed hereinafter will be
independent of the size of delay.Without regard to the control
input, setting 𝑢(𝑡, 𝑡 − 𝜏(𝑡)) = 0, then (10) can be rewritten as

d𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏)) + 𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0) .

(14)

Theorem 7. Consider the NSDSs (14). Given some scalars 𝛼 >
0, 𝛽 > 0, and 𝛽

𝑑
> 0 and matrices 𝑄 = 𝑄

𝑇

≤ 0, 𝑅 = 𝑅
𝑇

> 0,
and 𝑆, suppose there exist matrices 𝑃 = 𝑃

𝑇

> 0,𝑊 = 𝑊
𝑇

> 0

and positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such that the following LMI

holds:

(

(

Σ
1
𝑃𝐴
𝑑

Σ
2

𝑃 𝑃 𝐶
𝑇

𝑄

∗ Σ
3

−𝐶
𝑇

𝑑
𝑆 0 0 𝐶

𝑇

𝑑
𝑄

∗ ∗ −𝑅
𝛼

0 0 0

∗ ∗ ∗ −𝜅𝐼 0 0

∗ ∗ ∗ ∗ −𝜅
𝑑
𝐼 0

∗ ∗ ∗ ∗ ∗ 𝑄

)

)

< 0; (15)

then the NSDSs (14) are strictly (𝑄, 𝑆, 𝑅)-dissipative indepen-
dent of delay, where Σ

1
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑊 + Θ
𝑇

1
𝑃Θ
1
+ 𝜅𝛽
2

𝐼,
Σ
2
= 𝑃𝐷−𝐶

𝑇

𝑆, Σ
3
= Θ
𝑇

2
𝑃Θ
2
−𝑊+𝜅

𝑑
𝛽
2

𝑑
𝐼, and 𝑅

𝛼
= (𝑅−𝛼𝐼).

Proof. At first we introduce the following Lyapunov-Krasov-
skii functional (LKF):

𝑉 (𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠)𝑊𝑥 (𝑠) d𝑠. (16)

Evaluating the Itô derivative of 𝑉(𝑥
𝑡
) along the solution of

NSDSs (14), we have

L𝑉 (𝑥
𝑡
) = 2𝑥

𝑇

𝑃 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏)) + 𝐷V (𝑡)]

+ 𝑥
𝑇

𝑊𝑥 − 𝑥
𝑇

(𝑡 − 𝜏)𝑊𝑥 (𝑡 − 𝜏)

+ 𝐺
𝑇

(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑃𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) .

(17)

Noting (7)–(9), we obtain

L𝑉 (𝑥
𝑡
)

≤ L𝑉 (𝑥
𝑡
)

+ 𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡)))

+ 𝜅
𝑑
(𝛽
2

𝑑
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

− 𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

×𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) )

≤ 𝜉
𝑇

Σ𝜉,

(18)

where

𝜉 = (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏) , V𝑇 (𝑡) , 𝑓𝑇 (𝑡, 𝑥 (𝑡)) ,

𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏)))

𝑇

,

Σ = (

Σ
1
𝑃𝐴
𝑑
𝑃𝐷 𝑃 𝑃

∗ Σ
3

0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ −𝜅𝐼 0

∗ ∗ ∗ ∗ −𝑘
𝑑
𝐼

) .

(19)

Hence, we have

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠) ≤ 𝜉𝑇Σ̃𝜉,
(20)

where

Σ̃ = Σ −(

𝐶
𝑇

𝑄𝐶 𝐶
𝑇

𝑄𝐶
𝑇

𝑑
𝐶
𝑇

𝑆 0 0

∗ 𝐶
𝑇

𝑑
𝑄𝐶
𝑑

𝐶
𝑇

𝑑
𝑆 0 0

∗ ∗ (𝑅 − 𝛼𝐼) 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

). (21)
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According to Lemma 5 and applying the congruent trans-
formation, we know that

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠) ≤ 0.
(22)

Then, integrating (22) from 0 to 𝑇 and taking mathematical
expectation, we obtain that (12) holds which completes the
proof.

Remark 8. When 𝑄 = −𝐼, 𝑆 = 0, and 𝑅
𝛼
= 𝛾
2

𝐼, strictly
(𝑄, 𝑆, 𝑅)-dissipativity reduces to the 𝐻

∞
performance level.

When 𝑄 = 0, 𝑆 = 𝐼, and 𝑅
𝛼

= 𝛾𝐼, strictly (𝑄, 𝑆, 𝑅)-
dissipativity reduces to the strictly passivity.

So the following corollaries stand out as special cases.

