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A novel approach is proposed to deal with a class of nonlinear partial equations including integer and noninteger order derivative.
This class of equations cannot be handled with any other commonly used analytical technique. The proposed method is based on
the multi-Laplace transform. We solved as an example some complicated equations. Three illustrative examples are presented to
confirm the applicability of the proposed method. We have presented in detail the stability, the convergence and the uniqueness
analysis of some examples.

1. Introduction

In order to investigate the present and future behaviors
of a physical problem, many scholars always convert the
observed fact into mathematical formula. In the recent
decade it was observed that many physical problems were
describedwith partial differential equationwith either integer
order derivative or fractional order derivative. Some of these
equations can be classified as ordinary (linear or nonlinear)
partial (linear or nonlinear) differential equations.The partial
differential equations, both fractional and integer-order, have
been documented as an overriding modeling technique par-
ticularly in the last few decades [1–5]. To accurately replicate
the nonlocal, frequency-, and history-dependent properties
of power law phenomena, some different modeling tools
based on fractional operators have to be introduced.

However, as soon as this conversion is done, the next
challenge is to find the solutions to these equations. Many
scholars have developed method to show the existence and
the uniqueness of the solution of these equations [6–8].
But when we are dealing with real world fact, one needs
to find approximate, numerical, or exact solution of these

equations in order to predict and analyze the solution as
function of time and space and this renders the existence
concept useless [9–11]. It is perhaps important to recall
that finding the exact solution implies the existence of a
solution and this is more convenient than just to provide
a proof of the existence without presenting the solution.
In order to be more practical, several methods have been
proposed to find solutions to these equations. In the case of
linear equations, some techniques using integral transform
such as Mellin transform, Laplace transform, the Fourier
transform, and the Sumudu transform, as well as other
recent techniques, were proposed. In the case of nonlinear
partial differential equations, asymptoticmethods are dealing
with equations with small parameters, perturbation methods
are dealing with multilayers problems, and for some strong
linearity, iterations methods such as homotopy perturbation,
Adomian’s decomposition, homotopy decomposition, vari-
ational iteration, and many others have been documented
and proven efficient with limitations [12–17]. In 2011, Khan
showed that it was possible to make use of the Laplace
transform to actually derive solution of nonlinear equations.
In hismethod, he coupled the Laplace serieswith the Poincare
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series [16]. Others adapted this method using the Sumudu
transform and the idea of the Lagrange multiplier.

The question that remains is what will happen if a nonlin-
ear partial differential is made up withmixed derivative only?
Can these commonly used methods be suitable in finding
the approximate or exact solution? The answer is perhaps
no. One of the purposes of this paper is to present a novel
or extended method that will be used to handle this class
of partial derivative. The method makes use of the double
Laplace transform and the Poincare series. Without loss of
generality, the general form of this class of equation is given
as follows:

𝜕
𝑛

𝑥
𝑛𝜕
𝑚

𝑦
𝑚 ⋅ ⋅ ⋅ 𝜕

𝑖

𝑡
𝑖 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

= 𝐿 [𝑈 (𝑥, 𝑦, . . . , 𝑡)] + 𝑁 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝑓 (𝑥, 𝑦, . . . , 𝑡) ,

(1)

where 𝑚, 𝑛, . . . , 𝑖 are integer and noninteger numbers, 𝐿
and 𝑁 are linear and nonlinear operators with only mixed
derivative, respectively, and 𝑓 is a known function. However,
to be more practical we will only consider the dimension
to be two or three. The rest of the paper is presented as
follows. The methodology of the technique is presented in
Section 2. Application of the method with some examples
is presented in Section 3. The stability, convergence, and
uniqueness analysis will be presented in Section 4, and finally
a conclusion is reached in Section 5.

2. Methodology

We devote this section to the discussion underpinning the
methodology of the technique for solving (1). Nevertheless,
before we present thismethodologywewill first present some
properties of Laplace transform for integer and noninteger
order.

Definition 1. The Laplace transform is a widely used integral
transformwithmany applications in physics and engineering.
The Laplace transform of the function𝑓 is defined as follows:

L (𝑓 (𝑥)) (𝑠) = ∫

∞

0

𝑒
−𝑠𝑥

𝑓 (𝑥) 𝑑𝑥. (2)

2.1. Properties of Fractional Calculus. Two properties of the
Laplace transform can be used to define the fractional integral
operator as follows [18, 19]:

L (𝐼 (𝑓)) = L(∫

𝑥

0

𝑓 (𝜏) 𝑑𝜏) (𝑠) =
1

𝑠
L (𝑓 (𝑥)) (𝑠) ,

L (𝐼
2

(𝑓)) = L(∫

𝑥

0

∫

𝑥
1

0

𝑓 (𝜏) 𝑑𝜏 𝑑𝑥
1
) (𝑠)

=
1

𝑠2
L (𝑓 (𝑥)) (𝑠) .

(3)

Now using the recursive method, we arrive at the following:

L (𝐼
𝑛

(𝑓)) =
1

𝑠𝑛
L (𝑓 (𝑥)) (𝑠) . (4)

From the above equation we can obtain

L (𝐼
𝑛

(𝑓)) =
1

𝑠𝑛
L (𝑓 (𝑥)) (𝑠)

󳨐⇒ 𝐼
𝑛

(𝑓) = L
−1

(
1

𝑠𝑛
L (𝑓 (𝑥)) (𝑠)) .