Corollary 9. Consider the NSDSs (14). Given some scalars 𝛾 >
0, 𝛽 > 0, and 𝛽

𝑑
> 0, suppose there exist matrices 𝑃 = 𝑃

𝑇

> 0,
𝑊 = 𝑊

𝑇

> 0 and positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such that the

following LMI holds:

(

(

Σ
1
𝑃𝐴 𝑃𝐷 𝑃 𝑃 −𝐶

𝑇

∗ Σ
3

0 0 0 −𝐶
𝑇

𝑑

∗ ∗ −𝛾
2

𝐼 0 0 0

∗ ∗ ∗ −𝜅𝐼 0 0

∗ ∗ ∗ ∗ −𝜅
𝑑
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝐼

)

)

< 0; (23)

then theNSDSs (14) are stochastically asymptotically stable and
independent of delay with disturbance level 𝛾.

Corollary 10. Consider the NSDSs (14). Given some scalars
𝛾 > 0, 𝛽 > 0, and 𝛽

𝑑
> 0, suppose there exist matrices

𝑃 = 𝑃
𝑇

> 0,𝑊 = 𝑊
𝑇

> 0 and positive scalars 𝜅 > 0, 𝜅
𝑑
> 0

such that the following LMI holds:

(

Σ
1
𝑃𝐴 𝑃𝐷 − 𝐶

𝑇

𝑃 𝑃

∗ Σ
3

−𝐶
𝑇

𝑑
0 0

∗ ∗ −𝛾𝐼 0 0

∗ ∗ ∗ −𝜅𝐼 0

∗ ∗ ∗ ∗ −𝜅
𝑑
𝐼

) < 0; (24)

then the NSDSs (14) are strictly passive independent of delay.

3.2. Delay-Dependent Dissipativity. We now direct attention
to the type of dissipativitywhich depends on the time-varying
delay, which pertains to Case 2. Without consideration of the
control input, and defining a new state variable

𝑦 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡) ,

(25)

then, the NSDSs (10) can be rewritten as

d𝑥 (𝑡) = 𝑦 (𝑡) d𝑡 + 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) .

(26)

Theorem 11. Consider the NSDSs (26). For the given scalars
𝛼 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝛽 > 0, and 𝛽

𝑑
> 0, the NSDSs

(26) are strictly (𝑄, 𝑆, 𝑅)-dissipative for all time-varying delays
if there exist symmetric positive-definite matrices 𝑃, 𝑉

1
,𝑉
2
,𝑉
3
,

𝑊
1
, 𝑊
2
, 𝑍
1
, and 𝑍

2
; any appropriately dimensioned matrices

𝑁,𝑀, 𝐹, and 𝐻; and two positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such

that the following LMIs hold:

(
Ξ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) < 0,

(27)

where

Ξ =

(
(
(
(
(

(

Ξ
11

Ξ
12

Ξ
13

Ξ
14

𝐴
𝑇

𝐻 Ξ
16

∗ Ξ
22

−𝐶
𝑇

𝑑
𝑆 0 𝐴

𝑇

𝑑
𝐻 Ξ
26

∗ ∗ −𝑅
𝛼

0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Ξ
44

Ξ
45

0

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ Ξ
66

)
)
)
)
)

)

,

Ξ
11
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝜏
2
𝑍
1

+ (𝜏
2
− 𝜏
1
) 𝑍
2
+𝑀 +𝑀

𝑇

+ 𝜅𝛽
2

𝐼,

Ξ
12
= 𝑁 − 𝐹 −𝑀 + 𝑃𝐴

𝑑
, Ξ

13
= 𝑃𝐷 − 𝐶

𝑇

𝑆,

Ξ
14
= (𝐹 −𝑁 𝑃 𝑃) ,

Ξ
16
= (𝐶
𝑇

𝑄 Θ
1
𝑃 0) , Ξ

22
= − (1 − 𝜏

𝑑
) 𝑉
2
+ 𝜅
𝑑
𝛽
2

𝑑
𝐼,

Ξ
26
= (𝐶
𝑇

𝑑
𝑄 0 Θ

2
𝑃) ,

Ξ
44
= diag {−𝑉

1
, −𝑉
3
, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

Ξ
55
= 𝜏
2
𝑊
1
+ (𝜏
2
− 𝜏
1
)𝑊
2
− 𝐻 −𝐻

𝑇

,

Ξ
66
= diag {𝑄, −𝑃, −𝑃} , Ξ

45
= (0 0 𝐻

𝑇

𝐻
𝑇

)
𝑇

,

𝑁̂ = (𝑁
𝑇

, 0
1×10

)
𝑇

, 𝑀̂ = (𝑀
𝑇

, 0
1×10

)
𝑇

,

𝐹 = (𝐹
𝑇

, 0
1×10

)
𝑇

.

(28)

Proof. We construct a LKF as follows:
𝑉 (𝑥
𝑡
) = 𝑉
1
(𝑥
𝑡
) + 𝑉
2
(𝑥
𝑡
) + 𝑉
3
(𝑥
𝑡
) + 𝑉
4
(𝑥
𝑡
) , (29)
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where

𝑉
1
(𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥
𝑡
) = ∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝑉
1
𝑥 (𝑠) d𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑉
2
𝑥 (𝑠) d𝑠

+ ∫

𝑡

𝑡−𝜏
2

𝑥
𝑇

(𝑠) 𝑉
3
𝑥 (𝑠) d𝑠,

𝑉
3
(𝑥
𝑡
) = ∫

0

−𝜏
2

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑊
1
𝑦 (𝑠) d𝑠

+ ∫

−𝜏
1

−𝜏
2

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) d𝑠,

𝑉
4
(𝑥
𝑡
) = ∫

0

−𝜏
2

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍
1
𝑥 (𝑠) d𝑠

+ ∫

−𝜏
1

−𝜏
2

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍
2
𝑥 (𝑠) d𝑠.

(30)

Then, the weak infinitesimal operatorL of the stochastic
process 𝑥

𝑡
along the evolution of 𝑉(𝑥

𝑡
) is given by

L𝑉 (𝑥
𝑡
) = L𝑉

1
(𝑥
𝑡
) +L𝑉

2
(𝑥
𝑡
) +L𝑉

3
(𝑥
𝑡
) +L𝑉

4
(𝑥
𝑡
) ,

(31)

where

L𝑉
1
(𝑥
𝑡
) ≤ 2𝑥

𝑇

(𝑡) 𝑃 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡)]

+ 𝑥
𝑇

(𝑡) Θ
𝑇

1
𝑃Θ
1
𝑥 (𝑡)

+ 𝑥 (𝑡 − 𝜏 (𝑡)) Θ
𝑇

2
𝑃Θ
2
𝑥 (𝑡 − 𝜏 (𝑡)) ,

(32)

L𝑉
2
(𝑥
𝑡
) ≤ 𝑥
𝑇

(𝑡) (𝑉
1
+ 𝑉
2
+ 𝑉
3
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑉
1
𝑥 (𝑡 − 𝜏

1
)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑉
3
𝑥 (𝑡 − 𝜏

2
)

− 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (1 − 𝜏
𝑑
) 𝑉
2
𝑥 (𝑡 − 𝜏 (𝑡)) ,

(33)

L𝑉
3
(𝑥
𝑡
) = 𝜏
2
𝑦
𝑇

(𝑡)𝑊
1
𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏
2

𝑦
𝑇

(𝑠)𝑊
1
𝑦 (𝑠) d𝑠

+ (𝜏
2
− 𝜏
1
) 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡)

− ∫

𝑡−𝜏
1

𝑡−𝜏
2

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) d𝑠.

(34)

By using Lemma 6, we get the following inequality:

L𝑉
4
(𝑥
𝑡
) ≤ 𝜏
2
𝑥
𝑇

(𝑡) 𝑍
1
𝑥 (𝑡) + (𝜏

2
− 𝜏
1
) 𝑥
𝑇

(𝑡) 𝑍
2
𝑥 (𝑡)

−
1

𝜏
2

(∫

𝑡

𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)
𝑇

𝑍
1
(∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠)

−
1

𝜏
2
− 𝜏
1

(∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝑥(𝑠)d𝑠)
𝑇

𝑍
2
(∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝑥 (𝑠) d𝑠)

−
1

𝜏
2
− 𝜏
1

(∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)
𝑇

𝑍
2
(∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠) ,

(35)

setting 𝜉(𝑡) = (𝑥
𝑇

(𝑡), 𝑥
𝑇

(𝑡 − 𝜏(𝑡)), V𝑇(𝑡), 𝑥𝑇(𝑡 − 𝜏
1
), 𝑥
𝑇

(𝑡 −

𝜏
2
), 𝑓
𝑇

(𝑥(𝑡)), 𝑓
𝑇

𝑑
(𝑥(𝑡 − 𝜏(𝑡))), 𝑦

𝑇

(𝑡), (∫
𝑡

𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)
𝑇

,

(∫
𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝑥(𝑠)d𝑠)𝑇, (∫𝑡−𝜏1
𝑡−𝜏(𝑡)

𝑥(𝑠)d𝑠)𝑇)𝑇. And we introduce
the following four zero equations:

2𝑥
𝑇

(𝑡)𝑀[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

d𝑥 (𝑠)] = 0, (36)

2𝑥
𝑇

(𝑡)𝑁[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

d𝑥 (𝑠)] = 0,

(37)

2𝑥
𝑇

(𝑡) 𝐹 [𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

d𝑥 (𝑠)] = 0,

(38)

2𝑦
𝑇

(𝑡)𝐻 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡) − 𝑦 (𝑡)] = 0.