(5)

It is well known from the convolution theorem of Laplace
transform that

L (𝑓 ∗ 𝑔 (𝑥)) (𝑠) = L (𝑓 (𝑥)) (𝑠) ⋅L (𝑔 (𝑥)) (𝑠) . (6)

Now from the above formula if we chose 𝑔(𝑥) = 𝑥
𝛼−1, with

the information of (4), the fractional integral operator can be
defined as follows:

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑥) =

1

Γ (𝛼)
L
−1

(L (𝑓 (𝑥)) (𝑠) ⋅L (𝑔 (𝑥)) (𝑠)) ,

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑥) =

1

Γ (𝛼)
(𝑓 ∗ 𝑔 (𝑥))

=
1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡.

(7)

Let us observe that Laplace transform of the fractional
derivative with both Riemann-Liouville and Caputo is as
follows:

L (
𝐶

0
𝐷
𝛼

𝑡
𝑓 (𝑥)) (𝑠)

= 𝑠
𝛼

𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝛼−𝑘−1

𝑓
(𝑘)

(0) , (𝑛 − 1 < 𝛼 ≤ 𝑛) .

(8)

Caputo use the usual initial conditions or values of the func-
tions.On the other hand,we have theRiemann-Liouville; that
is,

L (
0
𝐷
𝛼

𝑡
𝑓 (𝑥)) (𝑠) = 𝑠

𝛼

𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝛼−𝑘−1

𝑎
𝐷
𝑝−𝑘−1

𝑡
𝑓 (0) ,

(𝑛 − 1 ≤ 𝛼 < 𝑛) .

(9)

The above make use of the unusual initial value or conditions
of the function; therefore, it is not suitable for the real world
problems [19].

With the above references we will present the methodol-
ogy of the technique.Thefirst step in this technique is to apply
on both sides of (1) the multi-Laplace transform to obtain

𝑠
𝑚

1
𝑠
𝑛

2
⋅ ⋅ ⋅ 𝑠
𝑖

𝑖
𝑢 (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) − 𝐹 (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑖
, 𝑥, 𝑦, . . . , 𝑡)

= L
𝑥,𝑦,...,𝑡

[𝐿 [𝑈 (𝑥, 𝑦, . . . , 𝑡)] + 𝑁 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝑓 (𝑥, 𝑦, . . . , 𝑡)] (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) .

(10)
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We can now divide both sides by 𝑠𝑚
1
𝑠
𝑛

2
⋅ ⋅ ⋅ 𝑠
𝑖

𝑖
and apply the

inverse Laplace transform on both sides to obtain

𝑈 (𝑥, 𝑦, . . . , 𝑡)

= 𝑔 (𝑥, 𝑦, . . . , 𝑡)

= L
−1

𝑥,𝑦,...,𝑡
[

1

𝑠𝑚
1
𝑠𝑛
2
⋅ ⋅ ⋅ 𝑠𝑖
𝑖

× (L
𝑥,𝑦,...,𝑡

[𝐿 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝑓 (𝑥, 𝑦, . . . , 𝑡)]

× (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) ) ] (𝑥, 𝑦, . . . , 𝑡) .

(11)

At this stage two iteration formulae can be developed, the
first one using the idea of Lagrange multiplier and the second
one using the homotopy idea. If we use the idea of Lagrange
multiplier, we have that the Lagrange multiplier in Laplace
space is given as follows:

𝜆 (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) =

1

𝑠𝑚
1
𝑠𝑛
2
⋅ ⋅ ⋅ 𝑠𝑖
𝑖

. (12)

With the above Lagrangemultiplier in hand, we proposed the
general integration to be in the form of

𝑈
0
(𝑥, 𝑦, . . . , 𝑡) = 𝑔 (𝑥, 𝑦, . . . , 𝑡) ,

𝑈
𝑛+1

(𝑥, 𝑦, . . . , 𝑡)

= 𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)

+L
−1

𝑥,𝑦,...,𝑡
[

1

𝑠𝑚
1
𝑠𝑛
2
⋅ ⋅ ⋅ 𝑠𝑖
𝑖

× (L
𝑥,𝑦,...,𝑡

[𝐿 [𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝑓 (𝑥, 𝑦, . . . , 𝑡)]

× (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) ) ] (𝑥, 𝑦, . . . , 𝑡)

(13)

and the approximate or special solution can be obtained as

𝑈(𝑥, 𝑦, . . . , 𝑡) = lim
𝑛→∞

𝑈
𝑛+1

(𝑥, 𝑦, . . . , 𝑡) . (14)

If we use the idea of homotopy, we will assume that the
solution can be in the form of series as follows:

𝑈 (𝑥, 𝑦, . . . , 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡) . (15)

With replacing this expression in (11) and after comparing
terms of the same power of 𝑝, as well as using the polynomial
proposed in [15], we obtain

𝑈
0
(𝑥, 𝑦, . . . , 𝑡) = 𝑔 (𝑥, 𝑦, . . . , 𝑡) ,

𝑈
1
(𝑥, 𝑦, . . . , 𝑡)

= L
−1

𝑥,𝑦,...,𝑡
[

1

𝑠𝑚
1
𝑠𝑛
2
⋅ ⋅ ⋅ 𝑠𝑖
𝑖

× (L
𝑥,𝑦,...,𝑡

[𝐿 [𝑈
0
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [𝑈
0
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝑓 (𝑥, 𝑦, . . . , 𝑡)]