(39)

Summing up (31)–(39), we obtain

L𝑉 (𝑥
𝑡
) ≤ L𝑉 (𝑥

𝑡
)

+ 𝜅 (𝛽
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

(𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡)))

+ 𝜅
𝑑
(𝛽
2

𝑑
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

−𝑓
𝑇

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑓

𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))))

+ 2𝑥
𝑇

(𝑡)𝑀[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡))

−∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠]

− 2𝑥
𝑇

(𝑡)𝑀∫

𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

+ 2𝑥
𝑇

(𝑡)𝑁[𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
2
)

−∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝑦 (𝑠) d𝑠]
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− 2𝑥
𝑇

(𝑡)𝑁∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

+ 2𝑥
𝑇

(𝑡) 𝐹 [𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏 (𝑡))

−∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠]

− 2𝑥
𝑇

(𝑡) 𝐹∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

+ 2𝑦
𝑇

(𝑡)𝐻 [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷V (𝑡) − 𝑦 (𝑡)] ,
(40)

where𝑀,𝑁, 𝐹, and𝐻 are matrices with appropriate dimen-
sions. Hence,

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠)

≤ 𝜉
𝑇

(𝑡) Φ𝜉 (𝑡) − 2𝑥
𝑇

(𝑡)𝑀

× [∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠 + ∫
𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)]

− 2𝑥
𝑇

(𝑡)𝑁[∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝑦 (𝑠) d𝑠 + ∫
𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)]

− 2𝑥
𝑇

(𝑡) 𝐹 [∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝑦 (𝑠) d𝑠 + ∫
𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)]

− ∫

𝑡

𝑡−𝜏
2

𝑦
𝑇

(𝑠)𝑊
1
𝑦 (𝑠) d𝑠 − ∫

𝑡−𝜏
1

𝑡−𝜏
2

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) d𝑠,

(41)
where

Φ =

(
(
(

(

Φ
11

Φ
12

Φ
13

Φ
14

𝐴
𝑇

𝐻 0

∗ Φ
22

−𝐶
𝑇

𝑑
𝑆 0 𝐴

𝑇

𝑑
𝐻 0

∗ ∗ −𝑅
𝛼

0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Φ
44

Φ
45

0

∗ ∗ ∗ ∗ Φ
55

0

∗ ∗ ∗ ∗ ∗ Φ
66

)
)
)

)

,

Φ
11
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + Θ
𝑇

1
𝑃Θ
1
+ 𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝜏
2
𝑍
1

+ (𝜏
2
− 𝜏
1
) 𝑍
2
+𝑀 +𝑀

𝑇

− 𝐶
𝑇

𝑄𝐶 + 𝜅𝛽
2

𝐼,

Φ
12
= 𝑁 − 𝐹 −𝑀 + 𝑃𝐴

𝑑
− 𝐶
𝑇

𝑄𝐶
𝑑
, Φ

13
= 𝑃𝐷 − 𝐶

𝑇

𝑆,

Φ
14
= (𝐹 −𝑁 𝑃 𝑃) ,

Φ
22
= Θ
𝑇

2
𝑃Θ
2
− 𝐶
𝑇

𝑑
𝑄𝐶
𝑑
− (1 − 𝜏

𝑑
) 𝑉
2
+ 𝜅
𝑑
𝛽
2

𝑑
𝐼,

Φ
44
= diag {−𝑉

1
, −𝑉
3
, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

Φ
45
= (0 0 𝐻

𝑇

𝐻
𝑇

)
𝑇

,

Φ
55
= 𝜏
2
𝑊
1
+ (𝜏
2
− 𝜏
1
)𝑊
2
− 𝐻 −𝐻

𝑇

,

Φ
66
= diag{− 1

𝜏
2

𝑍
1
, −

1

𝜏
2
− 𝜏
1

𝑍
2
, −

1

𝜏
2
− 𝜏
1

𝑍
2
} .

(42)

So it easy to obtain that

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠) − V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠)

≤
1

𝜏
2

∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡, 𝑠) (
Φ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) 𝜂 (𝑡, 𝑠) d𝑠

+
1

𝜏
2
− 𝜏
1

∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡, 𝑠)

× (
Φ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)
) 𝜂 (𝑡, 𝑠) d𝑠

+
1

𝜏
2
− 𝜏
1

∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡, 𝑠) (
Φ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) 𝜂 (𝑡, 𝑠) d𝑠

− 2𝑥
𝑇

(𝑡)𝑀∫

𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡)𝑁∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡) 𝐹∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠) ,

(43)

where 𝜂𝑇(𝑡, 𝑠) = [𝜉𝑇(𝑡), 𝑦𝑇(𝑠)].
By Lemma 5 and applying the congruent transformation

to (27), it follows that

L𝑉 (𝑥
𝑡
) − 𝑧
𝑇

(𝑠) 𝑄𝑧 (𝑠) − 2V𝑇 (𝑠) 𝑆𝑧 (𝑠)

− V𝑇 (𝑠) (𝑅 − 𝛼𝐼) V (𝑠)

≤ −2𝑥
𝑇

(𝑡)𝑀∫

𝑡

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡)𝑁∫

𝑡−𝜏(𝑡)

𝑡−𝜏
2

𝐺 (𝑥
𝑠
) d𝜔 (𝑠)

− 2𝑥
𝑇

(𝑡) 𝐹∫

𝑡−𝜏
1

𝑡−𝜏(𝑡)

𝐺 (𝑥
𝑠
) d𝜔 (𝑠) .

(44)

Then, integrating both sides of (44) from 0 to 𝑇 and
taking mathematical expectation, we obtain that (12) holds,
which completes the proof.
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Similarly, as the special case, we can easily obtain the fol-
lowing corollaries.

Corollary 12. Consider the NSDSs (26). For the given scalars
𝛾 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝛽 > 0, and 𝛽

𝑑
> 0, the

NSDSs (26) are stochastically asymptotically stable with 𝐻
∞

performance level for all time-varying delays if there exist
symmetric positive-definite matrices 𝑃, 𝑉

1
, 𝑉
2
, 𝑉
3
,𝑊
1
,𝑊
2
, 𝑍
1
,

and𝑍
2
; any appropriately dimensioned matrices𝑁,𝑀, 𝐹, and

𝐻; and two positive scalars𝜅 > 0, 𝜅
𝑑
> 0 such that the following

LMIs hold:

(
Ξ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)
) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) < 0,

(45)

where

Ξ =

(
(
(
(
(

(

Ξ
11

Ξ
12

𝑃𝐷 Ξ
14

𝐴
𝑇

𝐻 Ξ
16

∗ Ξ
22

0 0 𝐴
𝑇

𝑑
𝐻 Ξ
26

∗ ∗ −𝛾
2

𝐼 0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Ξ
44

Ξ
45

0

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ Ξ
66

)
)
)
)
)

)

,

Ξ
16
= (−𝐶

𝑇

Θ
1
𝑃 0) , Ξ

26
= (−𝐶

𝑇

𝑑
0 Θ
2
𝑃) ,

Ξ
66
= diag {−𝐼, −𝑃, −𝑃} ,

Ξ
11
, Ξ
12
, Ξ
14
, Ξ
22
, Ξ
44
, Ξ
45
, Ξ
55
,

(46)

defined in Theorem 11.

Corollary 13. Consider the NSDSs (26). For the given scalars
𝛾 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝛽 > 0, and 𝛽

𝑑
> 0, the NSDSs

(26) are strictly (𝑄, 𝑆, 𝑅)-passive for all time-varying delays if
there exist symmetric positive-definite matrices 𝑃, 𝑉

1
, 𝑉
2
, 𝑉
3
,

𝑊
1
, 𝑊
2
, 𝑍
1
, 𝑍
2
; any appropriately dimensioned matrices 𝑁,

𝑀, 𝐹, and𝐻; and two positive scalars 𝜅 > 0, 𝜅
𝑑
> 0 such that

the following LMIs hold:

(
Ξ −𝜏

2
𝑀̂

∗ −𝜏
2
𝑊
1

) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝑁̂

∗ − (𝜏
2
− 𝜏
1
) (𝑊
1
+𝑊
2
)
) < 0,

(
Ξ − (𝜏

2
− 𝜏
1
) 𝐹

∗ − (𝜏
2
− 𝜏
1
)𝑊
2

) < 0,

(47)

where

Ξ =

(
(
(
(
(

(

Ξ
11

Ξ
12

𝑃𝐷 − 𝐶
𝑇

Ξ
14

𝐴
𝑇

𝐻 Ξ
16

∗ Ξ
22

−𝐶
𝑇

𝑑
0 𝐴
𝑇

𝑑
𝐻 Ξ
26

∗ ∗ −𝛾𝐼 0 𝐷
𝑇

𝐻 0

∗ ∗ ∗ Ξ
44

Ξ
45

0

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ Ξ
66

)
)
)
)
)

)

,

Ξ
16
= (Θ
1
𝑃 0) , Ξ

26
= (0 Θ

2
𝑃) ,

Ξ
66
= diag {−𝑃, −𝑃} , 𝑁̂ = (𝑁

𝑇

, 0
1×9
)
𝑇

,

𝑀̂ = (𝑀
𝑇

, 0
1×9
)
𝑇

, 𝐹 = (𝐹
𝑇

, 0
1×9
)
𝑇

,

Ξ
11
, Ξ
12
, Ξ
14
, Ξ
22
, Ξ
44
, Ξ
45
, Ξ
55

(48)

defined in Theorem 11.