× (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) ) ] (𝑥, 𝑦, . . . , 𝑡)

(16)

and for 𝑛 ≥ 2, we have

𝑈
𝑛+1

(𝑥, 𝑦, . . . , 𝑡)

= L
−1

𝑥,𝑦,...,𝑡
[

1

𝑠𝑚
1
𝑠𝑛
2
⋅ ⋅ ⋅ 𝑠𝑖
𝑖

× (L
𝑥,𝑦,...,𝑡

[𝐿 [𝑈
0
(𝑥, 𝑦, . . . , 𝑡)]

+ H
𝑛
[(𝑥, 𝑦, . . . , 𝑡)]]

× (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑖
) ) ] (𝑥, 𝑦, . . . , 𝑡)

(17)

with of course H
𝑛
[(𝑥, 𝑦, . . . , 𝑡)] the polynomial proposed in

[15].
We will illustrate this method with some examples and

this is done in the next section

3. Application

We present in this section the application of this extension
by solving some nonlinear and linear partial differential
equations with mixed derivative only.

Example 2. To illustrate these methods, let us consider the
following simple linear equation:

𝜕
𝑥𝑡
𝑢 (𝑥, 𝑡) + 𝑢 = 0. (18)

Making use of methodology 2 presented is Section 2, we have

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0)

−L
−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[𝑢 (𝑥, 𝑡)] (𝑠, V))] (𝑥, 𝑡)

(19)

and the general iteration formula for this is given by

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0) ,

𝑢
𝑛+1

(𝑥, 𝑡) = −L
−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[𝑢
𝑛
(𝑥, 𝑡)] (𝑠, V))] (𝑥, 𝑡) .

(20)
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Therefore, using the iteration formula, we obtain

𝑢
0
(𝑥, 𝑡) = Cosh [𝑥] + Cosh [𝑡] − 1,

𝑢
1
(𝑥, 𝑡) = −

1

2
𝑒
−𝑡

𝑥 +
𝑒
𝑡

𝑥

2
+
1

2
𝑒
−𝑥

𝑡 (−1 + 𝑒
2𝑥

− 2𝑒
𝑥

𝑥) ,

𝑢
2
(𝑥, 𝑡) = −

𝑥
2

2
+
1

4
𝑒
−𝑡

𝑥
2

+
𝑒
𝑡

𝑥
2

4

+
1

4
𝑒
−𝑥

𝑡
2

(1 − 2𝑒
𝑥

+ 𝑒
2𝑥

− 𝑒
𝑥

𝑥
2

) ,

𝑢
3
(𝑥, 𝑡) = −

1

12
𝑒
−𝑡

𝑥
3

+
𝑒
𝑡

𝑥
3

12
−
𝑡𝑥
3

6

+
1

36
𝑒
−𝑥

𝑡
3

(−3 + 3𝑒
2𝑥

− 6𝑒
𝑥

𝑥 − 𝑒
𝑥

𝑥
3

) ,

𝑢
4
(𝑥, 𝑡) = −

𝑥
4

24
+
1

48
𝑒
−𝑡

𝑥
4

+
𝑒
𝑡

𝑥
4

48
−
𝑡
2

𝑥
4

48
+

1

576
𝑒
−𝑥

𝑡
4

× (12 − 24𝑒
𝑥

+ 12𝑒
2𝑥

− 12𝑒
𝑥

𝑥
2

− 𝑒
𝑥

𝑥
4

) ,

𝑢
5
(𝑥, 𝑡)

= −
1

240
𝑒
−𝑡

𝑥
5

+
𝑒
𝑡

𝑥
5

240
−
𝑡𝑥
5

120
−
𝑡
3

𝑥
5

720

+
𝑒
−𝑥

𝑡
5

(−60 + 60𝑒
2𝑥

− 120𝑒
𝑥

𝑥 − 20𝑒
𝑥

𝑥
3

− 𝑒
𝑥

𝑥
5

)

14400
,

𝑢
6
(𝑥, 𝑡) = −

𝑥
6

720
+
𝑒
−𝑡

𝑥
6

1440
+
𝑒
𝑡

𝑥
6

1440
−
𝑡
2

𝑥
6

1440
−

𝑡
4

𝑥
6

17280

+ (𝑒
−𝑥

𝑡
6

(360 − 720𝑒
𝑥

+ 360𝑒
2𝑥

− 360𝑒
𝑥

𝑥
2

− 30𝑒
𝑥

𝑥
4

− 𝑒
𝑥

𝑥
6

) × (518400)
−1

) ,

𝑢
7
(𝑥, 𝑡) = −

𝑒
−𝑡

𝑥
7

10080
+

𝑒
𝑡

𝑥
7

10080
−

𝑡𝑥
7

5040
−

𝑡
3

𝑥
7

30240
−

𝑡
5

𝑥
7

604800

+ (𝑒
−𝑥

𝑡
7

(−2520 + 2520𝑒
2𝑥

− 5040𝑒
𝑥

𝑥

− 840𝑒
𝑥

𝑥
3

− 42𝑒
𝑥

𝑥
5

− 𝑒
𝑥

𝑥
7

)

× (25401600)
−1

) .

(21)

And then, the summation of the first 11 terms is given as

𝑢 [𝑥, 𝑡] =

10

∑

𝑛=0

𝑢 [𝑥, 𝑡, 𝑛] = −1 −
𝑒
−𝑡

𝑥

2
+
𝑒
𝑡

𝑥

2
−
𝑥
2

2
+
1

4
𝑒
−𝑡

𝑥
2

+
𝑒
𝑡

𝑥
2

4
−
1

12
𝑒
−𝑡

𝑥
3

+
𝑒
𝑡

𝑥
3

12
−
𝑡𝑥
3

6
−
𝑥
4

24

+
1

48
𝑒
−𝑡

𝑥
4

+
𝑒
𝑡

𝑥
4

48
−
𝑡
2

𝑥
4

48
−

1

240
𝑒
−𝑡

𝑥
5

+
𝑒
𝑡

𝑥
5

240

−
𝑡𝑥
5

120
−
𝑡
3

𝑥
5

720
−

𝑥
6

720
+
𝑒
−𝑡

𝑥
6

1440
+
𝑒
𝑡

𝑥
6

1440
−
𝑡
2

𝑥
6

1440

−
𝑡
4

𝑥
6

17280
−
𝑒
−𝑡

𝑥
7

10080
+

𝑒
𝑡

𝑥
7

10080
−

𝑡𝑥
7

5040
−

𝑡
3

𝑥
7

30240

−
𝑡
5

𝑥
7

604800
−

𝑥
8

40320
+
𝑒
−𝑡

𝑥
8

80640
+

𝑒
𝑡

𝑥
8

80640
−

𝑡
2

𝑥
8

80640

−
𝑡
4

𝑥
8

967680
−

𝑡
6

𝑥
8

29030400
−

𝑒
−𝑡

𝑥
9

725760
+

𝑒
𝑡

𝑥
9

725760

−
𝑡𝑥
9

362880
−

𝑡
3

𝑥
9

2177280
−

𝑡
5

𝑥
9

43545600

−
𝑡
7

𝑥
9

1828915200
−

𝑥
10

3628800
+

𝑒
−𝑡

𝑥
10

7257600

+
𝑒
𝑡

𝑥
10

7257600
−

𝑡
2

𝑥
10

7257600
−

𝑡
4

𝑥
10

87091200

−
𝑡
6

𝑥
10

2612736000
−

𝑡
8

𝑥
10

146313216000

+
1

2
𝑒
−𝑥

𝑡 (−1 + 𝑒
2𝑥

− 2𝑒
𝑥

𝑥)

+
1

4
𝑒
−𝑥

𝑡
2

(1 − 2𝑒
𝑥

+ 𝑒
2𝑥

− 𝑒
𝑥

𝑥
2

)

+
1

36
𝑒
−𝑥

𝑡
3

(−3 + 3𝑒
2𝑥

− 6𝑒
𝑥

𝑥 − 𝑒
𝑥

𝑥
3

)

+
1

576
𝑒
−𝑥

𝑡
4

(12 − 24𝑒
𝑥

+ 12𝑒
2𝑥

− 12𝑒
𝑥

𝑥
2

− 𝑒
𝑥

𝑥
4

)

+ (𝑒
−𝑥

𝑡
5

(−60 + 60𝑒
2𝑥

− 120𝑒
𝑥

𝑥

− 20𝑒
𝑥

𝑥
3

− 𝑒
𝑥

𝑥
5

) × (14400)
−1

)

+ (𝑒
−𝑥

𝑡
6

(360 − 720𝑒
𝑥

+ 360𝑒
2𝑥

− 360𝑒
𝑥

𝑥
2

− 30𝑒
𝑥

𝑥
4

− 𝑒
𝑥

𝑥
6

) × (518400)
−1

)

+ (𝑒
−𝑥

𝑡
7

(−2520 + 2520𝑒
2𝑥

− 5040𝑒
𝑥

𝑥 − 840𝑒
𝑥

𝑥
3

− 42𝑒
𝑥

𝑥
5

− 𝑒
𝑥

𝑥
7

) × (25401600)
−1

)

+ (𝑒
−𝑥

𝑡
8

(20160 − 40320𝑒
𝑥

+ 20160𝑒
2𝑥

− 20160𝑒
𝑥

𝑥
2

− 1680𝑒
𝑥

𝑥
4

− 56𝑒
𝑥

𝑥
6

− 𝑒
𝑥

𝑥
8

) × (1625702400)
−1

)

+ (𝑒
−𝑥

𝑡
9

(−181440 + 181440𝑒
2𝑥

− 362880𝑒
𝑥

𝑥

− 60480𝑒
𝑥

𝑥
3

− 3024𝑒
𝑥

𝑥
5

− 72𝑒
𝑥

𝑥
7

− 𝑒
𝑥

𝑥
9

) × (131681894400)
−1

)

+ (𝑒
−𝑥

𝑡
10

(1814400 − 3628800𝑒
𝑥

+ 1814400𝑒
2𝑥

− 1814400𝑒
𝑥

𝑥
2

− 151200𝑒
𝑥

𝑥
4

− 5040𝑒
𝑥

𝑥
6

− 90𝑒
𝑥

𝑥
8

− 𝑒
𝑥

𝑥
10

)
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× (13168189440000)
−1

)

+ Cosh [𝑡] + Cosh [𝑥] .
(22)

Realize that if 𝑛 is very large, then the solution of this equation
is

𝑢 [𝑥, 𝑡] =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) = Cosh [𝑥 − 𝑡] . (23)

This is the exact solution of our equation. We will examine
the solution for the fractional version.