4. Dissipative Delay-Feedback
Control for NSDSs

Extending on the results of the foregoing section, our aim is to
develope an LMIs-based solution to the problem of designing
a delay-feedback controller as

𝑢 (𝑡, 𝑡 − 𝜏 (𝑡)) = 𝐾
0
𝑥 (𝑡) + 𝐾

1
𝑥 (𝑡 − 𝜏 (𝑡)) , (49)

whichwill render theNSDSs (10) strictly (𝑄, 𝑆, 𝑅)-dissipative.
The closed-loop systems is now described by

d𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑑
(𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐷V (𝑡)} d𝑡

+ 𝐺 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏
2
, 0) ,

(50)

where 𝐴 = 𝐴 + 𝐵𝐾
0
, 𝐴
𝑑
= 𝐴
𝑑
+ 𝐵𝐾
1
.

Applying Theorem 7, together with Lemma 5 and con-
gruent transformation, we can get the following theorem
without detailed proofs.

Theorem 14. Consider the NSDSs (50). Given some scalars
𝛼 > 0, 𝛽 > 0, 𝛽

𝑑
> 0, 𝜅 > 0, and 𝜅

𝑑
> 0 and matrices

𝑄 = 𝑄
𝑇

≤ 0, 𝑅 = 𝑅
𝑇

> 0, and 𝑆, suppose there exist matrices
𝑋 = 𝑋

𝑇

> 0,𝑊 = 𝑊
𝑇

> 0, 𝑌, and 𝑌
𝑑
such that the following

LMI holds:

(

Γ
1
𝐴
𝑑
𝑋 + 𝐵𝑌

𝑑
𝐷 − 𝑋𝐶

𝑇

𝑆 Γ
2

∗ −𝑊̃ −𝑋𝐶
𝑇

𝑑
𝑆 Γ
3

∗ ∗ −𝑅
𝛼

0

∗ ∗ ∗ Γ
4

)< 0; (51)
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then the NSDSs (50) are strictly (𝑄, 𝑆, 𝑅)-dissipative
independent of delay; the feedback gain is 𝐾

0
= 𝑌𝑋

−1, 𝐾
1
=

𝑌
𝑑
𝑋
−1, where Γ

1
= 𝑋𝐴

𝑇

+ 𝐴𝑋 + 𝑌
𝑇

𝐵
𝑇

+ 𝐵𝑌 + 𝑊̃,
Γ
2

= (𝐼 𝐼 𝑋𝐶
𝑇

𝑄 𝑋Θ
1
0 𝜅𝛽𝑋 0), Γ

3
=

(0 0 𝑋𝐶
𝑇

𝑑
𝑄 0 𝑋Θ

2
0 𝜅
𝑑
𝛽
𝑑
𝑋), and Γ

4
= diag(−𝜅𝐼, −𝜅

𝑑
𝐼,

𝑄, −𝑋, −𝑋, −𝜅𝐼, −𝜅
𝑑
𝐼).

Similarly, applying Theorem 11, together with Lemma 5
and congruent transformation, we can obtain the following
theorem without detailed proofs.

Theorem 15. Consider the NSDSs (50). For the given scalars
𝛼 > 0, 𝜏

2
> 𝜏
1
≥ 0, 𝜏

𝑑
> 0, 𝜅 > 0, 𝜅

𝑑
> 0, 𝛽 > 0, and

𝛽
𝑑
> 0, the NSDSs (50) are strictly (𝑄, 𝑆, 𝑅)-dissipative for all

time-varying delays and the feedback gain is𝐾
0
= 𝑌𝑋
−1,𝐾
1
=

𝑌
𝑑
𝑋
−1, if there exist symmetric positive-definitematrices𝑋,𝑉

1
,

𝑉̃
2
, 𝑉̃
3
, 𝑊̃
1
, 𝑊̃
2
,𝑍
1
, and𝑍

2
and any appropriately dimensioned

matrices 𝑁̃, 𝑀̃, 𝐹,𝑌, and𝑌
𝑑
such that the following LMIs hold:

(

Δ −𝜏
2
𝑀̌

∗ −𝜏
2
𝑊̃
1

) < 0,

(

Δ − (𝜏
2
− 𝜏
1
) 𝑁̌

∗ − (𝜏
2
− 𝜏
1
) (𝑊̃
1
+ 𝑊̃
2
)