Example 3. Let us consider the following linear fractional
differential equation:

𝜕
𝛼+𝛽

𝑥
𝛼
𝑡
𝛽
𝑢 (𝑥, 𝑡) + 𝑢 = 0. (24)

Making use ofmethodology 2 presented in Section 2, we have

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0)

−L
−1

𝑥,𝑡
[

1

𝑠𝛼V𝛽
(L
𝑥,𝑡
[𝑢 (𝑥, 𝑡)] (𝑠, V))] (𝑥, 𝑡)

(25)

and the general iteration formula for this is given by

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0) ,

𝑢
𝑛+1

(𝑥, 𝑡) = −L
−1

𝑥,𝑡
[

1

𝑠𝛼V𝛽
(L
𝑥,𝑡
[𝑢
𝑛
(𝑥, 𝑡)] (𝑠, V))] (𝑥, 𝑡) .

(26)

Therefore, using the iteration formula we obtain

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0) = 1,

𝑢
1
(𝑥, 𝑡) =

𝑡
𝛽

𝑥
𝛼

Γ [1 + 𝛼] Γ [1 + 𝛽]
,

𝑢
2
(𝑥, 𝑡) =

𝑡
2𝛽

𝑥
2𝛼

Γ [1 + 2𝛼] Γ [1 + 2𝛽]
,

𝑢
3
(𝑥, 𝑡) =

𝑡
3𝛽

𝑥
3𝛼

Γ [1 + 3𝛼] Γ [1 + 3𝛽]
,

𝑢
4
(𝑥, 𝑡) =

𝑡
4𝛽

𝑥
4𝛼

Γ [1 + 4𝛼] Γ [1 + 4𝛽]
,

𝑢
𝑛
(𝑥, 𝑡) =

𝑡
𝑛𝛽

𝑥
𝑛𝛼

Γ [1 + 𝑛𝛼] Γ [1 + 𝑛𝛽]
.

(27)

It is very important to realize that if 𝑛 is very large, then the
solution of this equation is

𝑢 [𝑥, 𝑡] =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) =

∞

∑

𝑛=1

𝑡
𝑛𝛽

𝑥
𝑛𝛼

Γ [1 + 𝑛𝛼] Γ [1 + 𝑛𝛽]
. (28)

This is the exact solution of our equation.

Example 4. Let us consider the following nonlinear partial
differential equation :

𝜕
2

𝑥𝑡
𝑢 = 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢 + 4𝜕

3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢

+ 4(𝜕
2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

+ 𝜕
3

𝑥𝑡
2𝑢
3

.

(29)

The above equation is very complicated due to the strong
nonlinearity; we will therefore present a special solution to
it by applying methodology two presented in Section 2.

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0)

−L
−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[2𝑢𝜕
4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢

+ 4𝜕
3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢 + 4(𝜕

2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

+ 𝜕
3

𝑥𝑡
2𝑢
3

] (𝑠, V) ) ] (𝑥, 𝑡) .

(30)

The second and the third steps produce

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢 (0, 𝑡) − 𝑢 (0, 0) ,

𝑢
1
(𝑥, 𝑡) = −L

−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[2𝑢
0
𝜕
4

𝑥
2
𝑡
2𝑢
0
+ 4𝜕
𝑥
𝑢
0
𝜕
3

𝑥𝑡
2𝑢
0

+ 4𝜕
3

𝑥
2
𝑡
𝑢
0
𝜕
𝑡
𝑢
0
+ 4(𝜕
2

𝑥𝑡
𝑢
0
)
2

+ 𝜕
2

𝑡
2𝑢
0
𝜕
2

𝑥
2𝑢
0
+ 𝑢
2

0

+ 𝜕
3

𝑥𝑡
2𝑢
3

0
] (𝑠, V)) ] (𝑥, 𝑡) .

(31)

And for any natural number greater than one we have

𝑢
𝑛
(𝑥, 𝑡) = −L

−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[2𝐻
1

𝑛
(𝑥, 𝑡) + 4𝐻

2

𝑛
(𝑥, 𝑡)

+ 4𝐻
3

𝑛
(𝑥, 𝑡) + 4𝐻

4

𝑛
(𝑥, 𝑡)

+ 𝐻
5

𝑛
(𝑥, 𝑡) + 𝐻

6

𝑛
(𝑥, 𝑡)

+ 𝐻
7

𝑛
(𝑥, 𝑡)] (𝑠, V)) ] (𝑥, 𝑡) ,

𝐻
1

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
2
𝑡
2𝑢
𝑛−𝑗

(𝑥, 𝑡) ,
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𝐻
2

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑥
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑡
2𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
3

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑡
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
2
𝑡
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
4

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑥𝑡
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑡
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
5

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑡
2𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
2𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
6

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝑢

𝑛−𝑗
(𝑥, 𝑡) ,

𝐻
7

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝜕
𝑥𝑡
2𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑡
2𝑢
𝑗−𝑘

(𝑥, 𝑡) 𝜕
𝑥𝑡
2

× 𝑢
𝑛−𝑗−1

(𝑥, 𝑡) .

(32)

The above can be resumed in the following algorithm.

Algorithm 5. (i) Input: 𝐽(𝑥, 𝑡) as initial guest,
(ii) 𝑗—number terms in the rough calculation
(iii) Output: 𝑢approx(𝑥, 𝑡), the approximate solution.

Step 1. Put 𝑢
0
(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑢(0, 𝑡) − 𝑢(0, 0) and

𝑢approx(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡).

Step 2. For 𝑗 = 0 to 𝑛 − 1 do Step 3, Step 4, and Step 5.

Step 3. Compute

𝐻
1

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
2
𝑡
2𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
2

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑥
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑡
2𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
3

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑡
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
2
𝑡
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
4

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑥𝑡
𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑡
𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
5

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝜕
𝑡
2𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥
2𝑢
𝑛−𝑗

(𝑥, 𝑡) ,

𝐻
6

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑢
𝑗
(𝑥, 𝑡) 𝑢

𝑛−𝑗
(𝑥, 𝑡) ,

𝐻
7

𝑛
(𝑥, 𝑡) =

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝜕
𝑥𝑡
2𝑢
𝑗
(𝑥, 𝑡) 𝜕

𝑥𝑡
2𝑢
𝑗−𝑘

(𝑥, 𝑡) 𝜕
𝑥𝑡
2

× 𝑢
𝑛−𝑗−1

(𝑥, 𝑡) .

(33)

Step 4. Compute

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡)

= −L
−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[2𝐻
1

𝑛
(𝑥, 𝑡) + 4𝐻

2

𝑛
(𝑥, 𝑡)

+ 4𝐻
3

𝑛
(𝑥, 𝑡) + 4𝐻

4

𝑛
(𝑥, 𝑡)

+ 𝐻
5

𝑛
(𝑥, 𝑡) + 𝐻

6

𝑛
(𝑥, 𝑡)

+ 𝐻
7

𝑛
(𝑥, 𝑡)] (𝑠, V)) ] (𝑥, 𝑡) .

(34)

Step 5. Compute 𝑢approx(𝑥, 𝑡) = 𝑢approx(𝑥, 𝑡) + 𝑢𝑛+1(𝑥, 𝑡)

Stop.

We will present in the next section the analysis of
convergence and uniqueness of the especial solution of (29)
for using method 2.

4. Convergence and Uniqueness Analysis

The reason of this part is to demonstrate in detail the
convergence and the uniqueness of the nonlinear equation
while using the proposed iteration method; we will therefore
consider the following equation:

𝜕
2

𝑥𝑡
𝑢 = 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢 + 4𝜕

3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢

+ 4(𝜕
2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

+ 𝜕
3

𝑥𝑡
2𝑢
3

.

(35)

Think about the Hilbert spaceH = 𝐿
2

((𝜂, 𝜆)×[0, 𝑇]) defined
as

H = { (𝑢, V) : (𝜂, 𝜆) × [0, 𝑇]with,

L
−1

𝑥,𝑡
[
1

𝑠V
(L
𝑥,𝑡
[𝑢 (𝑥, 𝑡)] (𝑠, V))] (𝑥, 𝑡) < ∞} .

(36)

Then the operator is of the form

𝐾 (𝑢) = 𝜕
2

𝑥𝑡
𝑢 = 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢 + 4𝜕

3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢

+ 4(𝜕
2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

+ 𝜕
3

𝑥𝑡
2𝑢
3

.

(37)

The proposed analytical technique is convergent if the subse-
quent necessities are met.

Hypothesis 1. It is likely for us to establish a positive constant,
say 𝑃, such that the inner product holds inH:

(𝐾 (𝑢) − 𝐾 (V) , 𝑢 − V) ≤ 𝑃 ‖𝑢 − V‖ , ∀V, 𝑢 ∈ H. (38)
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Hypothesis 2. As far as for all V, 𝑢 ∈ 𝐻are bounded, this
implies, we can find a positive constant say 𝐷 such that
‖𝑢‖, ‖V‖ ≤ 𝐷; then, we can find Φ(𝐷) > 0 such that

(𝐾 (𝑢) − 𝐾 (V) , 𝑔) ≤ Φ (𝐷) ‖𝑢 − V‖ 󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 , ∀𝑔 ∈ 𝐻. (39)

We can accordingly declare the consequential theorem for the
sufficient condition for the convergence of (41).

Theorem 6. Let us think about
𝐾 (𝑢) = 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢 + 4𝜕

3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢

+ 4(𝜕
2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

+ 𝜕
3

𝑥𝑡
2𝑢
3

(40)

and think about the initial and boundary condition for (41);
then, the proposed technique shows the way to a particular
solution of (41).

Wewill present the proof of this theorem by just verifying
Hypotheses 1 and 2.