) < 0,

(

Δ − (𝜏
2
− 𝜏
1
) 𝐹̌

∗ − (𝜏
2
− 𝜏
1
) 𝑊̃
2

) < 0,

(52)

where

Δ =

(
(
(
(
(

(

Δ
11

Δ
12

Δ
13

Δ
14

Δ
15

Δ
16

∗ Δ
22

−𝑋𝐶
𝑇

𝑑
𝑆 0 Δ

25
Δ
26

∗ ∗ −𝑅
𝛼

0 𝐷
𝑇

0

∗ ∗ ∗ Δ
44

Δ
45

0

∗ ∗ ∗ ∗ Δ
55

0

∗ ∗ ∗ ∗ ∗ Δ
66

)
)
)
)
)

)

,

Δ
11
= 𝐴𝑋 + 𝐵𝑌 + 𝑋𝐴

𝑇

+ 𝑌
𝑇

𝐵
𝑇

+ 𝑉̃
1
+ 𝑉̃
2
+ 𝑉̃
3
+ 𝜏
2
𝑍
1

+ (𝜏
2
− 𝜏
1
) 𝑍
2
+ 𝑀̃ + 𝑀̃

𝑇

,

Δ
12
= 𝑁̃ − 𝐹 − 𝑀̃ + 𝐴

𝑑
𝑋 + 𝐵𝑌

𝑑
, Δ

13
= 𝐷 − 𝑋𝐶

𝑇

𝑆,

Δ
14
= (𝐹 −𝑁̃ 𝐼 𝐼) , Δ

15
= 𝑌
𝑇

𝐵
𝑇

+ 𝑋𝐴
𝑇

,

Δ
16
= (𝑋𝐶

𝑇

𝑄 𝑋Θ
1
0 𝜅𝛽𝑋 0) ,

Δ
22
= − (1 − 𝜏

𝑑
) 𝑉̃
2
,

Δ
25
= 𝑌
𝑇

𝑑
𝐵
𝑇

+ 𝑋𝐴
𝑇

𝑑
,

Δ
26
= (𝑋𝐶

𝑇

𝑑
𝑄 0 𝑋Θ

2
0 𝜅
𝑑
𝛽
𝑑
𝑋) ,

Δ
44
= diag {−𝑉̃

1
, −𝑉̃
3
, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

Δ
45
= (0 0 𝐼 𝐼)

𝑇

,

Δ
55
= 𝜏
2
𝑊̃
1
+ (𝜏
2
− 𝜏
1
) 𝑊̃
2
− 𝑋 − 𝑋

𝑇

,

Δ
66
= diag {𝑄, −𝑋, −𝑋, −𝜅𝐼, −𝜅

𝑑
𝐼} ,

𝑁̌ = (𝑁̃
𝑇

, 0
1×12

)
𝑇

, 𝑀̌ = (𝑀̃
𝑇

, 0
1×12

)
𝑇

,

𝐹̌ = (𝐹
𝑇

, 0
1×12

)
𝑇

.

(53)

5. Numerical Example with Simulation

In this section, we will give an example to show the cor-
rectness of the derived results and the effectiveness of
the designed controller. Consider the following nonlinear
stochastic delay systems:

d𝑥 (𝑡) =
[
[
[

[

(

−0.1 1 0 1

2 −1 2.5 0

−1 −1.5 −5 0

0 0 2 −5

)𝑥 (𝑡)

+(

0.1𝑥
1
sin (𝑥

3
)

0.4𝑥
2
cos (𝑥

4
)

0.3𝑥
3
sin (𝑥

1
𝑥
4
)

0.5𝑥
4
cos (𝑥

2
𝑥
3
)

)

+(

−1 1 0 1

2 −3 2.5 0

−1 −2 −3 0

0 0 2 3

)𝑥 (𝑡 − 𝜏)

+(

0.1𝑥
1
(𝑡 − 𝜏) sin (𝑥

3
(𝑡 − 𝜏))

0.2𝑥
2
(𝑡 − 𝜏) cos (𝑥

4
(𝑡 − 𝜏))

0.3𝑥
3
(𝑡 − 𝜏) sin (𝑥

1
(𝑡 − 𝜏) 𝑥

4
(𝑡 − 𝜏))

0.3𝑥
4
(𝑡 − 𝜏) cos (𝑥

2
(𝑡 − 𝜏) 𝑥

3
(𝑡 − 𝜏))

)

+(

0 −1

−0.5 0

−0.2 0

0 −0.2

)𝑢 (𝑡, 𝑡 − 𝜏)

+(

0.5 0.1 0.1 0

0.1 0.1 0.5 0.2

0 0.1 0 1

0 0 1 0.4

) V (𝑡)
]
]
]