Proof. Using the definition of our operator 𝐾, we have the
following:

𝐾 (𝑢) − 𝐾 (V) = 2𝑢𝜕
4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢 + 4𝜕

3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢

+ 4(𝜕
2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

− V2

+ 𝜕
3

𝑥𝑡
2 (𝑢
3

− V3) − 2V𝜕4
𝑥
2
𝑡
2V − 4𝜕

𝑥
V𝜕3
𝑥𝑡
2V

− 4𝜕
3

𝑥
2
𝑡
V𝜕
𝑡
V − 4(𝜕2

𝑥𝑡
V)
2

− 𝜕
2

𝑡
2V𝜕2
𝑥
2V,

𝐾 (𝑢) − 𝐾 (V) = 𝜕
2

𝑥𝑡
(𝑢 − V) + 𝑢2 − V2

+ 𝜕
3

𝑥𝑡
2 (𝑢
3

− V3)

+ 2𝜕
𝑥
(𝑢𝜕
3

𝑥𝑡
2𝑢 + 𝜕

2

𝑥𝑡
𝑢𝜕
𝑡
𝑢

+ 𝜕
2

𝑡𝑥
𝑢𝜕
𝑡
𝑢 + 𝜕
𝑥
𝑢𝜕
2

𝑡
2𝑢)

− 2𝜕
𝑥
(V𝜕3
𝑥𝑡
2V + 𝜕2

𝑥𝑡
V𝜕
𝑡
V

+ 𝜕
2

𝑡𝑥
V𝜕
𝑡
V + 𝜕
𝑥
V𝜕2
𝑡
2V) ,

𝐾 (𝑢) − 𝐾 (V) = 𝜕
2

𝑥𝑡
(𝑢 − V) + (𝑢2 − V2)

+ 𝜕
3

𝑥𝑡
2 (𝑢
3

− V3) + 𝜕4
𝑥
2
𝑡
2𝑢 − 𝜕

4

𝑥
2
𝑡
2V,

𝐾 (𝑢) − 𝐾 (V) = 𝜕
2

𝑥𝑡
(𝑢 − V) + (𝑢2 − V2)

+ 𝜕
3

𝑥𝑡
2 (𝑢
3

− V3) + 𝜕4
𝑥
2
𝑡
2 (𝑢
2

− V2) .
(41)

With the above reduction in hand, it is therefore possible for
us to evaluate the following inner product:

(𝐾 (𝑢) − 𝐾 (V) , (𝑢 − V))

= ((𝑢
2

− V2) , 𝑢 − V) + (𝜕3
𝑥𝑡
2 (𝑢
3

− V3) , 𝑢 − V)

+ (𝜕
4

𝑥
2
𝑡
2 (𝑢
2

− V2) , 𝑢 − V) .

(42)

We will examine case after case and start with the high
nonlinear part.

Take for granted that 𝑢, V are bounded; consequently, we
can find a positive constant𝑀 such that (𝑢, 𝑢), (V, V) < 𝑀2. It
follows by the use of Schwartz inequality that

(𝜕
3

𝑥𝑡
2 (𝑢
3

− V3) , 𝑢 − V) ≤
󵄩󵄩󵄩󵄩󵄩
𝜕
3

𝑥𝑡
2 (𝑢
3

− V3)
󵄩󵄩󵄩󵄩󵄩
‖𝑢 − V‖ . (43)

However, we can find a positive constant 𝜃
1
such that ‖𝜕2

𝑡
2(𝑢
3

−

V3)‖ ≤ 𝜃
1
‖𝜕
3

𝑡
2(𝑢
3

− V3)‖ it follows from equation (43) that

(𝜕
2

𝑥𝑡
2 (𝑢
3

− V3) , 𝑢 − V) ≤ 𝜃
1
𝜃
2
𝜃
3

󵄩󵄩󵄩󵄩󵄩
𝑢
3

− V3
󵄩󵄩󵄩󵄩󵄩
‖𝑢 − V‖ . (44)

We will recall that

𝑢
3

− V3 = (𝑢 − V) (𝑢2 + 𝑢V + V2) . (45)

Thus
󵄩󵄩󵄩󵄩󵄩
𝑢
3

− V3
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
(𝑢 − V) (𝑢2 + 𝑢V + V2)

󵄩󵄩󵄩󵄩󵄩

= ‖(𝑢 − V)‖
󵄩󵄩󵄩󵄩󵄩
𝑢
2

+ 𝑢V + V2
󵄩󵄩󵄩󵄩󵄩
.

(46)

Now making use of the triangular inequality together with
the fact that 𝑢 and V are bounded, we arrive at the following
result:

󵄩󵄩󵄩󵄩󵄩
𝑢
3

− V3
󵄩󵄩󵄩󵄩󵄩
≤ 6𝑀

3

. (47)

It follows that

(𝜕
3

𝑥𝑡
2 (𝑢
3

− V3) , 𝑢 − V) ≤ 6𝜃
1
𝜃
2
𝜃
3
𝑀
3

‖𝑢 − V‖ . (48)

Also we have the following inequality:

(𝑢
2

− V2, 𝑢 − V) ≤
󵄩󵄩󵄩󵄩󵄩
𝑢
2

− V2
󵄩󵄩󵄩󵄩󵄩
‖𝑢 − V‖

≤ 4𝑀
2

‖𝑢 − V‖ .
(49)

We moreover have also that the Cauchy-Schwarz-
Bunyakovsky inequality yields

𝜕
4

𝑥
2
𝑡
2 ((𝑢
2

− V2) , 𝑢 − V)

≤ 𝜃
4
𝜃
5
𝜃
6
𝜃
7

󵄩󵄩󵄩󵄩󵄩
𝑢
2

− V2
󵄩󵄩󵄩󵄩󵄩
‖𝑢 − V‖ .