]

d𝑡

+

(
(
(
(
(
(
(
(

(

0.35𝑥
1
sin (𝑥

1
)

+0.35𝑥
1
(𝑡 − 𝜏)

× cos (𝑥
2
(𝑡 − 𝜏))

0.71𝑡

1 + 𝑡
(𝑥
2
+ 𝑥
2
(𝑡 − 𝜏))

0.35𝑥
3
sin (𝑥

1
𝑥
3
)

−0.35𝑥
3
(𝑡 − 𝜏)

× sin (𝑥2
3
(𝑡 − 𝜏))

14𝑡

7 + 100𝑡
(𝑥
4
− 𝑥
4
(𝑡 − 𝜏))

)
)
)
)
)
)
)
)

)

d𝜔 (𝑡) ,
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x4(t)

x
(t
)
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Figure 1: The states curves of open-loop NSDSs in (54) without the
control with initial state (−2, 2, 3, −4)𝑇 and time delay 𝜏 = 1.

𝑧 (𝑡) = (

1 2 0 0

0 0.5 0 0

0 0 1 0

0 0 0.2 1

)𝑥 (𝑡)

+(

1 1 0 −1

0.5 0.5 −1 0

0 0 1 2

0 0 2 −1

)𝑥 (𝑡 − 𝜏) .

(54)

For Case 1, when the initial condition 𝑥(0) = [−2, 2, 3,

−4]
𝑇 is used and V(𝑡) is a random vector of zero mean and

0.3 standard deviation, we can see that the uncontrolled
NSDSs (54) are not stable from Figure 1. Hence the design of
dissipative delay-feedback controller is necessary. From (54),
we can get Θ

1
= Θ
2
= diag(0.5, 1, 0.5, 2), and 𝛽 = 0.5,

𝛽
𝑑
= 0.3, for given 𝑆 = 𝐼, 𝑅 = 5𝐼, and 𝑄 = −0.2𝐼; applying

Theorem 14 to this example, we have

𝑋 = (

38.2649 −9.3804 −3.6924 7.8006

−9.3804 25.9896 10.5274 −1.9189

−3.6924 10.5274 4.5464 −0.7337

7.8006 −1.9189 −0.7337 2.2634

) ,

𝑌 = 1.0𝑒 + 004

∗ (
−0.0254 1.5597 0.6249 −0.0044

0.8881 −0.0450 −0.0175 0.1783
) ,

𝑌
𝑑
= 1.0𝑒 + 003

∗ (
1.1951 0.5087 0.2100 0.2313

0.0308 0.2403 0.0994 −0.0020
) .

(55)

So the delay-feedback controller parameters can be cal-
culated as follows:

𝐾 = (
149.4677 780.3725 −306.7689 27.4064

258.0621 100.2942 −67.4539 −38.6640
) ,

𝐾
𝑑
= (

43.1863 33.7078 0.3173 −17.9504

5.8953 7.6550 6.9022 −12.4934
) .

(56)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
1
2
3

−4

−3

−2

−1x
(t
)

x1(t)

x2(t)

x3(t)

x4(t)

t (s)

Figure 2: The states curves of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 1.
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Figure 3: The states curves of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 2.

The states curves and the output curves of closed-loop
NSDSs in (54) can be seen in Figures 2, 3, and 4; from
Figure 5, we can see that (12) holds. Hence, the closed-loop
NSDSs are strictly (𝑄, 𝑆, 𝑅)-dissipative; we can also see that
the delay-feedback controller is delay-independent.

6. Conclusions

The dissipative delay-feedback control problems for nonlin-
ear stochastic delay systems (NSDSs) have been investigated
based on dissipativity analysis. The systems are subjected to
stochastic disturbance, nonlinear disturbance, and two cases
time-delay effects, which often exist in a wide variety of
industrial processes and are the main sources of instability.
Based on the Lyapunov stability theory and stochastic analy-
sis technique, both delay-independent and delay-dependent
dissipativity criteria have been established in terms of linear
matrix inequalities (LMIs). The available results on 𝐻

∞

approach and passivity for stochastic delay systems as special
cases of the developed results also have been given in this
paper. The delay-dependent feedback controller has been



10 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
2
4
6
8
10
12

−2

−4

−6

x
(t
)

z1(t)

z2(t)

z3(t)

z4(t)

t (s)

Figure 4: The output curves of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 1.
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Figure 5:The dissipativity level of closed-loop NSDSs in (54) under
the delay-feedback control with initial state (−2, 2, 3, −4)𝑇 and time
delay 𝜏 = 1.

designed by considering the relationship among the time-
varying delay, its lower and upper bound, and its difference
without ignoring any terms, which effectively reduces the
conservative. A numerical example also has been given to
verify the effectiveness of the proposed methods.
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