(50)

Obviously due to the fact that it is possible for us to find two
positive constants 𝜃

3
, 𝜃
4
such that

𝜕
4

𝑥
2
𝑡
2 ((𝑢
2

− V2) , 𝑢 − V)

≤ 𝜃
4
𝜃
5

󵄩󵄩󵄩󵄩󵄩
(𝑢
2

− V2)
𝑥𝑡

󵄩󵄩󵄩󵄩󵄩
‖𝑢 − V‖ ,

(51)

we can find another set of positive constants 𝜃
6
𝜃
7
in respect

of the following inequality:
󵄩󵄩󵄩󵄩󵄩
(𝑢
2

− V2)
𝑥𝑡

󵄩󵄩󵄩󵄩󵄩
≤ 𝜃
6
𝜃
7

󵄩󵄩󵄩󵄩󵄩
𝑢
2

− V2
󵄩󵄩󵄩󵄩󵄩

(52)

and finally using the fact that 𝑢 and V are bounded we obtain

𝜕
4

𝑥
2
𝑡
2 ((𝑢
2

− V2) , 𝑢 − V) ≤ 4𝑀2𝜃
4
𝜃
5
𝜃
6
𝜃
7
‖𝑢 − V‖ . (53)
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Now substituting (51), (44), and (49) into (42) we arrive at the
following:

(𝐾 (𝑢) − 𝐾 (V) , (𝑢 − V))

≤ (6𝜃
1
𝜃
2
𝜃
3
𝑀
3

+ 4𝑀
2

+ 4𝑀
2

𝜃
4
𝜃
5
𝜃
6
𝜃
7
) ‖𝑢 − V‖ .

(54)

Take here

𝑃 = 6𝜃
1
𝜃
2
𝜃
3
𝑀
3

+ 4𝑀
2

+ 4𝑀
2

𝜃
4
𝜃
5
𝜃
6
𝜃
7
. (55)

And then, Hypothesis 1 is verified. We will now verify
Hypothesis 2, and to do this we quickly compute the relation
as follows:

(𝐾 (𝑢) − 𝐾 (V) , 𝑔) = ((𝑢
2

− V2) , 𝑔) + (𝜕3
𝑥𝑡
2 (𝑢
3

− V3) , 𝑔)

+ (𝜕
4

𝑥
2
𝑡
2 (𝑢
2

− V2) , 𝑔) .
(56)

Now using the Schwartz inequality and the fact that 𝑢 and V
are bounded, we obtain the following:

(𝐾 (𝑢) − 𝐾 (V) , 𝑔)

≤ (2𝐷 + 3𝐷
2

𝜃
1
𝜃
2
𝜃
3
+ 2𝐷𝜃

4
𝜃
5
𝜃
6
𝜃
7
) ‖𝑢 − V‖ 󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩 .

(57)

Wewill then considerΦ(𝐷) = (2𝐷+3𝐷2𝜃
1
𝜃
2
𝜃
3
+2𝐷𝜃

4
𝜃
5
𝜃
6
𝜃
7
)

and Hypothesis 2 is also verified. We can therefore conclude
that the proposed method works for (23). Our next concern
is to establish the uniqueness of the special solution.This can
be resumed in the following theorem.

Theorem 7. Taking into account the initial conditions for (23)
then the special solution of (23) 𝑢

𝑒𝑠𝑝
to whom 𝑢 convergence is

unique.

Proof. Assuming that we can find another special solution,
say Vesp, then by making use of the inner product, we have

(𝑢esp − Vesp, 𝑢esp − Vesp) ≤ 2𝐷
󵄩󵄩󵄩󵄩󵄩
𝑢esp − Vesp

󵄩󵄩󵄩󵄩󵄩
. (58)

Now if 𝑢 is the exact solution of (23), then according to
Theorem 6 we can find suitable natural number 𝑛 and𝑚 such
that ‖𝑢esp − 𝑢‖ < 𝜀/4𝐷 and ‖𝑢 − Vesp‖ < 𝜀/4𝐷 with 𝜀 a very
small number closest to zero. Now taking themax(𝑚, 𝑛), then

(𝑢esp − Vesp, 𝑢esp − Vesp) ≤ 𝜀. (59)

However according to the properties of the inner product,

(𝑢esp − Vesp, 𝑢esp − Vesp) = 0

implies 𝑢esp − Vesp = 0
(60)

andTheorem 7 is verified.

5. Conclusion

Although many methods have been developed to deal with
the existence and the uniqueness of some class of differential

equations, there are still a large number of equations for
which these methods cannot be used and even it is not
possible to prove the existence of their solution, for instance,
the Navier-Stock equation. However, it is important to point
out that solving an equation analytically and finding the
exact solution are more than proving the existence of this
solution. The question that arises at this level is that should
we perhaps focus on developing analytical methods that can
be used to solve these complicated equations? Or should
we perhaps focus on developing methods to prove their
existence? We are afraid to reveal that for those dealing
with real world problems the answer will be as follows: let
us instead focus on developing methods to find analytical
solutions of these equations since we need them to predict
the future behaviour of these physical phenomena.Numerical
methods can also be used for this purpose [20]. The main
aim of this paper was to propose a method that can be used
to solve a class of partial differential equations that other
commonly used methods, such as the normal Laplace trans-
form method, the Fourier method, the Sumudu method, the
Green function method, and the Mellin transform method,
as well as the recent developed iteration methods, cannot
handle.We therefore presented some examples.We have with
great success presented the stability, the convergence, and the
uniqueness analysis.Wepresented this for both fractional and
ordinary partial differential equations.Themethod proposed
here makes use of the Laplace transform.
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